
OOP
Gavrilut Dragos

Course 5

Summary

 Inheritance

 Virtual methods

 How virtual methods are modeled by C++ compiler

 Covariance

 Abstract classes (Interfaces)

 Memory alignment in case of inheritance

Inheritance

Inheritance

 Inheritance is a process that transfer class proprieties (methods and

members) from one class (often called the base class to another that inherits

the base class – called derived class). The derive class may extend the base

class by adding additional methods and/or members.

 Such an example will be the class Automobile, where we can define the

following properties:

 Number of doors

 Number of wheels

 Size

 From this class we can derive a particularization of the Automobile class (for

example electrical machines) that besides the properties of the base class

(doors, wheels, size, etc) has its own properties (battery lifetime).

Inheritance

 Inheritance in case of C++ classes can be simple or multiple:

 Simple Inheritance

 Multiple Inheritance

 The access modifier is optional and can be one of the following:

(public / private or protected).

 If it is not specified, the default access modifier is private.

Simple

class <class_name>: <access modifier> <base class> { ... }

Multiple

class <class_name>: <access modifier> <base class 1> ,
<access modifier> <base class 2> ,
<access modifier> <base class 3> ,
...
<access modifier> <base class n> ,

{ ... }

Inheritance

 Class “Derived” inherits members and methods from class “Base”. That is why

we can call methods SetX and SetY from an instance of “Derived” class.

App.cpp

class Base
{
public:

int x;
void SetX(int value);

};
class Derived : public Base
{

int y;
public:

void SetY(int value);
};

void main()
{

Derived d;
d.SetX(100);
d.x = 10;
d.SetY(200);

}

Inheritance

 The following code will not compile. Class “Derived” inherits class “Base”,

but member “x” from class Base is private (this means that it can not be

accessed in class “Derived”).

App.cpp

class Base
{
private:

int x;
};
class Derived : public Base
{

int y;
public:

void SetY(int value);
void SetX(int value);

};
void Derived::SetX(int value)
{

x = value;
}
void main()
{

Derived d;
d.SetX(100);
d.SetY(200);

}

error C2248: 'Base::x': cannot access private member declared
in class 'Base'
note: see declaration of 'Base::x'
note: see declaration of 'Base'

Inheritance

 The solution for this case is to use the “protected” access modifier. A

protected member is a member that can be access by classes that inherits

current class, but it can not be accessed from outside the class.

App.cpp

class Base
{
protected:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void SetX(int value);
};
void Derived::SetX(int value)
{
 x = value;
}
void main()
{
 Derived d;
 d.SetX(100);
 d.SetY(200);
}

Inheritance

 The code below will not compile. “x” is declared as protected – this means

that it can be accessed in method SetX from a derived class, but it can not be

accessed outside it’s scope (class).

App.cpp

class Base
{
protected:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void SetX(int value);
};
void Derived::SetX(int value)
{
 x = value;
}
void main()
{
 Derived d;
 d.SetX(100);
 d.x = 100;
}

error C2248: 'Base::x': cannot access protected member declared
in class 'Base'
note: see declaration of 'Base::x'
note: see declaration of 'Base'

Inheritance

 The following table shows if a member with a specific access modifier can be

access and in what conditions:

Access

modifier

In the

same class

In a

derived

class

Outside

it’s

scope

Friend

function in the

base class

Friend

function in the

derived class

public Yes Yes Yes Yes Yes

protected Yes Yes No Yes Yes

private Yes No No Yes No

Inheritance

 The code below will not compile. “x” is a private member of “Base” therefor

a friend function defined in “Derived” class can not access it.

App.cpp

class Base
{
private:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void friend SetX(Derived &d);
};
void SetX(Derived &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
 SetX(d);
}

Inheritance

 The solution is to change the access modifier of data member “x” from class

“Base” from private to protected.

App.cpp

class Base
{
protected:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void friend SetX(Derived &d);
};
void SetX(Derived &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
 SetX(d);
}

Inheritance

 Be careful where you define the friend function. In the example below SetX

friend function is declared in the “Derived” class. This means that it can

access methods and data members from instances of “Derived” class and not

other classes (e.g. Base class). The code will not compile.

App.cpp

class Base
{
private:
 int x;

};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void friend SetX(Base &d);
};
void SetX(Base &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
}

Inheritance

 This code will work properly because the friend function is defined in class

“Base”.

App.cpp

class Base
{
private:
 int x;
public:
 void friend SetX(Base &d);
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);

};
void SetX(Base &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
}

Inheritance

 Access modifiers can also be applied to the inheritance relation.

 As a result, the members from the base class change their original access

modifier in the derived class.

❖ In this case, because “x” is public in the “Base”

class, and the inheritance relation is also public,

“x” will be public as well in the “Derived” class

and will be accessible from outside the class

scope.

App.cpp

class Base
{
public:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value) { ... }
};
void main()
{
 Derived d;
 d.x = 100;
}

Inheritance

 Access modifiers can also be applied to the inheritance relation.

 As a result, the members from the base class change their original access

modifier in the derived class.

❖ This code will not compile. “x” is indeed public

in class “Base”, but since the inherit relation

between class “Base” and class “Derived” is

private, “x” will change its access modifier from

public to private in class Derived and will not be

accessible from outside its scope.

❖ However, if we are to create an instance of type

“Base” we will be able to access “x” for that

instance outside its scope.

App.cpp

class Base
{
public:
 int x;
};
class Derived : private Base
{
 int y;
public:
 void SetY(int value) { ... }
};
void main()
{
 Derived d;
 d.x = 100;
}

Inheritance

 The rules that show how an access modifier is change if we change the access

modifier of the inheritance relation are as follows:

private > protected > public

Access modifier used for the

inheritance relation
→

public private protected

Access modifier used for a data

member or method

public public private protected

private private private private

protected protected private protected

Inheritance

 Let’s consider the following case:

App.cpp

class A
{
public:
 A() { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B: public A
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
int main()
{
 B b;
 return 0;
}

Output

ctor: A is called !

ctor: B is called !

dtor: B is called !

dtor: A is called !

Inheritance

 Let’s consider the following case:

 The cod in YELLOW reflects the

execution of the base constructor.

App.cpp

class A
{
public:
 A() { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B: public A
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
int main()
{
 B b;
 return 0;
}

Output

ctor: A is called !

ctor: B is called !

dtor: B is called !

dtor: A is called !

push ebp
mov ebp,esp
sub esp,44h

mov dword ptr [this],ecx
mov ecx,dword ptr [this]
call A::A (0DB14B5h)

push offset string "ctor: B is called !\n"
call _printf (0DB14A6h)
add esp,4
mov eax,dword ptr [this]

mov esp,ebp
pop ebp
ret

Inheritance

 Let’s consider the following case:

 In case of multiple inheritance, the order of base classes is used when the

constructor is called (in this case – first class B, then class A and finally class C)

App.cpp

class A
{
public:
 A() { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
 C() { printf("ctor: C is called !\n"); }
 ~C() { printf("dtor: C is called !\n"); }
};
int main() {
 C c;
 return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !

Inheritance

 Let’s consider the following case:

 If no constructor is defined in class C, but there are at least one constructor
defined in one of the class from which C is derived from, the compiler will
create a default constructor that calls the constructor of class B followed by
the constructor of class A.

App.cpp

class A
{
public:
 A() { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
};
int main() {
 C c;
 return 0;
}

Output

ctor: B is called !

ctor: A is called !

dtor: A is called !

dtor: B is called !

Inheritance

 Let’s consider the following case:

 This code will fail, as there is no explicit call to A::A(int) constructor.

App.cpp

class A
{
public:
 A(int x) { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
};
int main() {
 C c;
 return 0;
}

error C2280: 'C::C(void)': attempting to reference a deleted function
note: compiler has generated 'C::C' here
note: 'C::C(void)': function was implicitly deleted because a base class
'A' has either no appropriate default constructor or overload resolution
was ambiguous
note: see declaration of 'A'

Inheritance

 Let’s consider the following case:

 The solution is to explicitly call the constructor of A in the member initializer
list for C::C()

App.cpp

class A
{
public:
 A(int x) { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
 C() : A(100) { printf("ctor: C is called !\n"); }
 ~C() { printf("dtor: C is called !\n"); }
};
int main() {
 C c;
 return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !

Inheritance

 Let’s consider the following case:

App.cpp

class A
{
public:
 A(int x) { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
 C() : A(100), B() { printf("ctor: C is called !\n"); }
 ~C() { printf("dtor: C is called !\n"); }
};
int main() {
 C c;
 return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !

Using this method WILL NOT

CHANGE the order of the

constructors (in this case,

even if we call A(100)

followed by B(), the compiler

will still call B::B() first and

then A::A(int)

Inheritance

 Let’s consider the following case:

App.cpp

class A {
public:
 A(int x) { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
class B {
public:
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
class C {
public:
 C(bool n) { printf("ctor: C is called !\n"); }
 ~C() { printf("dtor: C is called !\n"); }
};
class D: public B, public A
{
 C c;
public:
 D(): c(true), A(100),B() { printf("ctor: D is called !\n"); }
 ~D() { printf("dtor: D is called !\n"); }
};
int main() {
 D d;
 return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

ctor: D is called !

dtor: D is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !

Inheritance

 Let’s consider the following case:

App.cpp

struct A {
 A(int x) { printf("ctor: A is called !\n"); }
 ~A() { printf("dtor: A is called !\n"); }
};
struct B {
 B() { printf("ctor: B is called !\n"); }
 ~B() { printf("dtor: B is called !\n"); }
};
struct C {
 C(bool n) { printf("ctor: C is called !\n"); }
 ~C() { printf("dtor: C is called !\n"); }
};
struct D {
 D(bool n) { printf("ctor: D is called !\n"); }
 ~D() { printf("dtor: D is called !\n"); }
};
class E: public B, public A {
 C c;
 D d;
 int v1, v2;
public:
 E(): d(true), A(100), c(true), B(), v2(100), v1(20) { printf("ctor: E is called !\n"); }
 ~E() { printf("dtor: E is called !\n"); }
};
void main() {
 E e;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

ctor: D is called !

-- v1 is initialized

-- v2 is initialized

ctor: E is called !

dtor: E is called !

dtor: D is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !

Inheritance

 When inheriting from multiple classes, the general rule for calling constructors
and destructors is as follows:

1. First all of the constructors from the base classes are called in the order of their
inheriting definition (left-to-right)

2. All of the constructors from data members are called (again in their definition
order – top-to-bottom)

3. Then the constructor initialization value for data members (basic types,
references, constants) are used in the order they are defined in that class.

4. Finally, the code of the constructor of the class is called.

 Destructors are called in a reverse way (starting from point 4 to point 1).

Tested with:

 cl.exe: 19.16.27030.1

 Params: /permissive- /GS- /analyze- /W3 /Zc:wchar_t /ZI /Gm- /Od /sdl
/Fd"Debug\vc141.pdb" /Zc:inline /fp:precise /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D
"_UNICODE" /D "UNICODE" /errorReport:prompt /WX- /Zc:forScope /RTCu /arch:IA32 /Gd
/Oy- /MDd /FC /Fa"Debug\" /nologo /Fo"Debug\" /Fp"Debug\TestCpp.pch"
/diagnostics:classic

Virtual methods

Virtual methods

❖ This code prints “B” on the screen. From the

inheritance point of view, both A and B class

have the same method called Set

❖ In this case it is said that class B hides

method Set from class A

App.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
class B: public A
{
public:
 int b1, b2;
 void Set() { printf("B"); }
};
void main()
{
 B b;
 b.Set();
}

Virtual methods

❖ In this case, the code will print “A” on the

screen, because we are using a pointer of type

A*

❖ However, in reality, “a” pointer points to an

object of type B → so the expected result

should be that the product will print “B” and

not “A”

❖ So … what can we do to change this behavior ?

App.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
class B: public A
{
public:
 int b1, b2;
 void Set() { printf("B"); }
};
void main()
{
 B b;
 A* a = &b;
 a->Set();
}

Virtual methods

❖ The solution is to use “virtual” keyword in

from of a method - definition

❖ If we do this, the program will print “B”

❖ In this case, it is said that class B overrides

method Set from class A

❖ Using virtual keyword makes a method to

be part of the instance !

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
class B: public A
{
public:
 int b1, b2;
 void Set() { printf("B"); }
};
void main()
{
 B b;
 A* a = &b;
 a->Set();
}

Virtual methods

Virtual methods can be used for:

 Polymorphism

 Memory deallocation (virtual destructor)

 Anti-debugging techniques

Virtual methods

Polymorphism = the ability to access instances of different classes through the

same interface. In particular to C++, this translates into the ability to

automatically convert (cast) a pointer to a certain class to its base class.

App-1.cpp

class Figure {
 public: virtual void Draw() { printf("Figure"); }
};
class Circle: public Figure {
 public: void Draw() { printf(“Circle"); }
};
class Square: public Figure {
 public: void Draw() { printf(“Square"); }
};
void main()
{
 Figure *f[2];
 f[0] = new Circle();
 f[1] = new Square();
 for (int index = 0;index<2;index++)
 f[index]->Draw();
}

❖ After the execution this code will

print on the screen “Circle” and

“Square”.

❖ If we haven’t uses virtual

specifier, the program would have

printed “Figure” twice !

Virtual methods

In practice, in many cases, polymorphism

is used to create a plugin or an

add-on for an existing software.

Application

Interface

Function 1

Function 2

Function 3

….

Function n

Plugin 1

Plugin 2

Plugin n

Implements

Function 1

Function 2

….

Function n

Implements

Function 1

Function 2

….

Function n

Implements

Function 1

Function 2

….

Function n

Virtual methods

In particular for C++ language, virtual specifier can be used as a specifier for

destructors.

