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Inheritance



Inheritance

 Inheritance is a process that transfer class proprieties (methods and 

members) from one class (often called the base class to another that inherits 

the base class – called derived class). The derive class may extend the base 

class by adding additional methods and/or members.

 Such an example will be the class Automobile, where we can define the 

following properties:

 Number of doors

 Number of wheels

 Size

 From this class we can derive a particularization of the Automobile class (for 

example electrical machines) that besides the properties of the base class 

(doors, wheels, size, etc) has its own properties (battery lifetime).



Inheritance

 Inheritance in case of C++ classes can be simple or multiple:

 Simple Inheritance

 Multiple Inheritance

 The access modifier is optional and can be one of the following:

(public / private or protected). 

 If it is not specified, the default access modifier is private.

Simple

class <class_name>: <access modifier> <base class> { ... }

Multiple

class <class_name>: <access modifier> <base class 1> ,
<access modifier> <base class 2> , 
<access modifier> <base class 3> , 
...
<access modifier> <base class n> ,   

{ ... }



Inheritance 

 Class “Derived” inherits members and methods from class “Base”. That is why 

we can call methods SetX and SetY from an instance of “Derived” class.

App.cpp

class Base
{
public:

int x;
void SetX(int value);

};
class Derived : public Base
{

int y;
public:

void SetY(int value);
};

void main()
{

Derived d;
d.SetX(100);
d.x = 10;
d.SetY(200);

}



Inheritance 

 The following code will not compile. Class “Derived” inherits class “Base”, 

but member “x” from class Base is private (this means that it can not be 

accessed in class “Derived”).

App.cpp

class Base
{
private:

int x;
};
class Derived : public Base
{

int y;
public:

void SetY(int value);
void SetX(int value);

};
void Derived::SetX(int value)
{

x = value;
}
void main()
{

Derived d;
d.SetX(100);
d.SetY(200);

}

error C2248: 'Base::x': cannot access private member declared 
in class 'Base'
note: see declaration of 'Base::x'
note: see declaration of 'Base'



Inheritance 

 The solution for this case is to use the “protected” access modifier. A 

protected member is a member that can be access by classes that inherits 

current class, but it can not be accessed from outside the class.

App.cpp

class Base
{
protected:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void SetX(int value);
};
void Derived::SetX(int value)
{
 x = value;
}
void main()
{
 Derived d;
 d.SetX(100);
 d.SetY(200);
}



Inheritance 

 The code below will not compile. “x” is declared as protected – this means 

that it can be accessed in method SetX from a derived class, but it can not be 

accessed outside it’s scope (class).

App.cpp

class Base
{
protected:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void SetX(int value);
};
void Derived::SetX(int value)
{
 x = value;
}
void main()
{
 Derived d;
 d.SetX(100);
 d.x = 100;
}

error C2248: 'Base::x': cannot access protected member declared 
in class 'Base'
note: see declaration of 'Base::x'
note: see declaration of 'Base'



Inheritance

 The following table shows if a member with a specific access modifier can be 

access and in what conditions:

Access 

modifier

In the 

same class

In a 

derived 

class

Outside 

it’s 

scope

Friend 

function in the 

base class

Friend 

function in the 

derived class

public Yes Yes Yes Yes Yes

protected Yes Yes No Yes Yes

private Yes No No Yes No



Inheritance 

 The code below will not compile. “x” is a private member of “Base” therefor 

a friend function defined in “Derived” class can not access it.

App.cpp

class Base
{
private:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void friend SetX(Derived &d);
};
void SetX(Derived &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
 SetX(d);
}



Inheritance 

 The solution is to change the access modifier of data member “x” from class 

“Base” from private to protected.

App.cpp

class Base
{
protected:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void friend SetX(Derived &d);
};
void SetX(Derived &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
 SetX(d);
}



Inheritance 

 Be careful where you define the friend function. In the example below SetX 

friend function is declared in the “Derived” class. This means that it can 

access methods and data members from instances of “Derived” class and not 

other classes (e.g. Base class). The code will not compile.

App.cpp

class Base
{
private:
 int x;
 
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 void friend SetX(Base &d);
};
void SetX(Base &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
}



Inheritance 

 This code will work properly because the friend function is defined in class 

“Base”.

App.cpp

class Base
{
private:
 int x;
public:
 void friend SetX(Base &d);
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value);
 
};
void SetX(Base &d)
{
 d.x = 100;
}
void main()
{
 Derived d;
}



Inheritance

 Access modifiers can also be applied to the inheritance relation.

 As a result, the members from the base class change their original access 

modifier in the derived class.

❖ In this case, because “x” is public in the “Base” 

class, and the inheritance relation is also public, 

“x” will be public as well in the “Derived” class 

and will be accessible from outside the class 

scope.

App.cpp

class Base
{
public:
 int x;
};
class Derived : public Base
{
 int y;
public:
 void SetY(int value) { ... }
};
void main()
{
 Derived d;
      d.x = 100;
}



Inheritance

 Access modifiers can also be applied to the inheritance relation.

 As a result, the members from the base class change their original access 

modifier in the derived class.

❖ This code will not compile. “x” is indeed public 

in class “Base”, but since the inherit relation 

between class “Base” and class “Derived” is 

private, “x” will change its access modifier from 

public to private in class Derived and will not be 

accessible from outside its scope.

❖ However, if we are to create an instance of type 

“Base” we will be able to access “x” for that 

instance outside its scope.

App.cpp

class Base
{
public:
 int x;
};
class Derived : private Base
{
 int y;
public:
 void SetY(int value) { ... }
};
void main()
{
 Derived d;
      d.x = 100;
}



Inheritance

 The rules that show how an access modifier is change if we change the access 

modifier of the inheritance relation are as follows:

private > protected > public

Access modifier used for the 

inheritance relation
→

public private protected

Access modifier used for a data 

member or method

public public private protected

private private private private

protected protected private protected



Inheritance 

 Let’s consider the following case:

App.cpp

class A
{
public:
    A() { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B: public A
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
int main()
{
    B b;
    return 0;
}

Output

ctor: A is called !

ctor: B is called !

dtor: B is called !

dtor: A is called !



Inheritance 

 Let’s consider the following case:

 The cod in YELLOW reflects the

execution of the base constructor.

App.cpp

class A
{
public:
    A() { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B: public A
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
int main()
{
    B b;
    return 0;
}

Output

ctor: A is called !

ctor: B is called !

dtor: B is called !

dtor: A is called !

push        ebp  
mov         ebp,esp  
sub         esp,44h  
  
mov         dword ptr [this],ecx  
mov         ecx,dword ptr [this]  
call        A::A (0DB14B5h)  

push        offset string "ctor: B is called !\n" 
call        _printf (0DB14A6h)  
add         esp,4  
mov         eax,dword ptr [this]  

mov         esp,ebp  
pop         ebp  
ret 



Inheritance 

 Let’s consider the following case:

 In case of multiple inheritance, the order of base classes is used when the 

constructor is called (in this case – first class B, then class A and finally class C)

App.cpp

class A
{
public:
    A() { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
    C() { printf("ctor: C is called !\n"); }
    ~C() { printf("dtor: C is called !\n"); }
};
int main() {
    C c;
    return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !



