
OOP
Gavrilut Dragos

Course 2

Rev 3

Summary

 Pointers and References

 Method overloading

 NULL pointer

 “const” specifier

 “friend” specifier

Pointers and

References

Pointers and References
App-Pointer App-Reference

void SetInt(int *i)
{
 (*i) = 5;
}
void main()
{
 int x;
 Set(&x);
}

void SetInt(int &i)
{
 i = 5;
}
void main()
{
 int x;
 Set(x);
}

App-Pointer (asm – SetInt) App-Reference (asm – SetInt)

SetInt:
 push ebp
 mov ebp,esp
 mov eax,[ebp+8]
 mov [eax],5
 mov esp,ebp
 pop ebp
 ret

SetInt:
 push ebp
 mov ebp,esp
 mov eax,[ebp+8]
 mov [eax],5
 mov esp,ebp
 pop ebp
 ret

Pointers and References

 The resulted code is identical (both the “Pointer” and “Reference” program

will link into the same assembler code.

 However, from the programmer point of view, using a reference fixes some

possible problems (perhaps the most know one is that one does not need to

use the “->” operator – instead the “.” operator can be used). Another

important one is that a check for NULL pointers is no longer required.

Pointer Reference

struct Date
{
 int X;
}
void SetInt(Date *d)
{
 d->X = 5;
}

struct Date
{
 int X;
}
void SetInt(Date &d)
{
 d.X = 5;
}

Pointers and References

 References and pointers are created in the following manner:

 The difference is that pointers can remain uninitialized.

This forces the programmer to initialize a reference.

It also guarantees that a reference points to a valid memory location.

Pointer Reference

int i = 10;
int *p = &i;

int i = 10;
int &refI = i;

Pointer Reference

int i = 10;
int *p;

int i = 10;
int &refI; Compile error –

uninitialized reference

Pointers and References

 A pointer value can be changed (that is a pointer can point to different

memory addresses). A reference can only point to a variable and once it is

initialize the memory address where it points to can not be changed.

 A pointer can have the value NULL.

A reference can only point to a memory address

that exists.

Pointer Reference

int i = 10;
int j = 20;
int *p = &i;
p = &j;

int i = 10;
int j = 20;
int &refI = i;
&refI = j;

Compiler error – trying

to change a reference

that was already

initialized.

Pointers and References

 Pointers accept certain arithmetic operations (+, - , ++, etc). This is not valid

for references.

 In case of pointers, variable “i” and “j” are allocated consecutively on the

stack. The operation “p++” moves the pointer p from the memory address of

the variable “i” to the memory address of the variable “j”. At the end of the

execution “j” will have the value 30.

Pointer Reference

int i = 10;
int j = 20;
int *p = &i;
p++;
(*p) = 30;

int i = 10;
int j = 20;
int &refI = i;
refI++;
(&refI)++;

Compile error

Pointers and References

 A pointer can be converted to another pointer (cast). In particular any pointer

can be converted to a void pointer (void*). A reference can not be converted

to another reference.

 This thing guarantees that a reference points to a memory address where a

certain type of variable resides.

Pointer Reference

int i = 10;
char *p = (char *)&i;

int i = 10;
char &refI = i;

Compile error

Pointers and References

 A pointer may point to another pointer and so on. This is not possible for

references – a reference refers only a variable.

 It is important in this example to differentiate between “& &” (two

references separated with a space (‘ ‘) character) and “&&” (two consecutive

references).

Pointer Reference

int i = 10;
int *p = &i;
int *p_to_p = &p;
**p_to_p = 20;

int i = 10;
int &refI = i;
int & &ref_to_refI = refI;

Compile error

Pointers and References

 A pointer can be used in an array and be dynamically initialized. This is not

possible for references.

 However, a reference may point to a temporary (or constant) value.

Pointer Reference

int *p[100]; int &ref[100];

Compile error

Pointer Reference

int *p = &int(10); const int &refI = int(12);

This code will not compile if the

“const” specifier is not used as it

refers to a constant numerical

value.

Pointers and References

 A pointer can be used in an array and be dynamically initialized. This is not

possible for references.

 However, a reference may point to a temporary (or constant) value.

Pointer Reference

int *p[100]; int &ref[100];

Compile error

Pointer Reference

const int &refI = int(12);
int *p = (int *)&refI;

const int &refI = int(12);

It is however possible to create a

pointer that points to a

reference of a temporary

(constant) value.

Method overloading

Method overloading

 Method overloading is a technique used in C++ where one can define 2 or multiple

functions/methods with the same name (or operators).

 A function / method is uniquely identified by its signature:

 Since parameters are part of the function signature, multiple functions/methods

with the same name but different parameters are possible.

 However, this does not apply to return type (meaning that functions with the same

name and parameters but different return type can not exit).

return-type FunctionName (param1-type, param2-type, …)

A function/method signature is form out of:

 1) function name

 2) Parameters type (if parameters are present)

Method overloading

App.cpp

class Math
{
public:
 int Add (int v1, int v2);
 int Add (int v1, int v2, int v3);
 int Add (int v1, int v2, int v3, int v4);
 float Add (float v1, float v2);
};
int Math::Add(int v1, int v2)
{
 return v1 + v2;
}
int Math::Add(int v1, int v2, int v3)
{
 return v1 + v2 + v3;
}
int Math::Add(int v1, int v2, int v3, int v4)
{
 return v1 + v2 + v3 + v4;
}
float Math::Add(float v1, float v2)
{
 return v1 + v2;
}

Method overloading
 Method overloading is NOT possible if the methods have the same signature

(same name, same parameters)

 In the next case, both methods are named Add and have two parameters of

type int). The return type (even if in this case is different) will not be

considered , thus the two Add functions are consider duplicates !

App.cpp

class Math
{
public:
 int Add(int v1, int v2);
 long Add(int v1, int v2);
};
int Math::Add(int v1, int v2)
{
 return v1 + v2;
}
long Math::Add(int v1, int v2)
{
 return v1 + v2;
}

Method overloading
 Be careful when you are using parameters with default value. From the

compiler point of view, using this feature does not mean that a function has

fewer parameters !

 This code will NOT compile as Add has the same signature !

App.cpp

class Math
{
public:
 int Add(int v1, int v2);
 long Add(int v1, int v2 = 0);
};
int Math::Add(int v1, int v2)
{
 return v1 + v2;
}
long Math::Add(int v1, int v2)
{
 return v1 + v2;
}

Method overloading
 Another special case are methods with variadic parameters (“…”). However,

they are not recommended in case of method overloading as the

interpretation can be misleading.