Let’s analyze the following case:

App-1.cpp

class Figure {
 public: virtual void Draw() { printf("Figure"); }
 public: ~Figure() { printf("Delete Figure\n"); }
};
class Circle: public Figure {
 public: void Draw() { printf(“Circle"); }
 public: ~Circle() { printf("Delete Circle"); }
};
class Square: public Figure {
 public: void Draw() { printf(“Square"); }
 public: ~Square() { printf("Delete Square"); }
};
void main() {
 Figure *f[2];
 f[0] = new Circle();
 f[1] = new Square();
 for (int index = 0;index<2;index++)
 delete (f[index]);
}

❖ After this code gets executed,

the following texts will be

printed on the screen:

 “Delete Figure”

 “Delete Figure”.

❖ What would happen if both

Circle and Square classes

allocate some memory ?

Virtual methods

In particular for C++ language, virtual specifier can be used as a specifier for

destructors.

Let’s analyze the following case:

App-1.cpp

class Figure {
 public: virtual void Draw() { printf("Figure"); }
 public: virtual ~Figure() { printf("Delete Figure\n"); }
};
class Circle: public Figure {
 public: void Draw() { printf(“Circle"); }
 public: ~Circle() { printf("Delete Circle"); }
};
class Square: public Figure {
 public: void Draw() { printf(“Square"); }
 public: ~Square() { printf("Delete Square"); }
};
void main() {
 Figure *f[2];
 f[0] = new Circle();
 f[1] = new Square();
 for (int index = 0;index<2;index++)
 delete (f[index]);
}

❖ The solution is to declare de

destructor as virtual. As a

result, the destructor for

actual class will be called,

fallowed by the destructor of

the base class

❖ The following text will be

printed:

Delete Circle

Delete Figure

Delete Square

Delete Figure

Virtual methods

Let’s analyze the following case:

 Odd is a virtual function – however, class B does not override it (as it uses
char as the first parameter instead of int). As a result, class B will have 2
Odd methods and a->Odd will call the one with an int parameter. Upon
execution, value false (0) is written to the screen.

App-1.cpp

class A
{
public:
 virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
 virtual bool Odd(char x) { return x % 3 == 0; }
};
int main() {
 A* a = new B();
 printf("%d\n", a->Odd(3));
 return 0;
}

Virtual methods

Let’s analyze the following case:

 Odd is a virtual function – however, class B does not override it (as it uses
char as the first parameter instead of int). As a result, class B will have 2
Odd methods and a->Odd will call the one with an int parameter. Upon
execution, value false (0) is written to the screen.

App-1.cpp

class A
{
public:
 virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
 virtual bool Odd(char x) { return x % 3 == 0; }
};
int main() {
 A* a = new B();
 printf("%d\n", a->Odd(3));
 return 0;
}

To override a virtual function, one must use

the SAME method signature !

Virtual methods

Let’s analyze the following case:

 Assuming that , in reality, the intent was to override Odd method, then one
way of making sure that this kind of mistakes will not happen is to use the
override keyword (added with C++11 standard). As a result, this code will not
compile as it is expected that method Odd to have the same signature !!!

App-1.cpp

class A
{
public:
 virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
 virtual bool Odd(char x) override { return x % 3 == 0; }
};
int main() {
 A* a = new B();
 printf("%d\n", a->Odd(3));
 return 0;
}

error C3668: 'A::Odd': method with override specifier

'override' did not override any base class methods

Virtual methods

Let’s analyze the following case:

 Now the code compiles and prints “1” (true) on the screen.

App-1.cpp

class A
{
public:
 virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
 virtual bool Odd(int x) override { return x % 3 == 0; }
};
int main() {
 A* a = new B();
 printf("%d\n", a->Odd(3));
 return 0;
}

Virtual methods

Let’s consider the following code:

 This program runs and prints value 1 (True) → even if 3 is not an odd number.

 The reason why this could happen is that method Odd was overridden in class C
(keep in mind that we have used struct in this example to show that the behavior
is identical to the one from class).

 What can we do if we want to make sure that Odd method from class B can not be
overridden ?

App-1.cpp

struct A {
 virtual bool Odd(int x) = 0;
};
struct B : public A {
 virtual bool Odd(int x) { return x % 2 == 0; }
};
struct C : public B {
 virtual bool Odd(int x) { return x % 3 == 0; }
};
int main() {
 A* a = new C();
 printf("%d\n", a->Odd(3));
 return 0;
}

Virtual methods

Let’s consider the following code:

 The solution is to use the specifier final after the declaration of a virtual

function. This tells the compiler that other classes that inherit current class

can not override that method.

App-1.cpp

struct A {
 virtual bool Odd(int x) = 0;
};
struct B : public A {

 virtual bool Odd(int x) final { return x % 2 == 0; }
};
struct C : public B {
 virtual bool Odd(int x) { return x % 3 == 0; }
};
int main() {
 A* a = new C();
 printf("%d\n", a->Odd(3));
 return 0;
}

error C3248: 'B::Odd': function declared as 'final'

cannot be overridden by 'C::Odd'

Virtual methods

Let’s consider the following code:

 It is possible to use both override and final specifiers when declaring a
method.

 In this case their meaning is:

 override ➔ The purpose of this method is to override the existing method from
the base class (in this case, it overrides A::Odd)

 final ➔ Other classes that might inherit class B can not override this method.

App-1.cpp

struct A {
 virtual bool Odd(int x) = 0;
};
struct B : public A {

 virtual bool Odd(int x) override final { return x % 2 == 0; }
};
struct C : public B {
};
int main() {
 A* a = new C();
 printf("%d\n", a->Odd(3));
 return 0;
}

Virtual methods

Let’s consider the following code:

 final specifier can also be used directly in the class/struct definition. In this

case , it’s meaning is that inheritance from class B is NOT possible.

 This code will not compile !

App-1.cpp

struct A {
 virtual bool Odd(int x) = 0;
};
struct B final : public A
{
 virtual bool Odd(int x) override { return x % 2 == 0; }
};
struct C : public B {
};
int main() {
 A* a = new C();
 printf("%d\n", a->Odd(3));
 return 0;
}

error C3246: 'C': cannot inherit from 'B' as it has been

declared as 'final'

How virtual methods

are modeled by C++

compiler

How virtual methods are modeled by

C++ compiler

❖ Let’s analyze the following two programs. Their only difference is the usage

of virtual in case of APP-2.

❖ When executed, APP-1 will print “12” and App-2 will print “16” (for x86

architecture). If we run the same App-2 on x64 it will print “24”

❖ Why ?

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 printf("%d",sizeof(A));
}

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 printf("%d",sizeof(A));
}

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

…

main()

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

…

…

➔ ESP/RSP

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

a.vfptr

…

➔ ESP/RSP

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

a.vfptr

…

➔ ESP/RSP

classA virtual

methods

ptr to A::Set

RTTI

How virtual methods are modeled by

C++ compiler

❖ Using the virtual keyword will force the compiler to modify the structure of

any class by adding another data member (a pointer to a list of pointers to a

function). This pointer is called vfptr and if added is the first pointer in the

class.

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 A a;
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

a.vfptr

…

➔ ESP/RSP

classA virtual

methods

ptr to A::Set

RTTI

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to be certain that

vfptr pointer is set correctly. As such, any constructor is modified to include

the code that sets up the vfptr pointer. If no constructor is present, the

default one will be created automatically.

