
OOP
Gavrilut Dragos

Course 9

rev 1

Summary

 Constant expressions

 For each (Range-based for loop)

 Type inference

 Structured binding (destructuring)

 Static Polymorphism (CRTP)

 Plain Old Data (POD)

Constant

expressions

Constant expressions

 Constant expressions are pieces of code that the compiler can optimize by

replacing them with their value that is computed before compilation phase

 Constant expression can be easily deducted for variables (especially “const”

variables). However, in case of functions this is more difficult.

 Let’s analyze the following code:

App.cpp

void main()
{

int x = 10;
int y = x;

}

Constant expressions

 Constant expressions are pieces of code that the compiler can optimize by

replacing them with their value that is computed before compilation phase

 Constant expression can be easily deducted for variables (especially “const”

variables). However, in case of functions this is more difficult.

 Let’s analyze the following code:

 When creating “y” the compiler copies

the value from “x”

App.cpp

void main()
{

int x = 10;
int y = x;

}

int x = 10;

mov dword ptr [x],0Ah

 int y = x;

mov eax,dword ptr [x]

mov dword ptr [y],eax

Constant expressions

 Constant expressions are pieces of code that the compiler can optimize by

replacing them with their value that is computed before compilation phase

 Constant expression can be easily deducted for variables (especially “const”

variables). However, in case of functions this is more difficult.

 Let’s analyze the following code:

 However, adding a “const” declaration in front of “x” makes the compiler

change the way if creates “y” (now the compiler will directly assign the value

10 (the constant value of “x” to “y”)

App.cpp

void main()
{

const int x = 10;
int y = x;

}

const int x = 10;

mov dword ptr [x], 0Ah

 int y = x;

mov dword ptr [y], 0Ah

Constant expressions

 Constant expressions are pieces of code that the compiler can optimize by

replacing them with their value that is computed before compilation phase

 Constant expression can be easily deducted for variables (especially “const”

variables). However, in case of functions this is more difficult.

 Let’s analyze the following code:

 The same thing applies for expressions where the result is always a constant

value. In this case, the compiler computes the value of the expression

“1+2+3” and assigns that value to “x” directly.

App.cpp

void main()
{

int x = 1 + 2 + 3 ;
int y = x;

}

int x = 1+2+3;

mov dword ptr [x], 6

Constant expressions

 Constant expressions are in particular important when declaring arrays:

 This code will not compile. In reality – GetCount() returns a “const” values,

but the compiler does not know if it can replace it with its value (for example

GetCount() might do something else → like modifying some global variables).

 The compiler will yield an error: “expecting constant expression” when

defining “x”

App.cpp

int GetCount()
{
 return 5;
}

void main()
{
 int x[GetCount()];
}

error C2131: expression did not evaluate to a constant
note: failure was caused by call of undefined function or one not declared 'constexpr'
note: see usage of 'GetCount

Constant expressions

 Constant expressions are in particular important when declaring arrays:

 Even if we add a “const” keyword at the beginning of the function, the result

is still the same.

 The compiler only knows that the result can not be modified (this does not

imply that the result is a constant value, and that the compiler can replace

the entire call for that function with its value).

App.cpp

const int GetCount()
{
 return 5;
}

void main()
{
 int x[GetCount()];
}

error C2131: expression did not evaluate to a constant
note: failure was caused by call of undefined function or one not declared 'constexpr'
note: see usage of 'GetCount

Constant expressions

 Cx++11 adds a new keyword: “constexpr” that tells the compiler that a

specific expression should be considered constant.

 Now the code will compile.

App.cpp

constexpr int GetCount()
{
 return 5;
}
void main()
{
 int x[GetCount()];
}

Constant expressions

 Cx++11 adds a new keyword: “constexpr” that tells the compiler that a

specific expression should be considered constant.

 As GetCount() will be replaced with 5, the space needed for “x” will be 5

integers (sizeof(int) = 4, 4 x 5 = 20)

App.cpp

constexpr int GetCount()
{
 return 5;
}
void main()
{
 int x[GetCount()];
}

push ebp

mov ebp,esp

sub esp, 20

Constant expressions

 Using “constexpr” comes with some limitations:

❑ A constexpr function should not be void

 In this case the compiler will state that it can not create an array from a void

value

App.cpp

constexpr void GetCount()
{
 //return 5;
}
void main()
{
 int x[GetCount()];
}

Constant expressions

 Using “constexpr” comes with some limitations:

❑ A constexpr function should not have any local variables uninitialized

 As a general rule, the compiler tries to evaluate (in the compiling phase) the

result of a constexpr function. If a local variable is uninitialized, then there

is a possibility than several execution flows may lead to a different results ➔

thus the entire function can not be replaced with another value.