App.cpp

class Math
{
public:
 int Add(int v1, int v2);
 long Add(int v1, ...);
};
int Math::Add(int v1, int v2)
{
 return v1 + v2;
}
long Math::Add(int v1, ...)
{
 return v1;
}

Method overloading

 When a function/method that was overloaded is called, the compiler

determines which one of the existing definiens of that function/method it

should use. This process is called overload resolution

 It is possible that the result of this process will be inconclusive (e.g. – the

compiler can not decide the best fit for a specific name). In this case a

compiler error will be raised, and the ambiguity will be explained.

Method overloading

Overload resolution steps:

1. Check if an exact match is possible (a method exists with the same name and

the exact same parameters type)

Defined void Compute(int x, double y, char z)

Called Compute(100, 1.5, ‘A’)

Method overloading

Overload resolution steps:

2. Check if a numerical promotion is possible (convert a type into another one

without loosing precision and the value).

✓ bool, char, short, unsigned char and unsigned short can be promoted to in int

✓ float can be promoted to double

✓ Any enumeration (enum) without an explicit type can be converted to int

Defined void Compute(int x, double y, char z)

Called Compute(true, 1.5f, ‘A’)

Promotion Compute(1, 1.5, ‘A’)

true is promoted to int value (1)

1.5f (a float value) is promoted to double value 1.5

Method overloading

Overload resolution steps:

3. Check if a numerical conversion is possible (convert a type into another one

with the possibility of loosing the actual value / precision).

It is possible that the conversion may apply to several overloaded methods. If

this is a case, an ambiguity error will be thrown, and the program will not

compile

Defined void Compute(int x, double y, char z)

Called Compute(3.5, 1.5, ‘A’)

Conversion Compute(3, 1.5, ‘A’)

3.5 (a double value) will be converted to int value 3

(loosing precision)

Method overloading

Overload resolution steps:

4. Casts are attempted:

✓ Every non-const pointer can be casted to its const pointer form

✓ Every non-const pointer can be casted to void * or const void *

✓ Every const pointer can be casted to const void *

✓ NULL macro (define) can be converted to numerical value 0

Defined void Compute(int x, const void* y, char z)

Called Compute(NULL, “C++”, ‘A’)

Cast Compute(0, (const void*)”C++”, ‘A’)

NULL is converted to int value 0

“C++” (a const char * pointer) is cast to const void *

Method overloading

Overload resolution steps:

5. Explicit casts (if any) are applied. We will discuss more on this topic when we

will study inheritance and C++ operators.

6. If none of these attempts result in finding a match – a fallback method /

function (if any) is used. A fallback method is a method that only has variadic

parameters

7. If there isn’t such a method , the compiler will produce an error.

Method overloading
 100 is considered an “int” type value. Since there is a method by the name

Inc that has a parameter of type “int”, the compiler will use that method.

 In this case we have an exact-match situation.

App.cpp

class Math
{
public:
 int Inc(int v1);
 float Inc(float v1);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
float Math::Inc(float v1)
{
 return v1+1.0f;
}
void main()
{
 Math m;
 m.Inc(100);
}

Method overloading
 1.0f is a “float” value. Since there is a method by the name Inc that has a

parameter of type “float”, the compiler will use that method.

 In this case we have an exact-match situation.

App.cpp

class Math
{
public:
 int Inc(int v1);
 float Inc(float v1);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
float Math::Inc(float v1)
{
 return v1+1.0f;
}
void main()
{
 Math m;
 m.Inc(1.0f);
}

Method overloading
 ‘a’ is a “char” type value. As there is no method with the name Inc that has

one parameter of type “char”, the compiler promotes the char value to int

an uses the Inc method with one parameter of type “int” .

App.cpp

class Math
{
public:
 int Inc(int v1);
 float Inc(float v1);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
float Math::Inc(float v1)
{
 return v1+1.0f;
}
void main()
{
 Math m;
 m.Inc(‘a’);
}

Method overloading
 ‘a’ is a “char” type value. As there is no method with the name Inc that has

one parameter of type “char”, the compiler promotes the char value to int

and tries again. Since there is no Inc method that has an int parameter (but

there are two Inc methods, an ambiguity case will be declared, and the code

will not compile. Event if, a char can fully be converted (without any value

lost) into a short , promotion only works for int and double types.

App.cpp

class Math
{
public:
 int Inc(short v1);
 float Inc(float v1);
};
int Math::Inc(short v1)
{
 return v1 + 1;
}
float Math::Inc(float v1)
{
 return v1+1.0f;
}
void main()
{
 Math m;
 m.Inc(‘a’);
}

Method overloading

 If during the promotion phase the compiler DOES NOT find any possible

promotion, but there are at least two methods/functions with the same name

as the one attempted to be promoted the compiler will throw an error (this

will be considered to be an ambiguity case). Having at least two methods with

the same name is an indicator that method overloading is desired and another

overload for the specific call is required.

 However, if the promotion fails and there only ONE method with that name, a

conversion is attempted (in this case it is considered that method overloading

was not something desired by the programmer and the compiler attempts to

match the parameters even if this means losing precision / value).

Method overloading
 1.0 is a double value. As there is not any Inc method that receives a double

parameter, promotion is attempted. Unfortunately – can not be promoted

(without loosing value) to either int or float.

 Since there are two Inc function, this code will not compile, and an ambiguity

case will be explained as an error.

App.cpp

class Math
{
public:
 int Inc(int v1);
 float Inc(float v1);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
float Math::Inc(float v1)
{
 return v1+1.0f;
}
void main()
{
 Math m;
 m.Inc(1.0);
}

Method overloading
 In this case, 1.0 is a double value, and as there is no Inc function that has one

parameter of type double, promotion is attempted. Unfortunately, double

can not be converted to char without loosing precision.

 However, as there is only ONE function Inc, the compiler will convert double

to char (even if this means losing precision). This code will compile with

warnings.

App.cpp

class Math
{
public:
 int Inc(char v1) {
 return v1 + 1;
 }
};
void main()
{
 Math m;
 m.Inc(1.0);
}

warning C4244: 'argument':

conversion from 'double' to

'char', possible loss of data

Method overloading
 In this case, 1.0 is a double value, and as there is no Inc function that has one

parameter of type double, promotion is attempted. Unfortunately, double

can not be converted to char without loosing precision.

 However, as there is only ONE function Inc, the compiler will try to convert

double to char *. As this is not possible (only conversions numerical

conversions are possible) the compiler will produce an error and the code will

not compile.

App.cpp

class Math
{
public:
 int Inc(char* v1) { return 1; }
};
void main()
{
 Math m;
 m.Inc(1.0);
}

error C2664: 'int Math::Inc(char *)':

cannot convert argument 1 from

'double' to 'char *'

Method overloading
 Pointer conversions are also impossible. “&d” is a “double *” that can not be

converted to “char *”.