❖ In this case, there no default constructor defined and no need for the

compiler to provide one automatically (e.g. virtual methods, const or

reference data members, etc).

App.cpp

class A
{
public:
 int x, y;
 int Calcul() { return x+y; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm

A a;
a.x = 1;

mov dword ptr [ebp-12],1
a.y = 2;

mov dword ptr [ebp-8],2

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that

vfptr pointer is set correctly. As such, any constructor is modified to include

the code that sets up the vfptr pointer. If no constructor is present, the

default one will be created automatically.

❖ In this case, there is a constructor that will be called when “a” is created.

App.cpp

class A
{
public:
 int x, y;
 int Calcul() { return x+y; }
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm

A a;
 lea ecx,[ebp-16]
 call A::A

a.x = 1;
mov dword ptr [ebp-16],1

a.y = 2;
mov dword ptr [ebp-12],2

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that
vfptr pointer is set correctly. As such, any constructor is modified to include
the code that sets up the vfptr pointer. If no constructor is present, the
default one will be created automatically

❖ In this case, there is a default constructor and the code from the default
constructor will be called when object “a” is created.

App.cpp

class A
{
public:
 int x, y;
 int Calcul() { return x+y; }
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm (A::A)

push ebp
mov ebp,esp
mov dword ptr [ebp-8],ecx // EBP-8=this
mov eax,dword ptr [ebp-8]
mov dword ptr [eax+4],0 // this->y = 0
mov ecx,dword ptr [ebp-8]
mov dword ptr [ecx],0 // this->x = 0
mov eax,dword ptr [ebp-8]
pop ebp
ret

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that
vfptr pointer is set correctly. As such, any constructor is modified to include
the code that sets up the vfptr pointer. If no constructor is present, the
default one will be created automatically

❖ In this case, even if no constructor is defined, the compiler will automatically
create one to initialize the vfptr pointer (this is required because Calcul is a
virtual method).

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm

A a;
 lea ecx,[ebp-20]
 call A::A

a.x = 1;
mov dword ptr [ebp-16],1

a.y = 2;
mov dword ptr [ebp-12],2

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that

vfptr pointer is set correctly. As such, any constructor is modified to include

the code that sets up the vfptr pointer. If no constructor is present, the

default one will be created automatically

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm

A a;
 lea ecx,[ebp-20]
 call A::A

a.x = 1;
mov dword ptr [ebp-16],1

a.y = 2;
mov dword ptr [ebp-12],2

Disasm

push ebp
mov ebp,esp
mov dword ptr [ebp-8],ecx
mov eax,dword ptr [ebp-8]
mov dword ptr [eax], A-virtual-fnc-list
mov eax,dword ptr [ebp-8]
mov esp,ebp
pop ebp
ret

Memory address where a list of

pointers to virtual functions is

(in this case only one method:

Calcul)

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that
vfptr pointer is set correctly. As such, any constructor is modified to include
the code that sets up the vfptr pointer. If no constructor is present, the
default one will be created automatically

❖ If a constructor exists, it will be modified (in a similar manner to the change
that is done for const/references data members).

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm

A a;
 lea ecx,[ebp-20]
 call A::A

a.x = 1;
mov dword ptr [ebp-16],1

a.y = 2;
mov dword ptr [ebp-12],2

How virtual methods are modeled by

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that
vfptr pointer is set correctly. As such, any constructor is modified to include
the code that sets up the vfptr pointer. If no constructor is present, the
default one will be created automatically

❖ The code colored in blue is the
code added by the compiler to
initialize the vfptr pointer.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
}

Disasm A::A

push ebp
mov ebp,esp
mov dword ptr [ebp-8],ecx
mov eax,dword ptr [ebp-8]
mov dword ptr [eax],addr virt fnc
mov eax,dword ptr [ebp-8]
mov dword ptr [eax+8],0
mov ecx,dword ptr [ebp-8]
mov dword ptr [ecx+4],0
mov eax,dword ptr [ebp-8]
mov esp,ebp
pop ebp
ret

How virtual methods are modeled by

C++ compiler

❖ The code added by the compiler to initialize the vfptr pointer will be added

for every defined constructor.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
 A(const A& a) { x = a.x; y = a.y; }
};
void main()
{
 A a;
 A a2 = a;
}

In this case the code for vfptr initialization will be

added for both the default constructor and the

copy constructor.

How virtual methods are modeled by

C++ compiler

❖ However, in case of the assignment operator the compiler will not add any

special code to initialize the vfptr pointer.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
 A& operator = (A &a) { x = a.x; y = a.y; return *this;}
};
void main()
{
 A a;
 A a2;
 a2 = a;
}

How virtual methods are modeled by

C++ compiler

❖ A virtual method is called using its reference from the vfptr table only if the

object is a pointer.

❖ In this case, even if Calcul method is virtual as it called directly with an

object , the compiler will not generate code that will find out its address

from the vfptr table (it will use the method Calcul exact address).

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 a.Calcul();
}

Disasm

A a;
lea ecx,[a]
call A::A
 a.x = 1;
mov dword ptr [ebp-10h],1
 a.y = 2;
mov dword ptr [ebp-0Ch],2
 a.Calcul();
lea ecx,[a]
call A::Calcul

How virtual methods are modeled by

C++ compiler

❖ A virtual method is called using its reference from the vfptr table only if the

object is a pointer.

❖ In this case vfptr is used to

find out Calcul method address.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Disasm

A a;
lea ecx,[a]
call A::A
 a.x = 1;
mov dword ptr [ebp-10h],1
 a.y = 2;
mov dword ptr [ebp-0Ch],2
 A* a2 = &a;
lea eax,[a]
mov dword ptr [a2],eax
 a2->Calcul();
mov eax,dword ptr [a2]
mov edx,dword ptr [eax]
mov ecx,dword ptr [a2]
mov eax,dword ptr [edx]
call eax

EAX = address of a2
EDX = address of VFPTR
EAX = address of first

function from VFPTR

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {

};

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:

 int x;

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;
 int A_Calcul() { return 0; }

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;
 int A_Calcul() { return 0; }

A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;
 int A_Calcul() { return 0; }
 A() {

 x = 0;
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;
 int A_Calcul() { return 0; }
 A() {
 vfPtr = &Global_A_vfPtr;
 x = 0;
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;
 int A_Calcul() { return 0; }
 A() {
 vfPtr = &Global_A_vfPtr;
 x = 0;
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;

}

How virtual methods are modeled by

C++ compiler

App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) ();
};
class A {
public:
 A_VirtualFunctions *vfPtr;
 int x;
 int A_Calcul() { return 0; }
 A() {
 vfPtr = &Global_A_vfPtr;
 x = 0;
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

void main()
{
 A a;
 a.x = 1;
 a.y = 2;
 A* a2 = &a;
 a2->vfPtr->Calcul();
}

How virtual methods are modeled by

C++ compiler

❖ Keep in mind the vfptr is just a pointer. As such, it can be changed during execution

App.cpp

class A
{
public:
 int x;
 virtual void Print() { printf("A"); }
};
class B
{
public:
 int x;
 virtual void Print() { printf(“B"); }
};
void main()
{
 A a;
 B b;
 A* a2 = &a;
 a.Print();
 a2->Print();
}

❖ This code will print “AA” on the

screen. First time when method

Print is called directly

(“a.Print()”), second time when

method Print is called using the

vfptr pointer (“a2->Print()”)

How virtual methods are modeled by

C++ compiler

❖ Keep in mind the vfptr is just a pointer. As such, it can be changed during execution

App.cpp

class A
{
public:
 int x;
 virtual void Print() { printf("A"); }
};
class B
{
public:
 int x;
 virtual void Print() { printf(“B"); }
};
void main()
{
 A a;
 B b;
 memcpy(&a, &b, sizeof(void*));
 A* a2 = &a;
 a.Print();
 a2->Print();
}

❖ This code will however print “AB”.