App.cpp

constexpr int GetCount()
{
 int x;
 x = 10;
 return 5;
}
void main()
{
 int x[GetCount()];
}

error C3615: constexpr function 'GetCount' cannot result in a constant expression
note: failure was caused by an uninitialized variable declaration
note: see usage of 'x'

Constant expressions

 Using “constexpr” comes with some limitations:

❑ A constexpr function should not have any local variables uninitialized. You can

have, however multiple constant variable defined !

App.cpp

constexpr int GetCount()
{
 const int x = 100;
 return 5+x;
}
void main()
{
 int x[GetCount()];
}

App.cpp

constexpr int GetCount()
{
 int x = 100;
 return 5+x;
}
void main()
{
 int x[GetCount()];
}

Local variables are allowed in a constexpre function

starting with C++14. This code will NOT compile if a

C++11 standard is used !

error: body of constexpr function
‘constexpr int GetCount()’ not a

return-statement ➔ ONLY for C++11

Constant expressions

 Using “constexpr” comes with some limitations:

❑ If constexpr function has parameters, it should be called with a constant value for

those parameters. Further more, the result of the evaluation should be a constant

value.

 In this case the code will compile correctly (“X” will have 20 elements)

 Some compiler have some workarounds for this rule. In terms of optimization,

if the exact value of a function can not be computed, inline replacement will

not be possible.

App.cpp

constexpr int GetCount(int x)
{
 return x+x;
}
void main()
{
 int x[GetCount(10)];
}

Constant expressions

 Using “constexpr” comes with some limitations:

❑ If constexpr function in C++11 must have only one return statement.

C++14 and above do not have this limitation anymore.

 This code will not compile with Cx++11 standards, but will work for C++14

standards (g++). The compiler evaluates that GetCount(10) can actually be

replaced with 6 without changing the logic behind the construction.

App.cpp

constexpr int GetCount(int x)
{
 if (x>10) return 5; else return 6;
}
void main()
{
 int x[GetCount(10)];
}

Constant expressions

 Let’s analyze the following code:

 Code was compiled with VS 2017, with C++17 Standards enabled.

 While “X” is clearly 5, the compiler still generated a function (SomeValue)

and calls it to get the value of “X”

App.cpp

constexpr int SomeValue() { return 5; }
int main()
{
 int x = SomeValue();
 printf("%d", x);
}

int x = SomeValue();
call SomeValue
mov dword ptr [x],eax
 printf("%d", x);
mov eax,dword ptr [x]
push eax
push offset string "%d"
call printf
add esp,8

Constant expressions

 Let’s analyze the following code:

 Code was compiled with VS 2017, with C++17 Standards enabled.

 However, declaring x as a constexpr will produce a different code (SomeValue

is replaced automatically by its value !!!)

 This is not completely identical as declaring “x” as a const ! (if we would

have used a const specifier SomeValue function would still be called !)

App.cpp

constexpr int SomeValue() { return 5; }
int main()
{
 constexpr int x = SomeValue();
 printf("%d", x);
}

constexpr int x = SomeValue();
mov dword ptr [x],5
 printf("%d", x);
push 5
push offset string "%d"
call printf
add esp,8

Constant expressions

 Let’s analyze the following code:

 Code was compiled with VS 2017, with C++17 Standards enabled (debug

mode)

Normal variable With constexpr With const

constexpr int SomeValue() {
 return 5;
}
int main()
{
 int x = SomeValue();
 printf("%d", x);
}

constexpr int SomeValue() {
 return 5;
}
int main()
{
 constexpr int x = SomeValue();
 printf("%d", x);
}

constexpr int SomeValue() {
 return 5;
}
int main()
{
 const int x = SomeValue();
 printf("%d", x);
}

call SomeValue
mov dword ptr [x],eax
 printf("%d", x);
mov eax,dword ptr [x]
push eax
push offset string "%d"
call printf
add esp,8

mov dword ptr [x],5

 printf("%d", x);
push 5
push offset string "%d"
call printf
add esp,8

call SomeValue
mov dword ptr [x],eax
 printf("%d", x);
push 5
push offset string "%d"
call printf
add esp,8

Constant expressions

 Let’s analyze the following code:

 Code will NOT compile (with VS 2017, with C++17 Standards enabled).