 This code will produce a compiler error.

App.cpp

class Math
{
public:
 int Inc(char* v1);
};
int Math::Inc(char* v1)
{
 return 1;
}
void main()
{
 Math m;
 double d = 1.0;
 m.Inc(&d);
}

error C2664: 'int Math::Inc(char *)':

cannot convert argument 1 from

'double *' to 'char *'

Method overloading
 Pointer conversions are also impossible. “&d” is a “double *” that can not be

converted to “char *”.

 However, using an explicit cast will solve this problem. In this case, the code

will compile.

App.cpp

class Math
{
public:
 int Inc(char* v1);
};
int Math::Inc(char* v1)
{
 return 1;
}
void main()
{
 Math m;
 double d = 1.0;
 m.Inc((char *)&d);
}

Method overloading
 However, any non-constant pointer can be converted to “void *”. The next

example will compile.

 A constant pointer can not be converted to a non-constant pointer implicitly

(without a cast). A non-constant pointer can always be converted to its

constant equivalence. That is why, if you don’t need to modify the value

where the pointer points, it is best to use const pointers for method/function

parameters.

App.cpp

class Math
{
public:
 int Inc(void* v1);
};
int Math::Inc(void* v1)
{
 return 1;
}
void main()
{
 Math m;
 double d = 1.0;
 m.Inc(&d);
}

Method overloading

 Methods with variadic parameters:

1. Fallback methods → methods with only one parameter that is variadic (with a

signature in the form <name> (…). These methods are the last to be used (only if

there is no possible conversion, cast or promotion or if there is no ambiguity in

terms of promotion/conversion. These functions are not allowed in C language.

2. Regular methods → methods that have at least one parameter that is not variadic

and ONE variadic parameter (e.g. <name>(int,…) or <name>(char,short,…)).

These methods are used just like the regular methods and the same rules apply to

them as well.

Method overloading
 In case of methods with variadic parameters the compiler will use the best fit

(in terms of exact parameters). This code compiles and the method Inc(int) is

used.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(123);

}

Method overloading
 In this case, as there is no Inc method that has a parameter of type char, the

compiler promotes `a` (char value 97) to int and uses the Inc(int) method.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(‘a’);

}

Method overloading
 1.0 is a double value. We can not apply numerical promotion to int to use

Inc(int) method. However, we can convert the double to an int (with possible

loss of value) and then use Inc(int) method. The code compiles. The fallback

function is used only if no promotion/conversion is possible.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(1.0);

}

Method overloading
 This is an ambiguous case. There is no promotion possible. However, the

double value 1.0 can be converted to both int (and use Inc(int) method, or

float and use Inc(float) method). As there are two possibilities, this code is

considered ambiguous and an error is thrown.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(float v1);
 int Inc(...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(float v1)
{
 return v1 + 1;
}
int Math::Inc(...)
{
 return 1;
}
void main() {
 Math m;
 m.Inc(1.0);
}

error C2668: 'Math::Inc': ambiguous call to overloaded function
note: could be 'int Math::Inc(float)'
note: or 'int Math::Inc(int)'
note: while trying to match the argument list '(double)'

Method overloading
 In this case the parameter used is a const char * (a pointer). There is no

promotion and no conversion possible. Thus, the compiler must use the

fallback method Inc(…)

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(“test”);

}

Method overloading
 A similar case → there is no method overloaded with 2 parameters, so the

compiler uses the fallback method Inc(…)

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(1.0,2);

}

Method overloading
 This is an ambiguous case. 123 is an int value and there are two methods that

match exactly with the call Inc(123) : Inc(int) and Inc(int,…). The code will

NOT compile.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(int v1,...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(int v1,...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(123);

}

warning C4326: return type of 'main' should be 'int' instead of 'void'
error C2668: 'Math::Inc': ambiguous call to overloaded function
note: could be 'int Math::Inc(int,...)'
note: or 'int Math::Inc(int)'
note: while trying to match the argument list '(int)'

Method overloading
 This is an ambiguous case. true is a bool value and we don’t have an exact

method to match Inc(bool). In this case numerical promotion is apply, bool is

promoted to int and now we have two methods that match: Inc(int) and

Inc(int,…). The code will NOT compile.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(int v1,...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(int v1,...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(true);

}

error C2668: 'Math::Inc': ambiguous call to overloaded function
note: could be 'int Math::Inc(int,...)'
note: or 'int Math::Inc(int)'
note: while trying to match the argument list '(bool)'

Method overloading
 This code will NOT compile. None of the methods Inc(int) and Inc(int,…)

matches the const char * parameter and there is no fallback method.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(int v1,...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(int v1,...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(“test”);

}

error C2664: 'int Math::Inc(int,...)': cannot convert
argument 1 from 'const char [5]' to 'int'
note: There is no context in which this conversion is
possible

Method overloading
 This code will compile. ‘a’ (char) is promoted to int and since there is only

one method that accepts two parameters, the compiler will use it.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(int v1,...);
};
int Math::Inc(int v1)
{
 return v1 + 1;
}
int Math::Inc(int v1,...)
{
 return 1;
}
void main()
{
 Math m;
 m.Inc(‘a’,true);

}

Method overloading
 This code will compile. ‘a’ (char) is promoted to int and since there is only

one method that accepts two parameters, the compiler will use it.

 Fallback methods (Inc(…)) are used only if no match is possible.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(int v1,...);
 int Inc(...);
};
int Math::Inc(int v1) {
 return v1 + 1;
}
int Math::Inc(int v1,...) {
 return 1;
}
int Math::Inc(...) {
 return 2;
}
void main()
{
 Math m;
 m.Inc(‘a’,true);

}

Method overloading
 This code will compile. However, in this case there is no match possible from

Inc(const char *, bool) (including promotions and conversions) to the existing

methods Inc(int) and Inc(int,…). However, as a fallback function is also

available , the compiler will choose to use it.

App.cpp

class Math
{
public:
 int Inc(int v1);
 int Inc(int v1,...);
 int Inc(...);
};
int Math::Inc(int v1) {
 return v1 + 1;
}
int Math::Inc(int v1,...) {
 return 1;
}
int Math::Inc(...) {
 return 2;
}
void main()
{
 Math m;
 m.Inc(“test”,true);

}

Method overloading

 When dealing with overloaded methods with multiple parameters, promotion and
conversion rules are evaluated for each parameter.

 Overload resolution will choose the combination of promotion/conversions that
covers highest number of unique parameters.