Inheritance 

 Let’s consider the following case:

 If no constructor is defined in class C, but there are at least one constructor 
defined in one of the class from which C is derived from, the compiler will 
create a default constructor that calls the constructor of class B followed by 
the constructor of class A.

App.cpp

class A
{
public:
    A() { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
};
int main() {
    C c;
    return 0;
}

Output

ctor: B is called !

ctor: A is called !

dtor: A is called !

dtor: B is called !



Inheritance 

 Let’s consider the following case:

 This code will fail, as there is no explicit call to A::A(int) constructor.

App.cpp

class A
{
public:
    A(int x) { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
};
int main() {
    C c;
    return 0;
}

error C2280: 'C::C(void)': attempting to reference a deleted function
note: compiler has generated 'C::C' here
note: 'C::C(void)': function was implicitly deleted because a base class 
'A' has either no appropriate default constructor or overload resolution 
was ambiguous
note: see declaration of 'A'



Inheritance 

 Let’s consider the following case:

 The solution is to explicitly call the constructor of A in the member initializer 
list for C::C()

App.cpp

class A
{
public:
    A(int x) { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
    C() : A(100) { printf("ctor: C is called !\n"); }
    ~C() { printf("dtor: C is called !\n"); }
};
int main() {
    C c;
    return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !



Inheritance 

 Let’s consider the following case:

App.cpp

class A
{
public:
    A(int x) { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B
{
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
class C: public B, public A
{
public:
    C() : A(100), B() { printf("ctor: C is called !\n"); }
    ~C() { printf("dtor: C is called !\n"); }
};
int main() {
    C c;
    return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !

Using this method WILL NOT 

CHANGE the order of the 

constructors (in this case, 

even if we call A(100) 

followed by B(), the compiler 

will still call B::B() first and 

then A::A(int)



Inheritance 

 Let’s consider the following case:

App.cpp

class A {
public:
    A(int x) { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
class B {
public:
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
class C {
public:
    C(bool n) { printf("ctor: C is called !\n"); }
    ~C() { printf("dtor: C is called !\n"); }
};
class D: public B, public A
{
    C c;
public:
    D(): c(true), A(100),B() { printf("ctor: D is called !\n"); }
    ~D() { printf("dtor: D is called !\n"); }
};
int main() {
    D d;
    return 0;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

ctor: D is called !

dtor: D is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !



Inheritance 

 Let’s consider the following case:

App.cpp

struct A {
    A(int x) { printf("ctor: A is called !\n"); }
    ~A() { printf("dtor: A is called !\n"); }
};
struct B {
    B() { printf("ctor: B is called !\n"); }
    ~B() { printf("dtor: B is called !\n"); }
};
struct C {
    C(bool n) { printf("ctor: C is called !\n"); }
    ~C() { printf("dtor: C is called !\n"); }
};
struct D {
    D(bool n) { printf("ctor: D is called !\n"); }
    ~D() { printf("dtor: D is called !\n"); }
};
class E: public B, public A {
    C c;
    D d;
    int v1, v2;
public:
    E(): d(true), A(100), c(true), B(), v2(100), v1(20) { printf("ctor: E is called !\n"); }
    ~E() { printf("dtor: E is called !\n"); }
};
void main() {
    E e;
}

Output

ctor: B is called !

ctor: A is called !

ctor: C is called !

ctor: D is called !

-- v1 is initialized

-- v2 is initialized

ctor: E is called !

dtor: E is called !

dtor: D is called !

dtor: C is called !

dtor: A is called !

dtor: B is called !



Inheritance 

 When inheriting from multiple classes, the general rule for calling constructors 
and destructors is as follows:

1. First all of the constructors from the base classes are called in the order of their 
inheriting definition (left-to-right)

2. All of the constructors from data members are called (again in their definition 
order – top-to-bottom)

3. Then the constructor initialization value for data members (basic types, 
references, constants) are used in the order they are defined in that class.

4. Finally, the code of the constructor of the class is called.

 Destructors are called in a reverse way (starting from point 4 to point 1).

Tested with:

 cl.exe: 19.16.27030.1

 Params: /permissive- /GS- /analyze- /W3 /Zc:wchar_t /ZI /Gm- /Od /sdl 
/Fd"Debug\vc141.pdb" /Zc:inline /fp:precise /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D 
"_UNICODE" /D "UNICODE" /errorReport:prompt /WX- /Zc:forScope /RTCu /arch:IA32 /Gd 
/Oy- /MDd /FC /Fa"Debug\" /nologo /Fo"Debug\" /Fp"Debug\TestCpp.pch" 
/diagnostics:classic 



Virtual methods



Virtual methods

❖ This code prints “B” on the screen. From the 

inheritance point of view, both A and B class 

have the same method called Set

❖ In this case it is said that class B hides 

method Set from class A

App.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
class B: public A
{
public:
 int b1, b2;
 void Set() { printf("B"); }
};
void main()
{
 B b;
 b.Set();
}



Virtual methods

❖ In this case, the code will print “A” on the 

screen, because we are using a pointer of type 

A*

❖ However, in reality, “a” pointer points to an 

object of type B → so the expected result 

should be that the product will print “B” and 

not “A”

❖ So … what can we do to change this behavior ?

App.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
class B: public A
{
public:
 int b1, b2;
 void Set() { printf("B"); }
};
void main()
{
 B b;
 A* a = &b; 
 a->Set();
}



Virtual methods

❖ The solution is to use “virtual” keyword in 

from of a method - definition

❖ If we do this, the program will print “B”

❖ In this case, it is said that class B overrides 

method Set from class A

❖ Using virtual keyword makes a method to 

be part of the instance !

 

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
class B: public A
{
public:
 int b1, b2;
 void Set() { printf("B"); }
};
void main()
{
 B b;
 A* a = &b; 
 a->Set();
}



Virtual methods

Virtual methods can be used for:

 Polymorphism

 Memory deallocation (virtual destructor)

 Anti-debugging techniques



Virtual methods

Polymorphism = the ability to access instances of different classes through the 

same interface. In particular to C++, this translates into the ability to 

automatically convert (cast) a pointer to a certain class to its base class.