Using memcpy function allow us to

overwrite the actual vfptr-ul of

object “a” with the one from

object “b”. As method Print has

the same signature in both classes

(A and B) the result will be “AB”

How virtual methods are modeled by

C++ compiler

❖ Keep in mind the vfptr is just a pointer. As such, it can be changed during execution

App.cpp

class A
{
public:
 int x;
 virtual void Print() { printf("A"); }
};
class B
{
public:
 int x;
 virtual void Print() { printf(“B"); }
};
void main()
{
 A a;
 B b;
 memcpy(&a, &b, sizeof(void*));
 A* a2 = &a;

A a3 = (*a2);
A *a4 = &a3;
a4->Print();

}

❖ Every constructor called will set

the vfptr to its correct value. In

this case , “A a3=(*a2)” will call

the copy constructor for class A

and will set the vfptr for local

variable a3 correctly.

❖ As a result, this code will print “A”

on the screen , even if “a2” has

the vfptr of “b”

How virtual methods are modeled by

C++ compiler

❖ A virtual function can be overwritten in the derived class.

App.cpp

class A
{
public:
 int x, y;
 virtual int Suma() { return x + y; }
 virtual int Diferenta() { return x - y; }
 virtual int Produs() { return x*y; }
};
class B : public A
{
public:
 int Suma() { return 1; }
};

void main()
{
 B b;
 b.x = 1;
 b.y = 2;
 A* a;
 a = &b;
 int x = a->Suma();
}

❖ In this case, “x” will be 1 as “a”

is in fact an object of type “b”

that has overwrite method

“Suma”

❖ For the rest of the methods

(Diferenta and Produs) the

behavior will be identical to the

one from the base class (A).

How virtual methods are modeled by

C++ compiler

VFTable for class A

Address of A::Suma

Address of A::Diferenta

Address of A::Produs

RTTI

VFTable for class B

Address of B::Suma

Address of A::Diferenta

Address of A::Produs

RTTI

Instance of type A

Address of VFTable A

x

y

Instance of type B

Address of VFTable B

A::x

A::y

How virtual methods are modeled by

C++ compiler

❖ A derived class can also add other (new) virtual methods .

App.cpp

class A
{
public:
 int x, y;
 virtual int Suma() { return x + y; }
 virtual int Diferenta() { return x - y; }
 virtual int Produs() { return x*y; }
};
class B : public A
{
public:
 int Suma() { return 1; }
 virtual int Modul() { return 0; }
};

void main()
{
}

❖ In this case, class B also have a

new virtual method called

“Module”) that is not present on

class A.

❖ This means that any class that will

be derived from B will have this

method as well.

How virtual methods are modeled by

C++ compiler

VFTable for class A

Address of A::Suma

Address of A::Diferenta

Address of A::Produs

RTTI

VFTable for class B

Address of B::Suma

Address of A::Diferenta

Address of A::Produs

Address of B::Modul

RTTI

Instance of type A

Address of VFTable A

x

y

Instance of type B

Address of VFTable B

A::x

A::y

How virtual methods are modeled by

C++ compiler

❖ When a class is derived from two(or more) classes that have virtual functions,

the compiler creates multiple vfptr pointers (one for each base class).

App.cpp

class A {
public:
 int a1;
 virtual int Suma() { return 1; }
 virtual int Diferenta() { return 2; }
};
class B {
public:
 int b1,b2;
 virtual int Inmultire() { return 3; }
 virtual int Impartire() { return 4; }
};
class C : public A, public B {
public:
 int x, y;
};
void main() {
 C c;
 C *cptr = &c;
 cptr->Impartire();
 cptr->Diferenta();
}

Disasm

cptr->Impartire();
 mov ecx,dword ptr [cptr]
 add ecx,8 //this for type B
 mov eax,dword ptr [cptr]
 mov edx,dword ptr [eax+8]
 mov eax,dword ptr [edx+4]
 call eax
 cptr->Diferenta();
 mov eax,dword ptr [cptr]
 mov edx,dword ptr [eax]
 mov ecx,dword ptr [cptr]
 mov eax,dword ptr [edx+4]
 call eax

How virtual methods are modeled by

C++ compiler

❖ When a class is derived from two(or more) classes that have virtual functions,

the compiler creates multiple vfptr pointers (one for each base class).

App.cpp

class A {
public:
 int a1;
 virtual int Suma() { return 1; }
 virtual int Diferenta() { return 2; }
};
class B {
public:
 int b1,b2;
 virtual int Inmultire() { return 3; }
 virtual int Impartire() { return 4; }
};
class C : public A, public B {
public:
 int x, y;
};
void main() {
 C c;
 C *cptr = &c;
 cptr->Impartire();
 cptr->Diferenta();
}

Offset Field

+ 0 A::vfptr

+ 4 A::a1

+ 8 B::vfptr

+ 12 B::b1

+ 16 B::b2

+ 20 C::x

+ 24 C::y

VFTable for class A

Address of A::Suma

Address of A::Diferenta

RTTI

VFTable for class B

Address of B::Inmultire

Address of B::Impartire

RTTI

How virtual methods are modeled by

C++ compiler

❖ The same memory alignment is used for classes derived out of class C (e.g. in

this example, class D)

App.cpp

class A {
public:
 int a1;
 virtual int Suma() { return 1; }
 virtual int Diferenta() { return 2; }
};
class B {
public:
 int b1,b2;
 virtual int Inmultire() { return 3; }
 virtual int Impartire() { return 4; }
};
class C : public A, public B {
public:
 int x, y;
};
class D : public C {
public:
 int d1;
};

Offset Field

+ 0 A::vfptr

+ 4 A::a1

+ 8 B::vfptr

+ 12 B::b1

+ 16 B::b2

+ 20 C::x

+ 24 C::y

+ 28 D::d1

VFTable for class A

Address of A::Suma

Address of A::Diferenta

RTTI

VFTable for class B

Address of B::Inmultire

Address of B::Impartire

RTTI

Covariance

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual A* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
}

❖ This code will not compile.