 “x” being declared as a constexpr it’s similar to “x” is a const ➔ you can not

modify “x” value.

 However, keep in mind that constexpr and const are not identical !

App.cpp

constexpr int SomeValue() { return 5; }
int main()
{
 constexpr int x = SomeValue();
 x = 100;
 printf("%d", x);
}

error C3892: 'x': you cannot assign to a variable that is const

Constant expressions

 Let’s analyze the following code:

 For these pieces of code, VS 2017 was used with C++17 Standards enabled.

 The first code (#1) that uses constexpr will not compile ! (A::x' cannot be
declared with 'constexpr' specifier)

 The second one (#2) that uses const will compile !

 The third one (#3) will compile and will print 10 and 1 to the screen. In the third
code if we replace constexpr with const, the result is identical.

App.cpp (1) App.cpp (2) App.cpp (3)

class A
{
public:
 constexpr int x;
 A() : x(10) {}
};

class A
{
public:
 const int x;
 A() : x(10) {}
};

class A
{
public:
 static constexpr int x = 10;
 A() {}
}
int main()
{
 printf("A::x = %d, sizeof(A) = %d", A::x,sizeof(A));
 return 0;
}

Constant expressions

 As a general consent, consider constexptr as different from const

 constexpr means that the exact value of an expression can be computed at

the compile time given a set of parameters required by the expression

(constant values).

 const means that the value returned by an expression can not be modified

after its value is attributed. That is why, const can be apply to a class

member, while a constexpr can not.

 constexpr can however be applied to class methods (including constructor,

operators, etc). This technique is useful when creating another constexpr

instance of that class.

Constant expressions

 Let’s analyze the following code:

 Code will compile and will

generate the following assembly code.

 Code was compiled with VS 2017, with C++17 Standards enabled.

App.cpp

class A
{
public:
 int x;
 A(int value): x(value*value) {}
};
int main()
{
 A a(5);
 printf("%d", a.x);
}

A a(5);
push 5
lea ecx,[a]
call A::A
 printf("%d", a.x);
mov eax,dword ptr [a.x]
push eax
push offset string "%d"
call printf
add esp,8

Constant expressions

 Let’s analyze the following code:

 Code will NOT compile. Can not create a value (in this case an instance) from

a function (in this case the constructor function) that is not constexpr

App.cpp

class A
{
public:
 int x;
 A(int value): x(value*value) {}
};
int main()
{
 constexpr A a(5);
 printf("%d", a.x);
}

error C2127: 'a': illegal initialization

of 'constexpr' entity with a non-
constant expression

Constant expressions

 Let’s analyze the following code:

 Code will compile and will

generate the following assembly code.

 The constructor is no longer called, but x is set to its proper value.

 Code was compiled with VS 2017, with C++17 Standards enabled.

App.cpp

class A
{
public:
 int x;
 constexpr A(int value): x(value*value) {}
};
int main()
{
 constexpr A a(5);
 printf("%d", a.x);
}

A a(5);
mov dword ptr [a.x], 25
 printf("%d", a.x);
mov eax,dword ptr [a.x]
push eax
push offset string "%d"
call printf
add esp,8

Constant expressions

 Let’s analyze the following code:

 Code will NOT compile. Using constexpr implies that you do not need to call

the constructor (this can be done if there is no code that needs to be called

→ pretty much just assign the values to data member.

 In this case, creating an instance of type A means running a printf(“ctor”)

command that can not be done if A() is constexpr.

App.cpp

class A
{
public:
 int x;
 constexpr A(int value): x(value*value) { printf(“ctor”); }
};
int main()
{
 constexpr A a(5);
 printf("%d", a.x);
}

error C3615: constexpr function

'A::A' cannot result in a
constant expression

Constant expressions

 Let’s analyze the following code:

 Code will NOT compile.