 If there are at least two solutions that have at least one different parameter that
each one of the solution can cover (match / promote or convert) an ambiguous
case is considered and an error will be thrown.

 If nothing matches, a promotion is considered stronger than a conversions , and
can be used to resolve overload resolution (in fact a promotion is sometimes
considered equal as importance with an exact match).

Method overloading
 This code will compile. There is an exact match (a function Add with two

parameters, first of type char and the second of type int).

App.cpp

class Math
{
public:
 void Add(char x, int y);
 void Add(int x, char y);
};
void Math::Add(char x, int y)
{
 printf("Add(char,int)");
}
void Math::Add(int x, char y)
{
 printf("Add(int,char)");
}
void main()
{
 Math m;
 m.Add(‘a’,100);
}

Method overloading
 This code compiles. The compiles promotes the second parameter from bool

to int and uses Add(char,int)

App.cpp

class Math
{
public:
 void Add(char x, int y);
 void Add(int x, char y);
};
void Math::Add(char x, int y)
{
 printf("Add(char,int)");
}
void Math::Add(int x, char y)
{
 printf("Add(int,char)");
}
void main()
{
 Math m;
 m.Add(‘a’,true);
}

Method overloading
 This is an ambiguous case as we have two possibilities:

a. 100 = int , we convert 200(int) to char and use Add(int,char)

b. 100(int) is converted to char, 200 is considered an int and we use Add(char,int)

App.cpp

class Math
{
public:
 void Add(char x, int y);
 void Add(int x, char y);
};
void Math::Add(char x, int y)
{
 printf("Add(char,int)");
}
void Math::Add(int x, char y)
{
 printf("Add(int,char)");
}
void main()
{
 Math m;
 m.Add(100,200);
}

error C2666: 'Math::Add': 2 overloads have similar conversions
note: could be 'void Math::Add(int,char)'
note: or 'void Math::Add(char,int)'
note: while trying to match the argument list '(int, int)'

Method overloading
 This code compiles. We also have two possibilities, but the first one is better:

a. 100 = int, 1.5 is converted to char and we use Add(int,char) [one conversion + one exact

match]

b. 100 (int) is converted to char, 1.5 to int and we use Add(char,int) [two conversions]

App.cpp

class Math
{
public:
 void Add(char x, int y);
 void Add(int x, char y);
};
void Math::Add(char x, int y)
{
 printf("Add(char,int)");
}
void Math::Add(int x, char y)
{
 printf("Add(int,char)");
}
void main()
{
 Math m;
 m.Add(100,1.5);
}

Method overloading
 This code compiles. We also have three possibilities:

a. ‘a’ = char (exact match), 1.5 (a double is converted to int) and 2.5 (a double is converted to

int) ➔ 1 x exact match, 2 x conversion

b. ‘a’ (char is promoted to int), 1.5 (a double is converted to char) and 2.5 (a double is

converted to int) ➔ 1 x promotion, 2 x conversion

c. ‘a’ (char is converted to float), 1.5 (a double is converted to bool) and 2.5 (a double is

converted to int) ➔ 3 x conversion

 Solution a) has an exact match and since there is no other solutions that can

match another parameter than the first one, this will be selected.

App.cpp

class Math
{
public:
 int Add(char x, int y, int z) { return 1; }
 int Add(int x, char y, int z) { return 2; }
 int Add(float x, bool y, int z) { return 3; }
};
void main()
{
 Math m;
 int x = m.Add('a', 1.5, 2.5);
}

Method overloading
 This code will NOT compile. We also have three possibilities:

a. ‘a’ = char (exact match), 1.5f (a float is converted to int) and 2.5 (a double is converted to

int) ➔ 1 x exact match, 2 x conversion

b. ‘a’ (char is promoted to int), 1.5f (a float is converted to char) and 2.5 (a double is converted

to int) ➔ 1 x promotion, 2 x conversion

c. ‘a’ = char (exact match), 1.5f (a float is converted to bool) and 2.5 (a double is converted to

int) ➔ 1 x exact match, 2 x conversion

 Since both solutions a) and c) have an exact match for the 1st parameter, this

will be considered an ambiguity case.

App.cpp

class Math
{
public:
 int Add(char x, int y, int z) { return 1; }
 int Add(int x, char y, int z) { return 2; }
 int Add(char x, bool y, int z) { return 3; }
};
void main()
{
 Math m;
 int x = m.Add('a', 1.5f, 2.5);
}

error C2668: 'Math::Add': ambiguous call to overloaded function
note: could be 'int Math::Add(char,bool,int)'
note: or 'int Math::Add(char,int,int)'
note: while trying to match the argument list '(char, float, double)'

Method overloading
 This code will NOT compile. We also have three possibilities:

a. ‘a’ = char (exact match), ‘a’ (a char is promoted to int) and 2.5 (a double is converted to int) ➔

1 x exact match, 1 x conversion, 1 x promotion

b. ‘a’ (char is promoted to int), ‘a’ = char (exact match) and 2.5 (a double is converted to int) ➔

1 x exact match, 1 x conversion, 1 x promotion

c. ‘a’ = char (exact match), ‘a’ (a char is converted to bool) and 2.5 (a double is converted to int)

➔ 1 x exact match, 2 x conversion

 Solution a) and c) have an exact match for the 1st parameter (but not for the

second one). Solution b) has an exact match for the 2nd parameter (but not for

the first one). This is considered an ambiguity.

App.cpp

class Math
{
public:
 int Add(char x, int y, int z) { return 1; }
 int Add(int x, char y, int z) { return 2; }
 int Add(char x, bool y, int z) { return 3; }
};
void main()
{
 Math m;
 int x = m.Add('a’, ‘a’, 2.5);
}

error C2666: 'Math::Add': 3 overloads have similar conversions
note: could be 'int Math::Add(char,bool,int)'
note: or 'int Math::Add(int,char,int)'
note: or 'int Math::Add(char,int,int)'
note: while trying to match the argument list '(char, char, double)'

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 1 (has an exact match for the first parameter), Solution 2 has an exact

match for the second parameter ➔ ambiguity case

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(1.5, true, 1.5)

X (double) Y (bool) Z (double)

1. Add (char x, int y, int z) conversion promotion conversion

2. Add (double x, int y, int z) exact match promotion conversion

3. Add (char x, bool y, char z) conversion exact match conversion

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 One solution that has a match (solution 3). There is no promotion or exact

match for “X” or “Z” in solution 1 or 2 ➔ code will compile

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(false, true, 1.5)

X (bool) Y (bool) Z (double)

1. Add (char x, int y, int z) conversion promotion conversion

2. Add (double x, int y, int z) conversion promotion conversion

3. Add (char x, bool y, char z) conversion exact match conversion

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 1 (has an exact match for the first parameter), Solution 2 has an exact

match for the second parameter ➔ ambiguity case

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(1.5, true, 1.5)