However, in reality “b->clone()”

returns an object of type B so it

should work.

error C2440: '=': cannot convert from 'A *' to 'B *’
note: Cast from base to derived requires dynamic_cast
or static_cas

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual A* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
}

❖ We have two solutions for this

problem:

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual A* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = (B*) b->clone();
}

❖ We have two solutions for this

problem:

1. Use an explicit cast and convert

the pointer from A* to B*

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual B* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
}

❖ We have two solutions for this

problem:

1. Use an explicit cast and convert

the pointer from A* to B*

2. Use covariance. This means that

we can modify the return type of

the method clone in class B to

return a B* pointer instead of an

A* pointer.

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual B* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
 A *a = (A*)b;
 ptrB = (B*)a->clone();
}

❖ We have two solutions for this

problem:

1. Use an explicit cast and convert

the pointer from A* to B*

2. Use covariance. This means that

we can modify the return type of

the method clone in class B to

return a B* pointer instead of an

A* pointer.

Covariance is related to the pointer

type. In this case, even if the

compiler calls “B::clone”, the

expected value is A* (specific to a A*

pointer that is “a” → “A::clone”)

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual B* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
 A *a = (A*)b;
 ptrB = a->clone();
}

❖ We have two solutions for this

problem:

1. Use an explicit cast and convert

the pointer from A* to B*

2. Use covariance. This means that

we can modify the return type of

the method clone in class B to

return a B* pointer instead of an

A* pointer.

That is why this code will NOT

compile, as the result for a->clone is

A* and not B*. During execution,

“B::clone” will be call, nevertheless.

Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual int* clone() { return new int(); }
};
void main()
{
 …
}

❖ This code will not compile. The

return type for virtual functions

can be changed, but only to a type

that is derived from the return

type of the virtual method

described in the base class. In this

case, int* is not derived from A*

error C2555: 'B::clone': overriding

virtual function return type differs

and is not covariant from

'A::clone'

Abstract classes

(Interfaces)

Abstract classes (Interfaces)

 In C++ we can define a virtual method without a body (it is called a pure

virtual method and it is defined by adding “=0” at the end of its definition).

 If a class contains a pure virtual method, that class is an abstract class (a

class that can not be instantiated). In other languages this concept is similar

to the concept of an interface.

 Having a pure virtual method forces the one that implements a derived class

to implement that method as well if he/she would like to create an instance

from the newly created class.

❖ The code will not compile as “A” is an

abstract class.

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() = 0;
};
void main()
{
 A a;
}

error C2259: 'A': cannot instantiate abstract class
note: due to following members:
note: 'void A::Set(void)': is abstract
note: see declaration of 'A::Set'

Abstract classes (Interfaces)

 In C++ we can define a virtual method without a body (it is called a pure

virtual method and it is defined by adding “=0” at the end of its definition).

❖ This code will compile because class B has

an implementation for method Set

❖ In order to be able to create an instance of

a class, all of its pure virtual methods

(defined in that class or obtained via

inheritance) MUST be implemented !

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() = 0;
};
class B: A
{
public:
 int a1, a2, a3;
 void Set(){… };
}
void main()
{
 B b;
}

Abstract classes (Interfaces)

 In C++ we can define a virtual method without a body (it is called a pure

virtual method and it is defined by adding “=0” at the end of its definition).

❖ This code will however compile. It is

possible (and recommended whenever

working with polymorphism) to create a

pointer towards an abstract class (in this

case an A* pointer).

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() = 0;
};
class B: A
{
public:
 int a1, a2, a3;
 void Set(){… };
}
void main()
{
 B b;
 A* a;
}

Abstract classes (Interfaces)

 Other languages (such as Java or C#) have a similar concept called interface

(primarily used in these languages to avoid multiple inheritance).

 interfaces are however different from an abstract class. An interface CAN

NOT have data members, or methods that are not pure virtual. An abstract

class is a class that has at least one pure virtual method. An abstract class can

have methods, constructors, destructor or data members.

 In C++ it is often easier to use struct instead of class to describe in interface

due to the fact that the default access modifier is public

 Cl.exe (Microsoft) has a keyword (__interface) that works like an interface

(allows you to create on). However, this is not part of the standard.

Memory alignment

in case of

inheritance

Memory alignment in case of inheritance

class A
{
public:
 int a1,a2,a3;
};

sizeof(A) = 12

class B: public A
{
public:
 int b1,b2
};

sizeof(B) = 20

Offset Field C1 C2

+ 0 A::a1

A
B

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2

Memory alignment in case of inheritance

class A
{
public:
 int a1,a2,a3;
};

sizeof(A) = 12

class B: public A
{
public:
 int b1,b2
};

sizeof(B) = 20

Offset Field C1 C2

+ 0 A::a1

A
B

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2

Memory alignment in case of inheritance

class A
{
public:
 int a1,a2,a3;
};

sizeof(A) = 12

class B: public A
{
public:
 int b1,b2
};

sizeof(B) = 20

Offset Field C1 C2

+ 0 A::a1

A
B

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2

Memory alignment in case of inheritance

class A
{
public:
 int a1,a2,a3;
};

sizeof(A) = 12

class B:
{
public:
 int b1,b2;
};

sizeof(B) = 8

Offset Field C1 C2 C3

+ 0 A::a1

A
B

C

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2

+20 C::c1

+24 C::c2

class C:public A,B
{
public:
 int c1,c2;
};

sizeof(C) = 28

Memory alignment in case of inheritance

class A
{
public:
 int a1,a2,a3;
};

sizeof(A) = 12

class B:
{
public:
 int b1,b2;
};

sizeof(B) = 8 Offset Field C1 C2 C3

+ 0 B::b1

B

A
C

+ 4 B::b2

+ 8 A::a1

+ 12 A::a2

+ 16 A::a3

+20 C::c1

+24 C::c2

class C:public B,A
{
public:
 int c1,c2;
};

sizeof(C) = 28

When building a derived class in memory,

if the inheritance is does not contain the

virtual specifier, will be done using the

left-to-right rule for any base classes.

Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this

case the fields from class A are

copied twice in class C. Offset Field C1 C2 C3

+0 A::a1

A

C

+4 A::a2

+8 A::a3

+12 B::A::a1

B::A

B
+16 B::A::a2

+20 B::A::a3

+24 B::b1

+28 B::b2

+32 C::c1

+36 C::c2

warning C4584: 'C' : base-class 'A' is already a base-

class of 'B’.

App.cpp

class A
{
public:
 int a1, a2, a3;
};
class B: public A
{
public:
 int b1, b2;
};
class C : public A, public B
{
public:
 int c1, c2;
};
void main()
{
}

Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this

case the fields from class A are copied twice in class C.

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public A {
public:
 int b1, b2;
};
class C : public A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
}

This is an ambiguous case. “c.a1 = 10” can refer to

the member “a1” from the direct inheritance of

class A, or the member “a1” from the direct

inheritance of class B that in terms inherits class A.

This code will NOT compile !!!

warning C4584: 'C': base-class 'A' is already a base-class of 'B'
note: see declaration of 'A'
note: see declaration of 'B’

error C2385: ambiguous access of 'a1'
note: could be the 'a1' in base 'A'
note: or could be the 'a1' in base 'A

Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this

case the fields from class A are copied twice in class C.