App-1.cpp

class Figure {
    public: virtual void Draw() { printf("Figure");  }
};
class Circle: public Figure {
    public: void Draw() { printf(“Circle"); }
};
class Square: public Figure {
    public: void Draw() { printf(“Square"); }
};
void main()
{
 Figure *f[2];
 f[0] = new Circle();
 f[1] = new Square();
 for (int index = 0;index<2;index++)
  f[index]->Draw();
}

❖ After the execution this code will 

print on the screen “Circle” and

“Square”. 

❖ If we haven’t uses virtual 

specifier, the program would have  

printed “Figure” twice !



Virtual methods

In practice, in many cases, polymorphism 

is used to create a plugin or an 

add-on for an existing software.

Application

Interface

Function 1

Function 2

Function 3

….

Function n

Plugin 1

Plugin 2

Plugin n

Implements

Function 1

Function 2

….

Function n

Implements

Function 1

Function 2

….

Function n

Implements

Function 1

Function 2

….

Function n



Virtual methods

In particular for C++ language, virtual specifier can be used as a specifier for 

destructors. 

Let’s analyze the following case:

App-1.cpp

class Figure {
    public: virtual void Draw() { printf("Figure");  }
    public: ~Figure() { printf("Delete Figure\n"); }
};
class Circle: public Figure {
    public: void Draw() { printf(“Circle"); }
    public: ~Circle() { printf("Delete Circle"); }
};
class Square: public Figure {
    public: void Draw() { printf(“Square"); }
    public: ~Square() { printf("Delete Square"); }
};
void main() {
 Figure *f[2];
 f[0] = new Circle();
 f[1] = new Square();
 for (int index = 0;index<2;index++)
  delete (f[index]);
}

❖ After this code gets executed, 

the following texts will be 

printed on the screen: 

 “Delete Figure”

 “Delete Figure”.

❖ What would happen if both 

Circle and Square classes 

allocate some memory ?  



Virtual methods

In particular for C++ language, virtual specifier can be used as a specifier for 

destructors.

Let’s analyze the following case:

App-1.cpp

class Figure {
    public: virtual void Draw() { printf("Figure");  }
    public: virtual ~Figure() { printf("Delete Figure\n"); }
};
class Circle: public Figure {
    public: void Draw() { printf(“Circle"); }
    public: ~Circle() { printf("Delete Circle"); }
};
class Square: public Figure {
    public: void Draw() { printf(“Square"); }
    public: ~Square() { printf("Delete Square"); }
};
void main() {
 Figure *f[2];
 f[0] = new Circle();
 f[1] = new Square();
 for (int index = 0;index<2;index++)
  delete (f[index]);
}

❖ The solution is to declare de 

destructor as virtual. As a 

result, the destructor for 

actual class will be called, 

fallowed by the destructor of 

the base class

❖ The following text will be 

printed:

Delete Circle

Delete Figure

Delete Square

Delete Figure



Virtual methods

Let’s analyze the following case:

 Odd is a virtual function – however, class B does not override it (as it uses 
char as the first parameter instead of int). As a result, class B will have 2 
Odd methods and a->Odd will call the one with an int parameter. Upon 
execution, value false (0) is written to the screen.

App-1.cpp

class A
{
public:
    virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
    virtual bool Odd(char x) { return x % 3 == 0; }
};
int main() {
    A* a = new B();
    printf("%d\n", a->Odd(3));
    return 0;
}



Virtual methods

Let’s analyze the following case:

 Odd is a virtual function – however, class B does not override it (as it uses 
char as the first parameter instead of int). As a result, class B will have 2 
Odd methods and a->Odd will call the one with an int parameter. Upon 
execution, value false (0) is written to the screen.

App-1.cpp

class A
{
public:
    virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
    virtual bool Odd(char x) { return x % 3 == 0; }
};
int main() {
    A* a = new B();
    printf("%d\n", a->Odd(3));
    return 0;
}

To override a virtual function, one must use 

the SAME method signature !



Virtual methods

Let’s analyze the following case:

 Assuming that , in reality, the intent was to override Odd method, then one 
way of making sure that this kind of mistakes will not happen is to use the 
override keyword (added with C++11 standard). As a result, this code will not 
compile as it is expected that method Odd to have the same signature !!!

App-1.cpp

class A
{
public:
    virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
    virtual bool Odd(char x)  override  { return x % 3 == 0; }
};
int main() {
    A* a = new B();
    printf("%d\n", a->Odd(3));
    return 0;
}

error C3668: 'A::Odd': method with override specifier 

'override' did not override any base class methods



Virtual methods

Let’s analyze the following case:

 Now the code compiles and prints “1” (true) on the screen.

App-1.cpp

class A
{
public:
    virtual bool Odd(int x) { return x % 2 == 0; }
};
class B : public A
{
public:
    virtual bool Odd(int x)  override  { return x % 3 == 0; }
};
int main() {
    A* a = new B();
    printf("%d\n", a->Odd(3));
    return 0;
}



Virtual methods

Let’s consider the following code:

 This program runs and prints value 1 (True) → even if 3 is not an odd number.

 The reason why this could happen is that method Odd was overridden in class C 
(keep in mind that we have used struct in this example to show that the behavior 
is identical to the one from class).

 What can we do if we want to make sure that Odd method from class B can not be 
overridden ?

App-1.cpp

struct A {
    virtual bool Odd(int x) = 0;
};
struct B : public A {
    virtual bool Odd(int x) { return x % 2 == 0; }
};
struct C : public B {
    virtual bool Odd(int x) { return x % 3 == 0; }
};
int main() {
    A* a = new C();
    printf("%d\n", a->Odd(3));
    return 0;
}



Virtual methods

Let’s consider the following code:

 The solution is to use the specifier final after the declaration of a virtual 

function. This tells the compiler that other classes that inherit current class 

can not override that method.

App-1.cpp

struct A {
    virtual bool Odd(int x) = 0;
};
struct B : public A {

    virtual bool Odd(int x)  final  { return x % 2 == 0; }
};
struct C : public B {
    virtual bool Odd(int x) { return x % 3 == 0; }
};
int main() {
    A* a = new C();
    printf("%d\n", a->Odd(3));
    return 0;
}

error C3248: 'B::Odd': function declared as 'final' 

cannot be overridden by 'C::Odd'



Virtual methods

Let’s consider the following code:

 It is possible to use both override and final specifiers when declaring a 
method.

 In this case their meaning is:

 override ➔ The purpose of this method is to override the existing method from 
the base class (in this case, it overrides A::Odd)

 final ➔ Other classes that might inherit class B can not override this method.

App-1.cpp

struct A {
    virtual bool Odd(int x) = 0;
};
struct B : public A {

    virtual bool Odd(int x)  override final  { return x % 2 == 0; }
};
struct C : public B {
};
int main() {
    A* a = new C();
    printf("%d\n", a->Odd(3));
    return 0;
}



Virtual methods

Let’s consider the following code:

 final specifier can also be used directly in the class/struct definition. In this 

case , it’s meaning is that inheritance from class B is NOT possible.