 The same logic applies here as well. We can not construct an instance of type

A if we do not have a value for all data members in class A.

App.cpp

class A
{
public:
 int x;
 constexpr A(int value) {}
};
int main()
{
 constexpr A a(5);
 printf("%d", a.x);
}

error C3615: constexpr function 'A::A' cannot result in a constant
expression
note: failure was caused by 'constexpr' constructor not initializing
member 'A::x'

Constant expressions

 Let’s analyze the following code:

 Code will NOT compile.

 The same logic applies here as well. We can not construct an instance of type

A if we do not have a value for all data members in class A.

 In this case, A::x is instantiated, but not A::y

App.cpp

class A
{
public:
 int x, y;
 constexpr A(int value) : x(10) {}
};
int main()
{
 constexpr A a(5);
 printf("%d", a.x);
}

error C3615: constexpr function 'A::A' cannot result in a constant
expression
note: failure was caused by 'constexpr' constructor not initializing
member ‘A::y'

Constant expressions

 Let’s analyze the following code:

 Code will compile.

 “x” will have the value 5.

App.cpp

class A
{
public:
 int x;
 A(int value) : x(value*value) { }
 constexpr int GetValue() { return 5; }
};
int main()
{
 A a(5);
 constexpr int x = a.GetValue();
 printf("%d", x);
}

Constant expressions

 The compiler can not always compute (during the compile time) the value of
an expression. Let’s consider the following code:

 This code will NOT compile. However, x is a constant value, and a.x will
always be 25 (due to the initialization from the constructor). This means that
for this particular case, the compiler should have been able to assign value 25
to local variable “x” from main function.

App.cpp

class A
{
public:
 const int x;
 A(int value) : x(value*value) { }
 constexpr int GetValue() { return x; }
};
int main()
{
 A a(5);
 constexpr int x = a.GetValue();
 printf("%d", x);
}

error C2131: expression did not evaluate to a constant
note: failure was caused by a read of a variable outside its lifetime
note: see usage of 'a'

Constant expressions

 The compiler can not always compute (during the compile time) the value of an
expression. Let’s consider the following code:

 Code will compile and run correctly.

 In this case, the simple algorithm from cmmdc function can be computed at the
compile time by the compiler.

App.cpp

constexpr int cmmdc(int x, int y)
{
 while (x!=y)
 {
 if (x>y) x-=y; else y-=x;
 }
 return x;
}
int main()
{
 int x = cmmdc(24,18);
 int a[cmmdc(100, 5)];
 printf("x=%d, len(a)=%d\n",x, sizeof(a));
}

Constant expressions

 The compiler can not always compute (during the compile time) the value of an
expression. Let’s consider the following code:

 Code will compile and run correctly.

 In this case, the simple algorithm from cmmdc function can be computed at the
compile time by the compiler.

App.cpp

constexpr int cmmdc(int x, int y)
{
 while (x!=y)
 {
 if (x>y) x-=y; else y-=x;
 }
 return x;
}
int main()
{
 int x = cmmdc(24,18);
 int a[cmmdc(100, 5)];
 printf("x=%d, len(a)=%d\n",x, sizeof(a));
}

push 12h
push 18h
call cmmdc
add esp,8

mov dword ptr [x],eax
push 14h
mov eax,dword ptr [x]
push eax
push offset string "x=%d, len(a)=%d\n"
call printf
add esp,0Ch

Note that cmmdc function is not replaced by its
value (in this case value 6) !

However the size
of vector a is
clearly known (and
it is not computed
dynamically)

Constant expressions

 The compiler can not always compute (during the compile time) the value of an
expression. Let’s consider the following code:

 Code will still compiles and run correctly (even if we made cmmdc function more
complex). We have also used a temporary variable (tr) but with constant values.

App.cpp

constexpr int cmmdc(int x, int y)
{
 while (x!=y)
 {
 if (x>y) x-=y; else y-=x;
 }
 for (int tr = 0; tr < 100; tr++)
 x += y;
 return x;
}
int main()
{
 int x = cmmdc(24,18);
 int a[cmmdc(100, 5)];
 printf("x=%d, len(a)=%d\n",x, sizeof(a));
}

Constant expressions

 The compiler can not always compute (during the compile time) the value of an
expression. Let’s consider the following code:

 Code will still compiles and run correctly (even if we made cmmdc function more
complex). We have also used a temporary variable (tr) but with constant values.