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public A {
public:
 int b1, b2;
};
class C : public A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.A::a1 = 10;
 c.B::A::a1 = 20;
}

❖ The solution is to describe any field/data
member using its full scope. For example:

➢ “c.A::a1” means data member “a1” from
the direct inheritance of “A” in class “C”

➢ “c.B::A::a1” means data member “a1”
from the inheritance of “A” in class “B”
that is directly inherit by class “C”

❖ What can we do if we want to have only one
copy of the fields from class “A” in our
object ?

❖ This problem is also known as the “Diamond
Problem”

Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this

case the fields from class A are copied twice in class C.

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public virtual A {
public:
 int b1, b2;
};
class C : public virtual A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
 c.a2 = 20;
}

❖ One solution to this problem is to use the

virtual specifier when deriving from a

class. In this case, class “A” is inherited

virtually (meaning that its fields must be

added once).

❖ For this code to work, both “C” and “B”

class need to inherit class “A” using

virtual keyword.

Memory alignment in case of inheritance

❖ Just like in the case of virtual methods, if no constructor is present, one will

be created by the compiler. However, this constructor is a little bit different

than the others (as it has one parameter of type bool).

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public virtual A {
public:
 int b1, b2;
};
class C : public virtual A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
 c.b1 = 20;
}

Disasm

C c;
push 1
lea ecx,[c]
call C::C

c.a1 = 10;
mov eax,dword ptr [c]
mov ecx,dword ptr [eax+4]
mov dword ptr [c+ecx],10

c.b1 = 20;
mov dword ptr [c+20],20

TRUE

Disasm C::C

push ebp
mov ebp,esp
mov dword ptr [this],ecx
cmp dword ptr [ebp+8],0
je DONT_SET_VAR_PTR
mov eax,dword ptr [this]
mov dword ptr [eax],addr_index

DONT_SET_VAR_PTR:
push 0
mov ecx,dword ptr [this]
call B::B
mov eax,dword ptr [this]
mov esp,ebp
pop ebp
ret 4

Memory alignment in case of inheritance

❖ The first parameter, tells the constructor if a special table with indexes needs

to be created or not !

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public virtual A {
public:
 int b1, b2;
};
class C : public virtual A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
 c.b1 = 20;
}

Memory alignment in case of inheritance

❖ Once the constructor is called, an object that has virtual inheritance will look

as follows:

Offset Field C1 C2

+ 0 Ptr Class C Variable Offsets Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20

Memory alignment in case of inheritance

❖ Accessing a data member / field that benefits from the virtual inheritance, is

done in 3 steps (not in one) in the following way:

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm

c.a1 = 10;
mov eax,dword ptr [c]
mov ecx,dword ptr [eax+4]
mov dword ptr [c+ecx],10

Memory alignment in case of inheritance

❖ In the first step, EAX register gets the pointer to the table where offsets of

data member/fields from A class are stored

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm

c.a1 = 10;
mov eax,dword ptr [c]
mov ecx,dword ptr [eax+4]
mov dword ptr [c+ecx],10

Offset Field C1 C2

+ 0 Ptr Class C Variable Offsets Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Memory alignment in case of inheritance

❖ Second step - ECX gets the value from the second index in that table (+4),

more exactly value 20 (that reflects the offset of "A" from the beginning of "C")

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm

c.a1 = 10;
mov eax,dword ptr [c]
mov ecx,dword ptr [eax+4]
mov dword ptr [c+ecx],10

Offset Field C1 C2

+ 0 Ptr Class C Variable Offssets Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20

Memory alignment in case of inheritance

❖ Last step, we use “ECX” register as an offset to access A::a1 from the

beginning of local variable “c”.

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm

c.a1 = 10;
mov eax,dword ptr [c]
mov ecx,dword ptr [eax+4]
mov dword ptr [c+ecx],10

Offset Field C1 C2

+ 0 Ptr Class C Variable Offssts Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20

Memory alignment in case of inheritance

❖ Fields/Data members that are obtained via virtual inheritance are usually

added at the end of the class alignment.

App.cpp

class A
{ … }
class B: public virtual A
{ … }
class C : public virtual A,
 public B
{ … }

Offset Field

+ 0 ptr class C virtual members offsets

+ 4 C::B::b1

+ 8 C::B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1 (virtual A from C)

+ 24 A::a2 (virtual A from C)

+ 28 A::a3 (virtual A from C)

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20

Memory alignment in case of inheritance

❖ If we use virtual inheritance when deriving “C” from “B” (in addition to the usage

of virtual inheritance for class “A”) we will obtain the following alignment:

App.cpp

class A
{ … }
class B: public virtual A
{ … }
class C : public virtual A,
 public virtual B
{ … }

Offset Field

+ 0 ptr class C virtual members offsets

+ 4 C::c1

+ 8 C::c2

+ 12 A::a1 (virtual A from C)

+ 16 A::a2 (virtual A from C)

+ 20 A::a3 (virtual A from C)

+ 24 ptr class B virtual members offsets

+ 28 B::b1 (virtual B from C)

+ 32 B::b2 (virtual B from C)

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 12

+ 8 Virtual B 24

Memory alignment in case of inheritance

❖ In case of the index table for class "B", the offset "-12" refers to the position of "A" class (also obtain

via virtual inheritance) relative to B with respect to C class (24 (offset of B) - 12 = 12 (offset of A))

App.cpp

class A
{ … }
class B: public virtual A
{ … }
class C : public virtual A,
 public virtual B
{ … }

Offset Field

+ 0 ptr class C virtual members offsets

+ 4 C::c1

+ 8 C::c2

+ 12 A::a1 (virtual A from C)

+ 16 A::a2 (virtual A from C)

+ 20 A::a3 (virtual A from C)

+ 24 ptr class B virtual members offsets

+ 28 B::b1 (virtual B from C)

+ 32 B::b2 (virtual B from C)

Offset Offset relative la B

+ 0 0

+ 4 Virtual A -12

Memory alignment in case of inheritance

❖ If we make only the inheritance of B from C to be virtual, the memory

alignment is as follows:

App.cpp

class A
{ … }
class B: public A
{ … }
class C : public A,
 public virtual B
{ … }

Offset Field

+ 0 A::a1

+ 4 A::a1

+ 8 A::a3

+ 12 ptr class C virtual members offsets

+ 16 C::c1

+ 20 C::c2

+ 24 B::A::a1

+ 28 B::A::a2

+ 32 B::A::a3

+ 36 B::b1

+ 40 B::b2

Offset Offset relative la C

+ 0 -12

+ 4 Virtual B 12

Memory alignment in case of inheritance

❖ If we make only the inheritance of B from C to be virtual, the memory

alignment is as follows:

App.cpp

class A
{ … }
class B: public A
{ … }
class C : public A,
 public virtual B
{ … }

Offset Field

+ 0 A::a1

+ 4 A::a1

+ 8 A::a3

+ 12 ptr class C virtual members offsets

+ 16 C::c1

+ 20 C::c2

+ 24 B::A::a1

+ 28 B::A::a2

+ 32 B::A::a3

+ 36 B::b1

+ 40 B::b2

Offset Offset relative la C

+ 0 -12

+ 4 Virtual B 12

First index (+0 offset, value -12) represents the

offset of object C relative to the table of indexes).