 This code will not compile !

App-1.cpp

struct A {
    virtual bool Odd(int x) = 0;
};
struct B  final  : public A 
{
    virtual bool Odd(int x)  override { return x % 2 == 0; }
};
struct C : public B {
};
int main() {
    A* a = new C();
    printf("%d\n", a->Odd(3));
    return 0;
}

error C3246: 'C': cannot inherit from 'B' as it has been 

declared as 'final'



How virtual methods 

are modeled by C++ 

compiler



How virtual methods are modeled by 

C++ compiler

❖ Let’s analyze the following two programs. Their only difference is the usage 

of virtual in case of APP-2.

❖ When executed, APP-1 will print “12” and App-2 will print “16” (for x86 

architecture). If we run the same App-2 on x64 it will print “24” 

❖ Why ?

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 printf("%d",sizeof(A)); 
}

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 printf("%d",sizeof(A)); 
}
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory



How virtual methods are modeled by 
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()

…

main()
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()

…

main()

…

<Stack>

…
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-1.cpp

class A
{
public:
 int a1, a2, a3;
 void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

…

…

➔ ESP/RSP
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

a.vfptr

…

➔ ESP/RSP
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

a.vfptr

…

➔ ESP/RSP

classA virtual 

methods

ptr to A::Set

RTTI
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❖ Using the virtual keyword will force the compiler to modify the structure of 

any class by adding another data member (a pointer to a list of pointers to a 

function). This pointer is called vfptr and if added is the first pointer in the 

class.

App-2.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() { printf("A"); }
};
void main()
{
 A a; 
}

Memory

…

A::Set()

…

main()

…

<Stack>

…

Stack

…

a.a3

a.a2

a.a1

a.vfptr

…

➔ ESP/RSP

classA virtual 

methods

ptr to A::Set

RTTI
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❖ Whenever a virtual method is added, the compiler needs to be certain that 

vfptr pointer is set correctly. As such, any constructor is modified to include 

the code that sets up the vfptr pointer. If no constructor is present, the 

default one will be created automatically.

❖ In this case, there no default constructor defined and no need for the 

compiler to provide one automatically (e.g. virtual methods, const or 

reference data members, etc).

App.cpp

class A
{
public:
 int x, y;
 int Calcul() { return x+y; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm

A a;
a.x = 1;

mov         dword ptr [ebp-12],1  
a.y = 2;

mov         dword ptr [ebp-8],2 
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C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that 

vfptr pointer is set correctly. As such, any constructor is modified to include 

the code that sets up the vfptr pointer. If no constructor is present, the 

default one will be created automatically.

❖ In this case, there is a constructor that will be called when “a” is created.

App.cpp

class A
{
public:
 int x, y;
 int Calcul() { return x+y; }
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm

A a;
 lea         ecx,[ebp-16]  
 call        A::A

a.x = 1;
mov         dword ptr [ebp-16],1  

a.y = 2;
mov         dword ptr [ebp-12],2 
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❖ Whenever a virtual method is added, the compiler needs to make certain that 
vfptr pointer is set correctly. As such, any constructor is modified to include 
the code that sets up the vfptr pointer. If no constructor is present, the 
default one will be created automatically

❖ In this case, there is a default constructor and the code from the default 
constructor will be called when object “a” is created.

App.cpp

class A
{
public:
 int x, y;
 int Calcul() { return x+y; }
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm (A::A)

push ebp
mov         ebp,esp
mov         dword ptr [ebp-8],ecx // EBP-8=this
mov         eax,dword ptr [ebp-8]
mov         dword ptr [eax+4],0  // this->y = 0
mov         ecx,dword ptr [ebp-8]    
mov         dword ptr [ecx],0 // this->x = 0
mov         eax,dword ptr [ebp-8]   
pop         ebp
ret



How virtual methods are modeled by 

C++ compiler

❖ Whenever a virtual method is added, the compiler needs to make certain that 
vfptr pointer is set correctly. As such, any constructor is modified to include 
the code that sets up the vfptr pointer. If no constructor is present, the 
default one will be created automatically

❖ In this case, even if no constructor is defined, the compiler will automatically 
create one to initialize the vfptr pointer (this is required because Calcul is a 
virtual method).

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm

A a;
 lea         ecx,[ebp-20]  
 call        A::A

a.x = 1;
mov         dword ptr [ebp-16],1  

a.y = 2;
mov         dword ptr [ebp-12],2 
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❖ Whenever a virtual method is added, the compiler needs to make certain that 

vfptr pointer is set correctly. As such, any constructor is modified to include 

the code that sets up the vfptr pointer. If no constructor is present, the 

default one will be created automatically

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm

A a;
 lea         ecx,[ebp-20]  
 call        A::A

a.x = 1;
mov         dword ptr [ebp-16],1  

a.y = 2;
mov         dword ptr [ebp-12],2 

Disasm

push ebp
mov         ebp,esp
mov         dword ptr [ebp-8],ecx
mov         eax,dword ptr [ebp-8]  
mov         dword ptr [eax], A-virtual-fnc-list
mov         eax,dword ptr [ebp-8]  
mov         esp,ebp
pop         ebp
ret 

Memory address where a list of 

pointers to virtual functions is 

(in this case only one method: 

Calcul)
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❖ Whenever a virtual method is added, the compiler needs to make certain that 
vfptr pointer is set correctly. As such, any constructor is modified to include 
the code that sets up the vfptr pointer. If no constructor is present, the 
default one will be created automatically

❖ If a constructor exists, it will be modified (in a similar manner to the change 
that is done for const/references data members).

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm

A a;
 lea         ecx,[ebp-20]  
 call        A::A

a.x = 1;
mov         dword ptr [ebp-16],1  

a.y = 2;
mov         dword ptr [ebp-12],2 
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❖ Whenever a virtual method is added, the compiler needs to make certain that 
vfptr pointer is set correctly. As such, any constructor is modified to include 
the code that sets up the vfptr pointer. If no constructor is present, the 
default one will be created automatically

❖ The code colored in blue is the 
code added by the compiler to 
initialize the vfptr pointer.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
}

Disasm A::A

push ebp
mov         ebp,esp
mov         dword ptr [ebp-8],ecx
mov         eax,dword ptr [ebp-8]  
mov         dword ptr [eax],addr virt fnc
mov         eax,dword ptr [ebp-8]  
mov         dword ptr [eax+8],0  
mov         ecx,dword ptr [ebp-8]  
mov         dword ptr [ecx+4],0  
mov         eax,dword ptr [ebp-8]  
mov         esp,ebp
pop         ebp
ret
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❖ The code added by the compiler to initialize the vfptr pointer will be added 

for every defined constructor.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
 A(const A& a) { x = a.x; y = a.y; }
};
void main()
{
 A a;
 A a2 = a; 
}

In this case the code for vfptr initialization will be 

added for both the default constructor and the 

copy constructor.
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❖ However, in case of the assignment operator the compiler will not add any 

special code to initialize the vfptr pointer.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
 A&  operator = (A &a) { x = a.x; y = a.y; return *this;}
};
void main()
{
 A a;
 A a2; 
      a2 = a; 
}
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❖ A virtual method is called using its reference from the vfptr table only if the 

object is a pointer.