X (double) Y (bool) Z (double)

1. Add (char x, int y, int z) conversion promotion conversion

2. Add (double x, int y, int z) exact match promotion conversion

3. Add (char x, bool y, char z) conversion exact match conversion

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 3 has two exact matches (for X and Y), solution 1 has one match (just

for X). As solution 3 covers solution 1, and solution 2 does not have a promotion

or exact match for “Z”, code will compile and solution 3 will be selected

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(‘a’, true, 1.5)

X (char) Y (bool) Z (double)

1. Add (char x, int y, int z) exact match promotion conversion

2. Add (double x, int y, int z) conversion promotion conversion

3. Add (char x, bool y, char z) exact match exact match conversion

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 3 matches parameters 1 and 2, solution 1 matches parameters 1 and 3

(there is no clear solution) ➔ ambiguity case

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(‘a’, true, 100)

X (char) Y (bool) Z (int)

1. Add (char x, int y, int z) exact match promotion exact match

2. Add (double x, int y, int z) conversion promotion exact match

3. Add (char x, bool y, char z) exact match exact match conversion

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 3 matches parameters 2 parameters (Y and Z) but not parameter “X”.

Since there is also a solution that could match parameter “X” (solution 2) this

will be considered an ambiguity case.

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(1.5, true, ‘a’)

X (double) Y (bool) Z (char)

1. Add (char x, int y, int z) conversion promotion promotion

2. Add (double x, int y, int z) exact match promotion promotion

3. Add (char x, bool y, char z) conversion exact match exact match

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 No cases with exact match, all solutions have 3 conversions ➔ ambiguity case

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(100, 1.5, 1.5)

X (int) Y (double) Z (double)

1. Add (char x, int y, int z) conversion conversion conversion

2. Add (double x, int y, int z) conversion conversion conversion

3. Add (char x, bool y, char z) conversion conversion conversion

Method overloading
 Let’s consider the following code:

 and let’s consider that we call Math::Add with the following parameters:

 No cases with exact match, however there is one case that has an accepted

promotion while the rest only have conversions. No promotion/exact match for

“Y” and “Z” for Solution 1 and 3. Solution 2 is selected and code compiles.

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, char z) { return 3; }
};

Math m; m.Add(1.0f, 1.5, 1.5)

X (float) Y (double) Z (double)

1. Add (char x, int y, int z) conversion conversion conversion

2. Add (double x, int y, int z) promotion conversion conversion

3. Add (char x, bool y, char z) conversion conversion conversion

Method overloading
 Let’s change the previous definitions a little bit:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 2 is valid for “X” (due to promotion), Solution 3 is valid for “Z” (due to

promotion). ➔ ambiguity case

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, double z) { return 3; }
};

Math m; m.Add(1.0f, 1.5, 1.0f)

X (float) Y (double) Z (float)

1. Add (char x, int y, int z) conversion conversion conversion

2. Add (double x, int y, int z) promotion conversion conversion

3. Add (char x, bool y, double z) conversion conversion promotion

Method overloading
 Let’s change the previous definitions a little bit:

 and let’s consider that we call Math::Add with the following parameters:

 This is a case where promotion and exact match are seen as equals. Solution 2

is valid for “X” (due to promotion), Solution 3 is valid for “Z” (due to exact

match). ➔ ambiguity case

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, double z) { return 3; }
};

Math m; m.Add(1.0f, 1.5, 1.5)

X (float) Y (double) Z (double)

1. Add (char x, int y, int z) conversion conversion conversion

2. Add (double x, int y, int z) promotion conversion conversion

3. Add (char x, bool y, double z) conversion conversion exact match

Method overloading
 Let’s change the previous definitions a little bit:

 and let’s consider that we call Math::Add with the following parameters:

 Solution 2 covers “X” (due to promotion) and “Z” (due to exact match). There

is no other solution better , or one that can cover “Y” ➔ Solution 2 is selected

and the code compiles.

App.cpp

struct Math
{
 int Add(char x, int y, int z) { return 1; }
 int Add(double x, int y, int z) { return 2; }
 int Add(char x, bool y, double z) { return 3; }
};

Math m; m.Add(1.0f, 1.5, 100)

X (float) Y (double) Z (int)

1. Add (char x, int y, int z) conversion conversion exact match

2. Add (double x, int y, int z) promotion conversion exact match

3. Add (char x, bool y, double z) conversion conversion conversion

Method overloading

 When dealing with the const keyword there are also some differences in

terms of method overloading and overload resolution

 For numerical types (types that are transmitted to a method by value) const

is ignored from the method / function signature

 For pointers and references, const is used in the method / function signature.

Method overloading
 This case will NOT compile – but not due to a ambiguity problem, but rather

to the fact that both Inc(int) and Inc(const int) are considered to have the

same signature: Inc(int)

App.cpp

class Math
{
public:
 int Inc(int x) { return x + 2; }
 int Inc(const int x) { return x + 1; }
};
void main()
{
 Math m;
 int x = 10;
 m.Inc(x);
}

error C2535: 'int Math::Inc(int)': member function already defined or declared
note: see declaration of 'Math::Inc'

Method overloading
 In this case , the two Inc methods are considered to have a different

signature and therefor are used in the overload resolution. As “&d” is an int *

than the best match (meaning Inc(int *) will be chosen). The code compiles.

App.cpp

class Math
{
public:
 int Inc(int * x)
 {
 return *x + 2;
 }

 int Inc(const int * x)
 {
 return *x + 1;
 }
};
void main()
{
 Math m;
 int x = 10;
 m.Inc(&x);
}

Method overloading
 Similarly, if we change “x” local variable from main function to be a constant,

the second function Inc(const int *) will be chosen as a perfect match.

App.cpp

class Math
{
public:
 int Inc(int * x)
 {
 return *x + 2;
 }

 int Inc(const int * x)
 {
 return *x + 1;
 }
};
void main()
{
 Math m;
 const int x = 10;
 m.Inc(&x);
}

Method overloading
 The same logic applies for references as well.

App.cpp

class Math
{
public:
 int Inc(int & x)
 {
 return x + 2;
 }

 int Inc(const int & x)
 {
 return x + 1;
 }
};
void main()
{
 Math m;
 const int x = 10;
 m.Inc(x);
}

App.cpp

class Math
{
public:
 int Inc(int & x)
 {
 return x + 2;
 }

 int Inc(const int & x)
 {
 return x + 1;
 }
};
void main()
{
 Math m;
 int x = 10;
 m.Inc(x);
}

Method overloading
 The same logic applies for references as well.