App.cpp

constexpr int cmmdc(int x, int y)
{
 while (x!=y)
 {
 if (x>y) x-=y; else y-=x;
 }
 for (int tr = 0; tr < 100; tr++)
 x += y;
 return x;
}
int main()
{
 int x = cmmdc(24,18);
 int a[cmmdc(100, 5)];
 printf("x=%d, len(a)=%d\n",x, sizeof(a));
}

Constant expressions

 The compiler can not always compute (during the compile time) the value of an
expression. Let’s consider the following code:

 Code will still compiles and run correctly. This time we have changed a constant
value with another constant value (y) !!!

App.cpp

constexpr int cmmdc(int x, int y)
{
 while (x!=y)
 {
 if (x>y) x-=y; else y-=x;
 }
 for (int tr = 0; tr < y ; tr++)
 x += y;
 return x;
}
int main()
{
 int x = cmmdc(24,18);
 int a[cmmdc(100, 5)];
 printf("x=%d, len(a)=%d\n",x, sizeof(a));
}

Constant expressions

 The compiler can not always compute (during the compile time) the value of an
expression. Let’s consider the following code:

 Code will NOT compile. In this case, the compiler sees that “x” is also modified in
the loop. At some point an integer overflow will be produce and the loop will stop,
but this can not be in advance pre-computed.

App.cpp

constexpr int cmmdc(int x, int y)
{
 while (x!=y)
 {
 if (x>y) x-=y; else y-=x;
 }
 for (int tr = 0; tr < x ; tr++)
 x += y;
 return x;
}
int main()
{
 int x = cmmdc(24,18);
 int a[cmmdc(100, 5)];
 printf("x=%d, len(a)=%d\n",x, sizeof(a));
}

Constant expressions

 For some cases, the compiler can pre-compute the result even for complex

functions (ex: recursive functions)

 Code was compiled with VS 2017, with C++17 Standards enabled. The code

compiles correctly and prints number 55 on the screen.

App.cpp

constexpr int fibonacci(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;
 return fibonacci(n - 1) + fibonacci(n - 2);
}

int main()
{
 constexpr int x = fibonacci(10);
 printf("%d", x);
}

mov dword ptr [x], 55
push 55
push offset string "%d"
call printf
add esp,8

Constant expressions

 For some cases, the compiler can pre-compute the result even for complex

functions (ex: recursive functions)

 Code was compiled with VS 2017, with C++17 Standards enabled. This code

will not compile → the compiler can precompute some things but to some

degree (in this case, 100 step recursion is too much).

App.cpp

constexpr int fibonacci(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;
 return fibonacci(n - 1) + fibonacci(n - 2);
}

int main()
{
 constexpr int x = fibonacci(100);
 printf("%d", x);
}

error C2131: expression did not evaluate to a constant

Constant expressions

 constexpr can be used with literals to precompute values.

 Code was compiled with VS 2017, with C++17 Standards enabled.

App.cpp

constexpr unsigned long long operator"" _Mega(unsigned long long value)
{
 return value * 1024 * 1024;
}
int main()
{
 constexpr int x = 2_Mega;
 return 0;
}

mov dword ptr [x],200000h

For each
(Range-based for loop)

For each (Range-based for loop)

 C++11 standards add a new syntax for “for” statement that allows iteration

within a range (similar to what a “for each” statement could do)

 The format is as follows:

 A range_expression in this context means:

❑ An array of a fixed size

❑ An object that has “begin()” and “end()” functions (pretty much most of the

containers from STL library)

❑ An initialization list

 For statement is usually used with "auto" keyword (see the next section for

details).

for (variable_declaration : range_expresion) loop_statement

For each (Range-based for loop)

 Examples:

 This code will print all three elements of vector x. The following code does

the exact same thing but it works with a std::vector object.

App.cpp

void main()
{
 int x[3] = { 1, 2, 3 };
 for (int i : x)
 printf("%d", i);
}

App.cpp

void main()
{
 vector<int> x = { 1, 2, 3 };
 for (int i : x)
 printf("%d", i);
}

For each (Range-based for loop)

 For can also use initialization lists (but the code needs to include the

initializer_list template.