❖ In this case, even if Calcul method is virtual as it called directly with an 

object , the compiler will not generate code that will find out its address 

from the vfptr table (it will use the method Calcul exact address).

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
 a.Calcul();
}

Disasm

A a;
lea         ecx,[a]  
call        A::A   
 a.x = 1;
mov         dword ptr [ebp-10h],1  
 a.y = 2;
mov         dword ptr [ebp-0Ch],2  
 a.Calcul();
lea         ecx,[a]  
call        A::Calcul 
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❖ A virtual method is called using its reference from the vfptr table only if the 

object is a pointer.

❖ In this case vfptr is used to 

find out Calcul method address.

App.cpp

class A
{
public:
 int x, y;
 virtual int Calcul() {return x+y;}
 A() { x = y = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Disasm

A a;
lea         ecx,[a]  
call        A::A   
 a.x = 1;
mov         dword ptr [ebp-10h],1  
 a.y = 2;
mov         dword ptr [ebp-0Ch],2  
 A* a2 = &a;
lea         eax,[a]  
mov         dword ptr [a2],eax  
 a2->Calcul();
mov         eax,dword ptr [a2]  
mov         edx,dword ptr [eax]  
mov         ecx,dword ptr [a2]  
mov         eax,dword ptr [edx]  
call        eax

EAX = address of a2
EDX = address of VFPTR
EAX = address of first 

function from VFPTR
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
  
}; 
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
 
 int x;
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
 int A_Calcul() { return 0; }
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
 int A_Calcul() { return 0; }
 
  
  
 

A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
 int A_Calcul() { return 0; }
 A() { 
  
  x = 0; 
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
 int A_Calcul() { return 0; }
 A() { 
  vfPtr = &Global_A_vfPtr;
  x = 0; 
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
 int A_Calcul() { return 0; }
 A() { 
  vfPtr = &Global_A_vfPtr;
  x = 0; 
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;

}
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App.cpp

class A
{
public:
 int x;
 virtual int Calcul() {return 0;}
 A() { x = 0; }
};
void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->Calcul();
}

Pseudo C/C++ Code

struct A_VirtualFunctions {
 int (*Calcul) (); 
}; 
class A {
public:
      A_VirtualFunctions *vfPtr; 
 int x;
 int A_Calcul() { return 0; }
 A() { 
  vfPtr = &Global_A_vfPtr;
  x = 0; 
 }
};
A_VirtualFunctions Global_A_vfPtr;
Global_A_vfPtr.Calcul = &A::A_Calcul;

void main()
{
 A a;
 a.x = 1;
 a.y = 2; 
      A* a2 = &a;
 a2->vfPtr->Calcul();
}
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❖ Keep in mind the vfptr is just a pointer. As such, it can be changed during execution

App.cpp

class A
{
public:
 int x;
 virtual void Print() { printf("A"); }
};
class B
{
public:
 int x;
 virtual void Print() { printf(“B"); }
};
void main()
{
 A a;
 B b;
 A* a2 = &a;
 a.Print();
 a2->Print();
}

❖ This code will print “AA” on the 

screen. First time when method

Print is called directly 

(“a.Print()”), second time when 

method Print is called using the 

vfptr pointer (“a2->Print()”)
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❖ Keep in mind the vfptr is just a pointer. As such, it can be changed during execution

App.cpp

class A
{
public:
 int x;
 virtual void Print() { printf("A"); }
};
class B
{
public:
 int x;
 virtual void Print() { printf(“B"); }
};
void main()
{
 A a;
 B b;
 memcpy(&a, &b, sizeof(void*));
 A* a2 = &a;
 a.Print();
 a2->Print();
}

❖ This code will however print “AB”. 

Using memcpy function allow us to 

overwrite the actual vfptr-ul of 

object “a” with the one from 

object “b”. As method Print has 

the same signature in both classes 

(A and B) the result will be “AB”
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❖ Keep in mind the vfptr is just a pointer. As such, it can be changed during execution

App.cpp

class A
{
public:
 int x;
 virtual void Print() { printf("A"); }
};
class B
{
public:
 int x;
 virtual void Print() { printf(“B"); }
};
void main()
{
 A a;
 B b;
 memcpy(&a, &b, sizeof(void*));
 A* a2 = &a;

A a3 = (*a2);
A *a4 = &a3;
a4->Print();

}

❖ Every constructor called will set 

the vfptr to its correct value. In 

this case , “A a3=(*a2)” will call 

the copy constructor for class A 

and will set the vfptr for local 

variable a3 correctly.

❖ As a result, this code will print “A” 

on the screen , even if “a2” has 

the vfptr of “b”
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❖ A virtual function can be overwritten in the derived class.

App.cpp

class A
{
public:
 int x, y;
 virtual int Suma() { return x + y; }
 virtual int Diferenta() { return x - y; }
 virtual int Produs() { return x*y; }
};
class B : public A
{
public:
 int Suma() { return 1; }
};

void main()
{
 B b;
 b.x = 1;
 b.y = 2;
 A* a;
 a = &b;
 int x = a->Suma();
}

❖ In this case, “x” will be 1 as “a” 

is in fact an object of type “b” 

that has overwrite method 

“Suma” 

❖ For the rest of the methods 

(Diferenta and Produs) the 

behavior will be identical to the 

one from the base class (A).
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VFTable for class A

Address of A::Suma

Address of A::Diferenta

Address of A::Produs

RTTI

VFTable for class B

Address of B::Suma

Address of A::Diferenta

Address of A::Produs

RTTI

Instance of type A

Address of VFTable A

x

y

Instance of type B

Address of VFTable B

A::x

A::y
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❖ A derived class can also add other (new) virtual methods .

App.cpp

class A
{
public:
 int x, y;
 virtual int Suma() { return x + y; }
 virtual int Diferenta() { return x - y; }
 virtual int Produs() { return x*y; }
};
class B : public A
{
public:
 int Suma() { return 1; }
 virtual int Modul() { return 0; }
};

void main()
{
}

❖ In this case, class B also have a 

new virtual method called 

“Module”) that is not present on 

class A. 