 In particular, when dealing with constant numerical values they will always be

translated into a const reference.

App.cpp

class Math
{
public:
 int Inc(int & x)
 {
 return x + 2;
 }

 int Inc(const int & x)
 {
 return x + 1;
 }
};
void main()
{
 Math m;
 m.Inc(100);
}

Method overloading
 In this case the code will not compile as a constant (const) value CAN NOT be

converted to a non-constant value.

App.cpp

class Math
{
public:
 int Inc(int & x)
 {
 return x + 2;
 }
};
void main()
{
 Math m;
 m.Inc(100);
}

error C2664: 'int Math::Inc(int &)': cannot
convert argument 1 from 'int' to 'int &'

Method overloading
 The rest of the promotion / conversion rules apply.

 In this example, ‘a’ is of type char. As there is no Inc method that receives a

char parameter, ‘a’ will be promoted to an int and then to a const int &. This

code will compile. ‘a’ is a constant ➔ and not a variable. As such it will linked to

a const reference (as you can not change its value).

App.cpp

class Math
{
public:
 int Inc(int & x)
 {
 return x + 2;
 }

 int Inc(const int & x)
 {
 return x + 1;
 }
};
void main()
{
 Math m;
 m.Inc(‘a’);
}

NULL pointer

NULL pointer

 Let’s consider the following code:

 The code compiles correctly. What is the output of this code ?

App.cpp

void Print(int value)
{
 printf("Number: %d\n", value);
}
void Print(const char* text)
{
 printf("Text: %s\n", text);
}

void main()
{
 Print(10);
 Print("C++ test");

 Print(NULL);
}

NULL pointer

 Let’s consider the following code:

 Why the last call of Print function is considered to be a number ?

App.cpp

void Print(int value)
{
 printf("Number: %d\n", value);
}
void Print(const char* text)
{
 printf("Text: %s\n", text);
}

void main()
{
 Print(10);
 Print("C++ test");

 Print(NULL);
}

Output

Number: 10

Text: C++ test

Number: 0

NULL pointer

 Let’s consider the following code:

 Why the last call of Print function is considered to be a number ?

App.cpp

void Print(int value)
{
 printf("Number: %d\n", value);
}
void Print(const char* text)
{
 printf("Text: %s\n", text);
}

void main()
{
 Print(10);
 Print("C++ test");

 Print(NULL);
}

Output

Number: 10

Text: C++ test

Number: 0

#ifndef NULL

 #ifdef __cplusplus

 #define NULL 0

 #else

 #define NULL ((void *)0)

 #endif

#endif

NULL pointer

 So – NULL is defined as a number. While during promotion, value 0 can be

translated into a NULL pointer, there are often cases (similar to previous one)

where the intended parameter is a pointer (a NULL pointer) and not a

number.

 The solution was to create a new constant (keyword) that refers only to null

pointers. This constant is called nullptr

 In the previous example, the compiler will now call “Print(const char*)”

function.

App.cpp

void Print(int value) { … }
void Print(const char* text) { … }

void main()
{
 Print(nullptr);
}

NULL pointer

 The following assignments are valid for NULL constant and all variable will be

set to 0, false or a null pointer.

 The following assignments are invalid (code will NOT compile):

App.cpp

void main()
{
 int x = NULL;
 char y = NULL;
 float f = NULL;
 bool b = NULL;
 const char* p = NULL;
 int * i = NULL;
}

App.cpp

void main()
{
 int x = nullptr;
 char y = nullptr;
 float f = nullptr;
}

NULL pointer

 The following assignments are valid and the code will compile.

 Keep in mind that nullptr can still be used as a bool value (equal to false).

However, even if this cast is possible, nullptr will always chose a pointer to a

bool. The following example works and does not yield any ambiguity:

App.cpp

void main()
{
 bool b = nullptr;
 const char* p = nullptr;
 int * i = nullptr;
}

App.cpp

void Print(bool value) { … }
void Print(const char* text) { … }

void main()
{
 Print(nullptr);
}

The compiler will choose to call “Print (const char*)” function

NULL pointer

 However, the following example will produce an ambiguity and the code will

not compile:

 The compiler will yield an error that states that it does not know what to

chose for the call of “Print (nullptr)” and that it has two possible variants to

chose from.

App.cpp

void Print(bool value) { … }

void Print(const char* text) { … }
void Print(int* value) { … }

void main()
{
 Print(nullptr);
}

“const” specifier

Classes (methods) – the "const" specifier
 Whenever a method is declared within a class, a special keyword can also be

used to specify a certain behavior for that method: “const”

 The following code compiles without problem. At the end of execution

member x from object "d" will be 1;

App.cpp

class Date
{
 private:
 int x;
 public:
 int& GetX();
};
int& Date::GetX()
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 d.GetX()++;
}

Classes (methods) – the "const" specifier
 This code will not compile because GetX function () returns a constant

reference to a number. This means that the operator "++" from "d.GetX () ++"

has to modify a number that is considered constant.

App.cpp

class Date
{
 private:
 int x;
 public:
 const int& GetX();
};
const int& Date::GetX()
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 d.GetX()++;
}

Classes (methods) – the "const" specifier
 The code compiles. Method GetX () returns a reference to a constant integer

whose value is 0. In the main function, “x” maintains a copy of the value

returned by GetX() function (a copy that can be modified).

 This is the recommended solution if we want to give read-only access to a

member variable (in particular if it is NOT a basic type).

App.cpp

class Date
{
 private:
 int x;
 public:
 const int& GetX();
};
const int& Date::GetX()
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier
 When dealing with pointers or references, “const” specifier can be used in

the following ways:

 In the previous example – the const specifier is part of the value. This means

that we can modify the pointer (NOT the value) without any issue.

App.cpp

void main()
{
 int x;
 const int * ptr;
 ptr = &x;
 *ptr = 1;
}

App.cpp

void main()
{
 int x;
 const int * ptr;
 ptr = &x;
 ptr += 1;
} This code will run as we DO NOT modify the

actual value, we just modify the pointer.

This code will not compile as ptr points to a
constant int that CAN NOT BE modified.

Classes (methods) – the "const" specifier
 When dealing with pointers or references, “const” specifier can be used in

the following ways:

 In the previous example – the const specifier refers to the pointer and NOT

the value it points t.

App.cpp

void main()
{
 int x;
 int * const ptr;
 ptr = &x;
}

App.cpp

void main()
{
 int x;
 int * const ptr = &x;

 *ptr = 1;

}

This code will run as it initialize the
constant pointer from the beginning.

This code will not compile as ptr is a

constant pointer that points towords a non-
constant value.