 To do this, the compiler

creates a std::initialized_list

object and iterates in it.

App.cpp

#include <initializer_list>
void main()
{
 for (int i : {1, 2, 3, 4, 5})
 printf("%d", i);
}

mov dword ptr [ebp-38h],1

mov dword ptr [ebp-34h],2

mov dword ptr [ebp-30h],3

mov dword ptr [ebp-2Ch],4

mov dword ptr [ebp-28h],5

lea eax,[ebp-24h]

push eax

lea ecx,[ebp-38h]

push ecx

lea ecx,[ebp-1Ch]

call constructor for initializer_list<int>

For each (Range-based for loop)

 In case of a normal array (where size is know) the compiler simulates a for

loop:

 The same will not work if the compiler can not deduce the size of an array:

 This code will not compile → the compiler can not know, in advanced how

many elements are stored in “x” array.

App.cpp

void main()
{
 int x[3] = { 1, 2, 3 };
 for (int i : x)
 printf("%d", i);
}

for (index = 0; index < 3; index ++)

{

 i = x[index];

 printf(“%d”, i);

}

App.cpp

void main() {
 int *x = new int[3] {1,2,3};
 for (int i : x)
 printf("%d", i);
}

For each (Range-based for loop)

 The following code will not compile as x is a matrix and not a vector. The

compiler can still iterate but each element will be a “int [3]”

 To make it work, “i“ must be change to a pointer:

App.cpp

void main()
{
 int x[][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
 for (int i : x)
 printf("%d", i);
}

App.cpp

void main()
{
 int x[][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
 for (int* i : x)
 for (int index = 0; index < 3;index++)
 printf("%d", i[index]);
}

For each (Range-based for loop)

 References can also be used. In this case, the content of that loop can be

modified accordingly.

 The output will be 2,4,6 (as the elements from x have been modified in the

first for loop.

App.cpp

void main()
{
 int x[] = { 1, 2, 3 };

 for (int &i : x)
 i *= 2;

 for (int i : x)
 printf("%d,", i);
}

For each (Range-based for loop)

 References can also be used. In this case, the content of that loop can be

modified accordingly.

 This code will not work because x is a const vector. The compiler can’t assign

a “const int &” to a “int &”

App.cpp

void main()
{
 const int x[] = { 1, 2, 3 };

 for (int &i : x)
 i *= 2;

 for (int i : x)
 printf("%d,", i);
}

For each (Range-based for loop)

 References can also be used. In this case, the content of that loop can be

modified accordingly.

 This code will still not work because even if now the compiler can pass the

constant reference, it can not modify “i“ as it is a constant.

App.cpp

void main()
{
 const int x[] = { 1, 2, 3 };

 for (const int &i : x)
 i *= 2;

 for (int i : x)
 printf("%d,", i);
}

For each (Range-based for loop)

 For each can also be applied on an object. However, that object must have a

begin() and an end() functions defined.

 This code will not compile as no “begin()” and “end()” functions are available

for class MyVector.

App.cpp

class MyVector
{
 int x[10];
public:
 MyVector() { for (int tr = 0; tr < 10; tr++) x[tr] = tr; }
};

void main()
{
 MyVector v;
 for (int i : v)
 printf("%d,",i);
}

For each (Range-based for loop)

 For each can also be applied on an object. However, that object must have a

begin() and an end() functions defined.

 Now the code works correctly.

App.cpp

class MyVector
{
 int x[10];
public:
 MyVector() { for (int tr = 0; tr < 10; tr++) x[tr] = tr; }
 int* begin() { return &x[0]; }
 int* end() { return &x[10]; }
};

void main()
{
 MyVector v;
 for (int i : v)
 printf("%d,",i);
}

For each (Range-based for loop)

 Be careful when using references. MyVector::x is a private field. However, it

can be access by using references.

 The code works and v::x will be modified.

App.cpp

class MyVector
{
 int x[10];
public:
 MyVector() { for (int tr = 0; tr < 10; tr++) x[tr] = tr; }
 int* begin() { return &x[0]; }
 int* end() { return &x[10]; }
};

void main()
{
 MyVector v;
 for (int& i : v)
 i *= 2;
}

For each (Range-based for loop)

 The solution for this problem is to use const for “begin()” and “end()”

functions.