❖ This means that any class that will 

be derived from B will have this 

method as well.
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VFTable for class A

Address of A::Suma

Address of A::Diferenta

Address of A::Produs

RTTI

VFTable for class B

Address of B::Suma

Address of A::Diferenta

Address of A::Produs

Address of B::Modul

RTTI

Instance of type A

Address of VFTable A

x

y

Instance of type B

Address of VFTable B

A::x

A::y
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❖ When a class is derived from two(or more) classes that have virtual functions, 

the compiler creates multiple vfptr pointers (one for each base class).

App.cpp

class A {
public:
 int a1;
 virtual int Suma() { return 1; }
 virtual int Diferenta() { return 2; }
};
class B {
public:
 int b1,b2;
 virtual int Inmultire() { return 3; }
 virtual int Impartire() { return 4; }
};
class C : public A, public B {
public:
 int x, y;
};
void main() {
 C c;
 C *cptr = &c;
 cptr->Impartire();
 cptr->Diferenta();
}

Disasm

cptr->Impartire();
 mov         ecx,dword ptr [cptr]  
 add         ecx,8 //this for type B 
 mov         eax,dword ptr [cptr]  
 mov         edx,dword ptr [eax+8]  
 mov         eax,dword ptr [edx+4]  
 call        eax 
 cptr->Diferenta();
 mov         eax,dword ptr [cptr]  
 mov         edx,dword ptr [eax]  
 mov         ecx,dword ptr [cptr]  
 mov         eax,dword ptr [edx+4]  
 call        eax  



How virtual methods are modeled by 

C++ compiler

❖ When a class is derived from two(or more) classes that have virtual functions, 

the compiler creates multiple vfptr pointers (one for each base class).

App.cpp

class A {
public:
 int a1;
 virtual int Suma() { return 1; }
 virtual int Diferenta() { return 2; }
};
class B {
public:
 int b1,b2;
 virtual int Inmultire() { return 3; }
 virtual int Impartire() { return 4; }
};
class C : public A, public B {
public:
 int x, y;
};
void main() {
 C c;
 C *cptr = &c;
 cptr->Impartire();
 cptr->Diferenta();
}

Offset Field

+ 0 A::vfptr

+ 4 A::a1

+ 8 B::vfptr

+ 12 B::b1

+ 16 B::b2

+ 20 C::x

+ 24 C::y

VFTable for class A

Address of A::Suma

Address of A::Diferenta

RTTI

VFTable for class B

Address of B::Inmultire

Address of B::Impartire

RTTI



How virtual methods are modeled by 

C++ compiler

❖ The same memory alignment is used for classes derived out of class C (e.g. in 

this example, class D)

App.cpp

class A {
public:
 int a1;
 virtual int Suma() { return 1; }
 virtual int Diferenta() { return 2; }
};
class B {
public:
 int b1,b2;
 virtual int Inmultire() { return 3; }
 virtual int Impartire() { return 4; }
};
class C : public A, public B {
public:
 int x, y;
};
class D : public C {
public:
 int d1;
};

Offset Field

+ 0 A::vfptr

+ 4 A::a1

+ 8 B::vfptr

+ 12 B::b1

+ 16 B::b2

+ 20 C::x

+ 24 C::y

+ 28 D::d1

VFTable for class A

Address of A::Suma

Address of A::Diferenta

RTTI

VFTable for class B

Address of B::Inmultire

Address of B::Impartire

RTTI



Covariance



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual A* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
}

❖ This code will not compile. 

However, in reality “b->clone()” 

returns an object of type B so it 

should work.

error C2440: '=': cannot convert from 'A *' to 'B *’
note: Cast from base to derived requires dynamic_cast 
or static_cas



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual A* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
}

❖ We have two solutions for this 

problem:



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual A* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = (B*) b->clone();
}

❖ We have two solutions for this 

problem:

1. Use an explicit cast and convert 

the pointer from A* to B*



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual B* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
}

❖ We have two solutions for this 

problem:

1. Use an explicit cast and convert 

the pointer from A* to B*

2. Use covariance. This means that 

we can modify the return type of 

the method clone in class B to 

return a B* pointer instead of an 

A* pointer.



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual B* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
 A *a = (A*)b;
 ptrB = (B*)a->clone();
}

❖ We have two solutions for this 

problem:

1. Use an explicit cast and convert 

the pointer from A* to B*

2. Use covariance. This means that 

we can modify the return type of 

the method clone in class B to 

return a B* pointer instead of an 

A* pointer.

Covariance is related to the pointer 

type. In this case, even if the 

compiler calls “B::clone”, the 

expected value is A* (specific to a A* 

pointer that is “a” → “A::clone”)



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual B* clone() { return new B(); }
};
void main()
{
 B *b = new B();
 B *ptrB;
 ptrB = b->clone();
 A *a = (A*)b;
 ptrB = a->clone();
}

❖ We have two solutions for this 

problem:

1. Use an explicit cast and convert 

the pointer from A* to B*

2. Use covariance. This means that 

we can modify the return type of 

the method clone in class B to 

return a B* pointer instead of an 

A* pointer.

That is why this code will NOT 

compile, as the result for a->clone is 

A* and not B*. During execution, 

“B::clone” will be call, nevertheless.



Covariance

❖ Let’s analyze the following code:

App.cpp

class A
{
public:
 int a1, a2;
 virtual A* clone() { return new A(); }
};
class B : public A
{
public:
 int b1, b2;
 virtual int* clone() { return new int(); }
};
void main()
{
 …
}

❖ This code will not compile. The 

return type for virtual functions 

can be changed, but only to a type 

that is derived from the return 

type of the virtual method 

described in the base class. In this 

case, int* is not derived from A*

error C2555: 'B::clone': overriding 

virtual function return type differs 

and is not covariant from 

'A::clone'



Abstract classes 

(Interfaces)



Abstract classes (Interfaces)

 In C++ we can define a virtual method without a body (it is called a pure 

virtual method and it is defined by adding “=0” at the end of its definition).

 If a class contains a pure virtual method, that class is an abstract class (a 

class that can not be instantiated). In other languages this concept is similar 

to the concept of an interface.

 Having a pure virtual method forces the one that implements a derived class 

to implement that method as well if he/she would like to create an instance 

from the newly created class.

❖ The code will not compile as “A” is an 

abstract class.

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() = 0;
};
void main()
{
 A a;
}

error C2259: 'A': cannot instantiate abstract class
note: due to following members:
note: 'void A::Set(void)': is abstract
note: see declaration of 'A::Set'



Abstract classes (Interfaces)

 In C++ we can define a virtual method without a body (it is called a pure 

virtual method and it is defined by adding “=0” at the end of its definition).

❖ This code will compile because class B has 

an implementation for method Set

❖ In order to be able to create an instance of 

a class, all of its pure virtual methods 

(defined in that class or obtained via 

inheritance) MUST be implemented !