This code will also run. “ptr” pointer points

towards a non-const value that can be
modified.

Classes (methods) – the "const" specifier
 When dealing with pointers or references, “const” specifier can be used in

the following ways:

 In the previous example – the const specifier refers to the pointer and NOT

the value it points t.

App.cpp

void main()
{
 int x;
 int * const ptr;
 ptr = &x;
}

App.cpp

void main()
{
 int x;
 int * const ptr = &x;

 ptr += 1;

}

This code will run as it initialize the
constant pointer from the beginning.

This code will not compile as ptr is a

constant pointer that points towords a non-
constant value.

This code will NOT run as we try to modify a
constant pointer.

Classes (methods) – the "const" specifier
 When dealing with pointers or references, “const” specifier can be used in

the following ways:

App.cpp

void main()
{
 int x;
 const int * const ptr = &x;
 *ptr = 1;
 ptr += 1;
} In this case both the pointer and the value

it points to are constant. The code will not

compile – one can not modify the pointer or
the value.

Classes (methods) – the "const" specifier

“const” specifier respects the Clockwise/Spiral Rule for C language.

In particular, a syntax like “int * const ptr” is equivalent to a reference (int &)

and “const int * const ptr” to “const int &”

C/C++ expression Explanation Change

value

Change

Pointer

int * ptr; Non-const pointer to a non-const value YES YES

const int * ptr; Non-const pointer to a const value NO YES

int const * ptr; Non-const pointer to a const value NO YES

int * const ptr; Const pointer to a non-const value YES NO

const int * const ptr; Const pointer to a const value NO NO

Classes (methods) – the "const" specifier

“const” specifier respects the Clockwise/Spiral Rule for C language.

C/C++ expression Explanation

int ** ptr; Non-const pointer to a non-const pointer to a non-const

value

const int ** ptr; Non-const pointer to a non-const pointer to a const value

int ** const ptr; Const pointer to a non-const pointer to a non-const value

int * const * const ptr; Const pointer to a const-pointer to a non-const value

const int * const * const ptr; Const pointer to a const-pointer to a const value

Classes (methods) – the "const" specifier
 This code will not compile. The usage of “const” keyword at the end of the

method declaration specifies that within that method data members of that

class can not be modified. In the next example, “x” is a data member from

class Data and assigning value 0 to it contradicts the “const” keyword from

method definition.

App.cpp

class Date
{
 private:
 int x;
 public:
 const int& GetX() const;
};
const int& Date::GetX() const
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

error C3490: 'x' cannot be modified because
it is being accessed through a const object

Classes (methods) – the "const" specifier
 Let’s assume that we have the following code:

 And we want to make sure that access to data members “y”, “z” and “t” are

ready only, but for data member “x” we have read/write access.

 If we use a “const” function (as define in this example) ➔ “x” will be read-

only as well.

App.cpp

class Date
{
private:
 int x;
 int y,z,t;
public:
 const int& GetX() const;
};
const int& Date::GetX() const
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier
 Let’s assume that we have the following code:

 Starting with C++11 there is a new specifier called “mutable” that allows

write access to a data member even if “const” specifier is used.

 This code will compile.

App.cpp

class Date
{
private:

 mutable int x;
 int y,z,t;
public:
 const int& GetX() const;
};
const int& Date::GetX() const
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier
 Let’s assume that we have the following code:

 “const” can be used with “mutable”. In the previous example mutable refers

to the value of the pointer and does not interfere with the const qualifier.

This translates that you can modify the pointer (through the mutable

qualifier) but you can not modify the value (due to the const qualifier at the

end of the GetX() method).

App.cpp

class Date
{
private:

 const mutable int * x;
 int y,z,t;
public:
 const int& GetX() const;
};
const int& Date::GetX() const
{
 x = &y;
 return *x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier
 Let’s assume that we have the following code:

 This code will not compile as “x” being a const pointer (not a pointer to a

const value) can not be mutable at the same time (it will imply that it can be

changed). At the same time, “x=&y” can not run as “x” is a const pointer.

App.cpp

class Date
{
private:

 const mutable int * const x;
 int y,z,t;
public:
 const int& GetX() const;
};
const int& Date::GetX() const
{
 x = &y;
 return *x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier

Usually mutable specifier is used when:

 A class is run in a multi-threaded environment and you need a variable that

can be used between multiple threads

 Lambda expressions

 As a way to control what data members can be modified within a class from a

const method.

Classes (methods) – the "const" specifier
 The code compiles correctly because "x" is no longer a member of an instance

but a global static member (it does not belong to the object).

App.cpp

class Date
{
 private:
 static int x;
 public:
 const int& GetX() const;
};
int Date::x = 100;
const int& Date::GetX() const
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier
 The code does not compile because the “const” modifier from the end of

GetX declaration can not be used for static functions as it needs and instance

to apply to (access to this pointer that in impossible if the method is declared

as const)

App.cpp

class Date
{
 private:
 static int x;
 public:
 static const int& GetX() const;
};
int Date::x = 100;
static const int& Date::GetX() const
{
 x = 0;
 return x;
}
void main()
{
 Date d;
 int x = d.GetX();
 x++;
}

Classes (methods) – the "const" specifier
 This code compiles. “const” specifier refers to the current object/instance

alone. It does not apply to another instance of a different type (it will only

apply to the instance represented by “this”).

App.cpp

class Date
{
private:
 int x;
public:
 void ModifyX(Date * d) const
 {
 d->x = 0;
 }
};
void main()
{
 Date d1,d2;
 d1.ModifyX(&d2);
}

Classes (methods) – the "const" specifier
 This code will NOT compile as a “const” method refers to the current instance

(“this” pointer).

App.cpp

class Date
{
private:
 int x;
public:
 void ModifyX(Date * d) const
 {
 this->x = 0;
 }
};
void main()
{
 Date d1,d2;
 d1.ModifyX(&d2);
}

Classes (methods) – the "const" specifier
 “const” is part of object type

 A class method/function can not modify a parameters if it is defined as

“const”

Without const specifier With const specifier

class Date
{
private:
 int x;
public:
 void Inc();
};
void Date::Inc()
{
 x++;
}
void Increment(Date &d)
{
 d.Inc();
}
void main()
{
 Date d;
 Increment(d);
}

class Date
{
private:
 int x;
public:
 void Inc();
};
void Date::Inc()
{
 x++;
}
void Increment(const Date &d)
{
 d.Inc();
}
void main()
{
 Date d;
 Increment(d);
}

Compile error, d is

const

Classes (data members) – the "const"

specifier
 “const” can be used for data members as well. The following code will not

compile as the const value is not initialized.