It is usually 0 (as this table is the first entry),

however in this case it is a negative value.

Memory alignment in case of inheritance

❖ If we make only the inheritance of B from C to be virtual, the memory

alignment is as follows:

App.cpp

class A
{ … }
class B: public A
{ … }
class C : public A,
 public virtual B
{ … }

Offset Field

+ 0 A::a1

+ 4 A::a1

+ 8 A::a3

+ 12 ptr class C virtual members offsets

+ 16 C::c1

+ 20 C::c2

+ 24 B::A::a1

+ 28 B::A::a2

+ 32 B::A::a3

+ 36 B::b1

+ 40 B::b2

Offset Offset relative la C

+ 0 -12

+ 4 Virtual B 12

The second offset (+4, value +12) reflects the

position of B relative to the offset of the index

table (12+12=24).

Q & A

	Default Section
	Slide 1: OOP
	Slide 2: Summary

	Inheritance
	Slide 3: Inheritance
	Slide 4: Inheritance
	Slide 5: Inheritance
	Slide 6: Inheritance
	Slide 7: Inheritance
	Slide 8: Inheritance
	Slide 9: Inheritance
	Slide 10: Inheritance
	Slide 11: Inheritance
	Slide 12: Inheritance
	Slide 13: Inheritance
	Slide 14: Inheritance
	Slide 15: Inheritance
	Slide 16: Inheritance
	Slide 17: Inheritance
	Slide 18: Inheritance
	Slide 19: Inheritance
	Slide 20: Inheritance
	Slide 21: Inheritance
	Slide 22: Inheritance
	Slide 23: Inheritance
	Slide 24: Inheritance
	Slide 25: Inheritance
	Slide 26: Inheritance
	Slide 27: Inheritance

	Virtual functions
	Slide 28: Virtual methods
	Slide 29: Virtual methods
	Slide 30: Virtual methods
	Slide 31: Virtual methods
	Slide 32: Virtual methods
	Slide 33: Virtual methods
	Slide 34: Virtual methods
	Slide 35: Virtual methods
	Slide 36: Virtual methods
	Slide 37: Virtual methods
	Slide 38: Virtual methods
	Slide 39: Virtual methods
	Slide 40: Virtual methods
	Slide 41: Virtual methods
	Slide 42: Virtual methods
	Slide 43: Virtual methods
	Slide 44: Virtual methods

	How virtual functions are modeled by C++ compiler
	Slide 45: How virtual methods are modeled by C++ compiler
	Slide 46: How virtual methods are modeled by C++ compiler
	Slide 47: How virtual methods are modeled by C++ compiler
	Slide 48: How virtual methods are modeled by C++ compiler
	Slide 49: How virtual methods are modeled by C++ compiler
	Slide 50: How virtual methods are modeled by C++ compiler
	Slide 51: How virtual methods are modeled by C++ compiler
	Slide 52: How virtual methods are modeled by C++ compiler
	Slide 53: How virtual methods are modeled by C++ compiler
	Slide 54: How virtual methods are modeled by C++ compiler
	Slide 55: How virtual methods are modeled by C++ compiler
	Slide 56: How virtual methods are modeled by C++ compiler
	Slide 57: How virtual methods are modeled by C++ compiler
	Slide 58: How virtual methods are modeled by C++ compiler
	Slide 59: How virtual methods are modeled by C++ compiler
	Slide 60: How virtual methods are modeled by C++ compiler
	Slide 61: How virtual methods are modeled by C++ compiler
	Slide 62: How virtual methods are modeled by C++ compiler
	Slide 63: How virtual methods are modeled by C++ compiler
	Slide 64: How virtual methods are modeled by C++ compiler
	Slide 65: How virtual methods are modeled by C++ compiler
	Slide 66: How virtual methods are modeled by C++ compiler
	Slide 67: How virtual methods are modeled by C++ compiler
	Slide 68: How virtual methods are modeled by C++ compiler
	Slide 69: How virtual methods are modeled by C++ compiler
	Slide 70: How virtual methods are modeled by C++ compiler
	Slide 71: How virtual methods are modeled by C++ compiler
	Slide 72: How virtual methods are modeled by C++ compiler
	Slide 73: How virtual methods are modeled by C++ compiler
	Slide 74: How virtual methods are modeled by C++ compiler
	Slide 75: How virtual methods are modeled by C++ compiler
	Slide 76: How virtual methods are modeled by C++ compiler
	Slide 77: How virtual methods are modeled by C++ compiler
	Slide 78: How virtual methods are modeled by C++ compiler
	Slide 79: How virtual methods are modeled by C++ compiler
	Slide 80: How virtual methods are modeled by C++ compiler
	Slide 81: How virtual methods are modeled by C++ compiler
	Slide 82: How virtual methods are modeled by C++ compiler
	Slide 83: How virtual methods are modeled by C++ compiler
	Slide 84: How virtual methods are modeled by C++ compiler
	Slide 85: How virtual methods are modeled by C++ compiler

	Covariance
	Slide 86: Covariance
	Slide 87: Covariance
	Slide 88: Covariance
	Slide 89: Covariance
	Slide 90: Covariance
	Slide 91: Covariance
	Slide 92: Covariance
	Slide 93: Covariance

	Abstract classes
	Slide 94: Abstract classes (Interfaces)
	Slide 95: Abstract classes (Interfaces)
	Slide 96: Abstract classes (Interfaces)
	Slide 97: Abstract classes (Interfaces)
	Slide 98: Abstract classes (Interfaces)

	Untitled Section
	Slide 99: Memory alignment in case of inheritance
	Slide 100: Memory alignment in case of inheritance
	Slide 101: Memory alignment in case of inheritance
	Slide 102: Memory alignment in case of inheritance
	Slide 103: Memory alignment in case of inheritance
	Slide 104: Memory alignment in case of inheritance
	Slide 105: Memory alignment in case of inheritance
	Slide 106: Memory alignment in case of inheritance
	Slide 107: Memory alignment in case of inheritance
	Slide 108: Memory alignment in case of inheritance
	Slide 109: Memory alignment in case of inheritance
	Slide 110: Memory alignment in case of inheritance
	Slide 111: Memory alignment in case of inheritance
	Slide 112: Memory alignment in case of inheritance
	Slide 113: Memory alignment in case of inheritance
	Slide 114: Memory alignment in case of inheritance
	Slide 115: Memory alignment in case of inheritance
	Slide 116: Memory alignment in case of inheritance
	Slide 117: Memory alignment in case of inheritance
	Slide 118: Memory alignment in case of inheritance
	Slide 119: Memory alignment in case of inheritance
	Slide 120: Memory alignment in case of inheritance
	Slide 121: Memory alignment in case of inheritance

	Q & A
	Slide 122: Q & A