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() = 0;
};
class B: A
{
public:
 int a1, a2, a3;
 void Set(){… };
}
void main()
{
 B b;
}



Abstract classes (Interfaces)

 In C++ we can define a virtual method without a body (it is called a pure 

virtual method and it is defined by adding “=0” at the end of its definition).

❖ This code will however compile. It is 

possible (and recommended whenever 

working with polymorphism) to create a 

pointer towards an abstract class (in this 

case an A* pointer).

App.cpp

class A
{
public:
 int a1, a2, a3;
 virtual void Set() = 0;
};
class B: A
{
public:
 int a1, a2, a3;
 void Set(){… };
}
void main()
{
 B b;
      A* a;
}



Abstract classes (Interfaces)

 Other languages (such as Java or C#) have a similar concept called interface 

(primarily used in these languages to avoid multiple inheritance).

 interfaces are however different from an abstract class. An interface CAN 

NOT have data members, or methods that are not pure virtual. An abstract 

class is a class that has at least one pure virtual method. An abstract class can 

have methods, constructors, destructor or data members.

 In C++ it is often easier to use struct instead of class to describe in interface 

due to the fact that the default access modifier is public 

 Cl.exe (Microsoft) has a keyword (__interface) that works like an interface 

(allows you to create on). However, this is not part of the standard.



Memory alignment 

in case of 

inheritance



Memory alignment in case of inheritance

class A
{
public:
    int a1,a2,a3; 
};

sizeof(A) = 12

class B: public A
{
public:
    int b1,b2
};

sizeof(B) = 20

Offset Field C1 C2

+ 0 A::a1

A
B

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2



Memory alignment in case of inheritance

class A
{
public:
    int a1,a2,a3; 
};

sizeof(A) = 12

class B: public A
{
public:
    int b1,b2
};

sizeof(B) = 20

Offset Field C1 C2

+ 0 A::a1

A
B

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2



Memory alignment in case of inheritance

class A
{
public:
    int a1,a2,a3; 
};

sizeof(A) = 12

class B: public A
{
public:
    int b1,b2
};

sizeof(B) = 20

Offset Field C1 C2

+ 0 A::a1

A
B

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2



Memory alignment in case of inheritance

class A
{
public:
    int a1,a2,a3; 
};

sizeof(A) = 12

class B:
{
public:
    int b1,b2;
};

sizeof(B) = 8

Offset Field C1 C2 C3

+ 0 A::a1

A
B

C

+ 4 A::a2

+ 8 A::a3

+ 12 B::b1

+ 16 B::b2

+20 C::c1

+24 C::c2

class C:public A,B
{
public:
    int c1,c2;
};

sizeof(C) = 28



Memory alignment in case of inheritance

class A
{
public:
    int a1,a2,a3; 
};

sizeof(A) = 12

class B:
{
public:
    int b1,b2;
};

sizeof(B) = 8 Offset Field C1 C2 C3

+ 0 B::b1

B

A
C

+ 4 B::b2

+ 8 A::a1

+ 12 A::a2

+ 16 A::a3

+20 C::c1

+24 C::c2

class C:public B,A
{
public:
    int c1,c2;
};

sizeof(C) = 28

When building a derived class in memory, 

if the inheritance is does not contain the 

virtual specifier, will be done using the 

left-to-right rule for any base classes.



Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this 

case the fields from class A are

copied twice in class C. Offset Field C1 C2 C3

+0 A::a1

A

C

+4 A::a2

+8 A::a3

+12 B::A::a1

B::A

B
+16 B::A::a2

+20 B::A::a3

+24 B::b1

+28 B::b2

+32 C::c1

+36 C::c2

warning C4584: 'C' : base-class 'A' is already a base-

class of 'B’.

App.cpp

class A
{
public:
 int a1, a2, a3;
};
class B: public A
{
public:
 int b1, b2;
};
class C : public A, public B
{
public:
 int c1, c2;
};
void main()
{
}



Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this 

case the fields from class A are copied twice in class C.

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public A {
public:
 int b1, b2;
};
class C : public A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
}

This is an ambiguous case. “c.a1 = 10” can refer to 

the member “a1” from the direct inheritance of 

class A, or the member “a1” from the direct 

inheritance of class B that in terms inherits class A.

This code will NOT compile !!!

warning C4584: 'C': base-class 'A' is already a base-class of 'B'
note: see declaration of 'A'
note: see declaration of 'B’
-----------------------------------------------------------------------
error C2385: ambiguous access of 'a1'
note: could be the 'a1' in base 'A'
note: or could be the 'a1' in base 'A



Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this 

case the fields from class A are copied twice in class C.

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public A {
public:
 int b1, b2;
};
class C : public A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.A::a1 = 10;
 c.B::A::a1 = 20;
}

❖ The solution is to describe any field/data 
member using its full scope. For example:

➢ “c.A::a1” means data member “a1” from 
the direct inheritance of “A” in class “C”

➢ “c.B::A::a1” means data member “a1” 
from the inheritance of “A” in class “B” 
that is directly inherit by class “C”

❖ What can we do if we want to have only one 
copy of the fields from class “A” in our 
object ?

❖ This problem is also known as the “Diamond 
Problem”



Memory alignment in case of inheritance

❖ Multiple inheritance can create ambiguous situations. For example, in this 

case the fields from class A are copied twice in class C.

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public virtual A {
public:
 int b1, b2;
};
class C : public virtual A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
 c.a2 = 20;
}

❖ One solution to this problem is to use the 

virtual specifier when deriving from a 

class. In this case, class “A” is inherited 

virtually (meaning that its fields must be 

added once).

❖ For this code to work, both “C” and “B” 

class need to inherit class “A” using 

virtual keyword.



Memory alignment in case of inheritance

❖ Just like in the case of virtual methods, if no constructor is present, one will 

be created by the compiler. However, this constructor is a little bit different 

than the others (as it has one parameter of type bool).

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public virtual A {
public:
 int b1, b2;
};
class C : public virtual A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
 c.b1 = 20;
}

Disasm 

C c;
push 1  
lea         ecx,[c]  
call C::C

c.a1 = 10;
mov         eax,dword ptr [c]  
mov         ecx,dword ptr [eax+4]  
mov         dword ptr [c+ecx],10

c.b1 = 20;
mov         dword ptr [c+20],20

TRUE



Disasm C::C

push ebp
mov         ebp,esp
mov         dword ptr [this],ecx
cmp dword ptr [ebp+8],0
je DONT_SET_VAR_PTR
mov         eax,dword ptr [this]  
mov         dword ptr [eax],addr_index

DONT_SET_VAR_PTR:
push 0  
mov         ecx,dword ptr [this]  
call B::B  
mov         eax,dword ptr [this]   
mov         esp,ebp
pop         ebp
ret         4 

Memory alignment in case of inheritance

❖ The first parameter, tells the constructor if a special table with indexes needs 

to be created or not !