 To instantiate such a code , a value has to be added in to the const data member
in the class definition (more on this topic in the course related to constructors).

App.cpp

class Data
{
 const int x;
public:
 int GetX() { return x; }
};
void main()
{
 Data d;
}

App.cpp

class Data
{
 const int x = 10;
public:
 int GetX() { return x; }
};

“friend” specifier

“friend” specifier

 For a class a “friend” function is a function that can access methods and data

members that with private modifier define within that class.

 A “friend” function does not belong to the class (in this case to the Date

class). From this point of view access specifier is irrelevant (it doesn’t matter

if the “friend” function is written in the private or the public section)

App.cpp

class Date
{
 int x;
public:
 Date(int value) : x(value) {}
 void friend PrintDate(Date &d);
};
void PrintDate(Date &d)
{
 printf("X = %d\n", d.x);
}

void main()
{
 Date d1(1);
 PrintDate(d1);
}

“friend” specifier

 “friend” specifier can be applied to an

entire class

 In this case , all methods from the

“friend” class can access the members

from the original class (e.g. all methods

from class Printer can access the private

data from class Data).

App.cpp

class Date
{
 int x;
public:
 Date(int value) : x(value) {}
 friend class Printer;
};
class Printer
{
public:
 void PrintDecimal(Date &d);
 void PrintHexazecimal(Date &d);
};
void Printer::PrintDecimal(Date &d)
{
 printf("x = %d\n", d.x);
}
void Printer::PrintHexazecimal(Date &d)
{
 printf("x = %x\n", d.x);
}
void main()
{
 Date d1(123);
 Printer p;
 p.PrintDecimal(d1);
 p.PrintHexazecimal(d1);
}

“friend” specifier

 A method from a class can also be

declared as friend for a class.

 The declaration must include the exact

method signature and the return type.

 In this case, method SetX(Date& , int)

from class Modifier can access private

data from class Data.

App.cpp

class Data;
class Modifier
{
public:
 void SetX(Data & d, int value);
};
class Data
{
 int x;
 int& GetXRef() { return x; }
public:
 int GetX() { return x; }
 friend void Modifier::SetX(Data &, int);
};
void Modifier::SetX(Data & d, int value)
{
 d.GetXRef() = value;
}

void main()
{
 Data d;
 Modifier m;
 m.SetX(d, 10);

printf("%d\n", d.GetX());
}

Q & A

	Default Section
	Slide 1: OOP
	Slide 2: Summary

	Pointers and References
	Slide 3: Pointers and References
	Slide 4: Pointers and References
	Slide 5: Pointers and References
	Slide 6: Pointers and References
	Slide 7: Pointers and References
	Slide 8: Pointers and References
	Slide 9: Pointers and References
	Slide 10: Pointers and References
	Slide 11: Pointers and References
	Slide 12: Pointers and References

	Method Overloading
	Slide 13: Method overloading
	Slide 14: Method overloading
	Slide 15: Method overloading
	Slide 16: Method overloading
	Slide 17: Method overloading
	Slide 18: Method overloading
	Slide 19: Method overloading
	Slide 20: Method overloading
	Slide 21: Method overloading
	Slide 22: Method overloading
	Slide 23: Method overloading
	Slide 24: Method overloading
	Slide 25: Method overloading
	Slide 26: Method overloading
	Slide 27: Method overloading
	Slide 28: Method overloading
	Slide 29: Method overloading
	Slide 30: Method overloading
	Slide 31: Method overloading
	Slide 32: Method overloading
	Slide 33: Method overloading
	Slide 34: Method overloading
	Slide 35: Method overloading
	Slide 36: Method overloading
	Slide 37: Method overloading
	Slide 38: Method overloading
	Slide 39: Method overloading
	Slide 40: Method overloading
	Slide 41: Method overloading
	Slide 42: Method overloading
	Slide 43: Method overloading
	Slide 44: Method overloading
	Slide 45: Method overloading
	Slide 46: Method overloading
	Slide 47: Method overloading
	Slide 48: Method overloading
	Slide 49: Method overloading
	Slide 50: Method overloading
	Slide 51: Method overloading
	Slide 52: Method overloading
	Slide 53: Method overloading
	Slide 54: Method overloading
	Slide 55: Method overloading
	Slide 56: Method overloading
	Slide 57: Method overloading
	Slide 58: Method overloading
	Slide 59: Method overloading
	Slide 60: Method overloading
	Slide 61: Method overloading
	Slide 62: Method overloading
	Slide 63: Method overloading
	Slide 64: Method overloading
	Slide 65: Method overloading
	Slide 66: Method overloading
	Slide 67: Method overloading
	Slide 68: Method overloading
	Slide 69: Method overloading
	Slide 70: Method overloading
	Slide 71: Method overloading
	Slide 72: Method overloading
	Slide 73: Method overloading
	Slide 74: Method overloading
	Slide 75: Method overloading

	NULL Pointer
	Slide 76: NULL pointer
	Slide 77: NULL pointer
	Slide 78: NULL pointer
	Slide 79: NULL pointer
	Slide 80: NULL pointer
	Slide 81: NULL pointer
	Slide 82: NULL pointer
	Slide 83: NULL pointer

	"const" specifier
	Slide 84: “const” specifier
	Slide 85: Classes (methods) – the "const" specifier
	Slide 86: Classes (methods) – the "const" specifier
	Slide 87: Classes (methods) – the "const" specifier
	Slide 88: Classes (methods) – the "const" specifier
	Slide 89: Classes (methods) – the "const" specifier
	Slide 90: Classes (methods) – the "const" specifier
	Slide 91: Classes (methods) – the "const" specifier
	Slide 92: Classes (methods) – the "const" specifier
	Slide 93: Classes (methods) – the "const" specifier
	Slide 94: Classes (methods) – the "const" specifier
	Slide 95: Classes (methods) – the "const" specifier
	Slide 96: Classes (methods) – the "const" specifier
	Slide 97: Classes (methods) – the "const" specifier
	Slide 98: Classes (methods) – the "const" specifier
	Slide 99: Classes (methods) – the "const" specifier
	Slide 100: Classes (methods) – the "const" specifier
	Slide 101: Classes (methods) – the "const" specifier
	Slide 102: Classes (methods) – the "const" specifier
	Slide 103: Classes (methods) – the "const" specifier
	Slide 104: Classes (methods) – the "const" specifier
	Slide 105: Classes (data members) – the "const" specifier

	friend specifier
	Slide 106: “friend” specifier
	Slide 107: “friend” specifier
	Slide 108: “friend” specifier
	Slide 109: “friend” specifier

	Q & A
	Slide 110: Q & A