App.cpp

class A {
public:
 int a1, a2, a3;
};
class B: public virtual A {
public:
 int b1, b2;
};
class C : public virtual A, public B {
public:
 int c1, c2;
};
void main()
{
 C c;
 c.a1 = 10;
 c.b1 = 20;
}



Memory alignment in case of inheritance

❖ Once the constructor is called, an object that has virtual inheritance will look 

as follows:

Offset Field C1 C2

+ 0 Ptr Class C Variable Offsets Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20



Memory alignment in case of inheritance

❖ Accessing a data member / field that benefits from the virtual inheritance, is 

done in 3 steps (not in one) in the following way:

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm 

c.a1 = 10;
mov         eax,dword ptr [c]  
mov         ecx,dword ptr [eax+4]  
mov         dword ptr [c+ecx],10



Memory alignment in case of inheritance

❖ In the first step, EAX register gets the pointer to the table where offsets of 

data member/fields from A class are stored

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm 

c.a1 = 10;
mov         eax,dword ptr [c]  
mov         ecx,dword ptr [eax+4]  
mov         dword ptr [c+ecx],10

Offset Field C1 C2

+ 0 Ptr Class C Variable Offsets Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3



Memory alignment in case of inheritance

❖ Second step - ECX gets the value from the second index in that table (+4), 

more exactly value 20 (that reflects the offset of "A" from the beginning of "C")

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm 

c.a1 = 10;
mov         eax,dword ptr [c]  
mov         ecx,dword ptr [eax+4]  
mov         dword ptr [c+ecx],10

Offset Field C1 C2

+ 0 Ptr Class C Variable Offssets Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20



Memory alignment in case of inheritance

❖ Last step, we use “ECX” register as an offset to access A::a1 from the 

beginning of local variable “c”.

App.cpp

class A { … }
class B: public virtual A { … }
class C : public virtual A, public B { … }
void main()
{
 C c;
 c.a1 = 10;
}

Disasm 

c.a1 = 10;
mov         eax,dword ptr [c]  
mov         ecx,dword ptr [eax+4]  
mov         dword ptr [c+ecx],10

Offset Field C1 C2

+ 0 Ptr Class C Variable Offssts Table

+ 4 B::b1

B
C

+ 8 B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1

A+ 24 A::a2

+ 28 A::a3

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20



Memory alignment in case of inheritance

❖ Fields/Data members that are obtained via virtual inheritance are usually 

added at the end of the class alignment.

App.cpp

class A 
{ … }
class B: public virtual A 
{ … }
class C : public virtual A, 
          public B 
{ … }

Offset Field

+ 0 ptr class C virtual members offsets

+ 4 C::B::b1

+ 8 C::B::b2

+ 12 C::c1

+ 16 C::c2

+ 20 A::a1 (virtual A from C)

+ 24 A::a2 (virtual A from C)

+ 28 A::a3 (virtual A from C)

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 20



Memory alignment in case of inheritance

❖ If we use virtual inheritance when deriving “C” from “B” (in addition to the usage 

of virtual inheritance for class “A”) we will obtain the following alignment:

App.cpp

class A 
{ … }
class B: public virtual A 
{ … }
class C : public virtual A, 
          public virtual B 
{ … }

Offset Field

+ 0 ptr class C virtual members offsets

+ 4 C::c1

+ 8 C::c2

+ 12 A::a1 (virtual A from C)

+ 16 A::a2 (virtual A from C)

+ 20 A::a3 (virtual A from C)

+ 24 ptr class B virtual members offsets

+ 28 B::b1 (virtual B from C)

+ 32 B::b2 (virtual B from C)

Offset Offset relative to C

+ 0 0

+ 4 Virtual A 12

+ 8 Virtual B 24



Memory alignment in case of inheritance

❖ In case of the index table for class "B", the offset "-12" refers to the position of "A" class (also obtain 

via virtual inheritance) relative to B with respect to C class (24 (offset of B) - 12 = 12 (offset of A))

App.cpp

class A 
{ … }
class B: public virtual A 
{ … }
class C : public virtual A, 
          public virtual B 
{ … }

Offset Field

+ 0 ptr class C virtual members offsets

+ 4 C::c1

+ 8 C::c2

+ 12 A::a1 (virtual A from C)

+ 16 A::a2 (virtual A from C)

+ 20 A::a3 (virtual A from C)

+ 24 ptr class B virtual members offsets

+ 28 B::b1 (virtual B from C)

+ 32 B::b2 (virtual B from C)

Offset Offset relative la B

+ 0 0

+ 4 Virtual A -12



Memory alignment in case of inheritance

❖ If we make only the inheritance of B from C to be virtual, the memory 

alignment is as follows:

App.cpp

class A 
{ … }
class B: public A 
{ … }
class C : public A, 
          public virtual B 
{ … }

Offset Field

+ 0 A::a1

+ 4 A::a1

+ 8 A::a3

+ 12 ptr class C virtual members offsets

+ 16 C::c1

+ 20 C::c2

+ 24 B::A::a1

+ 28 B::A::a2

+ 32 B::A::a3

+ 36 B::b1

+ 40 B::b2

Offset Offset relative la C

+ 0 -12

+ 4 Virtual B 12



Memory alignment in case of inheritance

❖ If we make only the inheritance of B from C to be virtual, the memory 

alignment is as follows:

App.cpp

class A 
{ … }
class B: public A 
{ … }
class C : public A, 
          public virtual B 
{ … }

Offset Field

+ 0 A::a1

+ 4 A::a1

+ 8 A::a3

+ 12 ptr class C virtual members offsets

+ 16 C::c1

+ 20 C::c2

+ 24 B::A::a1

+ 28 B::A::a2

+ 32 B::A::a3

+ 36 B::b1

+ 40 B::b2

Offset Offset relative la C

+ 0 -12

+ 4 Virtual B 12

First index (+0 offset, value -12) represents the 

offset of object C relative to the table of indexes). 

It is usually 0 (as this table is the first entry), 

however in this case it is a negative value.



Memory alignment in case of inheritance

❖ If we make only the inheritance of B from C to be virtual, the memory 

alignment is as follows:

App.cpp

class A 
{ … }
class B: public A 
{ … }
class C : public A, 
          public virtual B 
{ … }

Offset Field

+ 0 A::a1

+ 4 A::a1

+ 8 A::a3

+ 12 ptr class C virtual members offsets

+ 16 C::c1

+ 20 C::c2

+ 24 B::A::a1

+ 28 B::A::a2

+ 32 B::A::a3

+ 36 B::b1

+ 40 B::b2

Offset Offset relative la C

+ 0 -12

+ 4 Virtual B 12

The second offset (+4, value +12) reflects the 

position of B relative to the offset of the index 

table (12+12=24).



Q & A
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