 Now the code will not compile as “v” can iterate through constant values and

“i” is not a constant (a value returned by “v” can not be assigned to “i”)

App.cpp

class MyVector
{
 int x[10];
public:
 MyVector() { for (int tr = 0; tr < 10; tr++) x[tr] = tr; }
 const int* begin() { return &x[0]; }
 const int* end() { return &x[10]; }
};

void main()
{
 MyVector v;
 for (int& i : v)
 i *= 2;
}

For each (Range-based for loop)

 There is also the possibility of creating your own iterator that can be returned

from the begin() and end() functions:

 This code will not compile. For this to work the iterator must have:

“operator++”, “operator!=“ and “operator*” implementations

App.cpp

class MyIterator {
public:
 int* p;
};
class MyVector {
...
 MyIterator begin() { MyIterator tmp; tmp.p = &x[0]; return tmp; }
 MyIterator end() {MyIterator tmp; tmp.p = &x[10]; return tmp; }
};
void main() {
 MyVector v;
 for (int i : v)
 printf("%d,",i);
}

For each (Range-based for loop)

 There is also the possibility of creating your own iterator that can be returned

from the begin() and end() functions:

 Now the code works.

App.cpp

class MyIterator {
public:
 int* p;
 MyIterator& operator++(){ p++; return *this; }
 bool operator != (MyIterator &m) { return p != m.p; }
 int operator* () { return *p; }
};
class MyVector {
...
 MyIterator begin() { MyIterator tmp; tmp.p = &x[0]; return tmp; }
 MyIterator end() {MyIterator tmp; tmp.p = &x[10]; return tmp; }
};
void main() {
 MyVector v;
 for (int i : v)
 printf("%d,",i);
}

Type inference

"auto" keyword

 C++11 introduces a new keyword : "auto" that can be use when declaring a

variable or a function

 The format is as follows:

 The compiler tries to deduce the type of the variable from its value. A similar

approach exists for function and will be discuss later.

App.cpp

auto <variable_name> = <value>;
auto <function_name> ([parameters]) -> return_type {…}

"auto" keyword

 Examples:

C++11 Translation

void main()
{
 auto x = 10;
 auto y = 10.0f;
 auto z = 10.0;
 auto b = true;
 auto c = "test";
 auto l = 100L;
 auto ll = 100LL;
 auto ui = 100U;
 auto ul = 100UL;
 auto ull = 100ULL;
 auto ch = ‘x’;
 auto wch = L‘x’;

 auto d = NULL;

 auto p = nullptr;

}

void main()
{
 int x = 10;
 float y = 10.0f;
 double z = 10.0;
 bool b = true;
 const char* c = "test";
 long l = 100L;
 long long ll = 100LL;
 unsigned int ui = 100U;
 unsigned long ul = 100UL;
 unsigned long long ull = 100ULL;
 char ch = ‘x’;
 wchar_t wch = L‘x’;

 int d = NULL;

 void* p = nullptr;

}

"auto" keyword

 Examples:

C++11 Translation

void main()
{
 auto x = 10;
 auto y = 10.0f;
 auto z = 10.0;
 auto b = true;
 auto c = "test";

 auto d = NULL;
}

void main()
{
 int x = 10;
 float y = 10.0f;
 double z = 10.0;
 bool b = true;
 const char* c = "test";

 int d = NULL;
}

NULL is defined in a way that makes the compiler translate it into int:

#ifndef NULL

 #ifdef __cplusplus

 #define NULL 0

 #else

 #define NULL ((void *)0)

 #endif

#endif

"auto" keyword

 "auto" can be forced if a casting occurs during initialization.

 However, the code will still crashes as “x” point to a const char* value.

 Using “new” operator also forces a cast.

 In this case the code works properly (x will be a char*)

C++11 Translation

void main()
{
 auto x = (char*)"test";
 x[0] = 0;
}

void main()
{
 char* x= (char*)”test”
 x[0] = 0;
}

C++11 Translation

void main()
{
 auto x = new char[10]
 x[0] = 0;
}

void main()
{
 char* x= new char[10];
 x[0] = 0;
}

"auto" keyword

 "auto" can be used with user defined classes as well:

 "auto" can be used with “const” keyword

C++11 Translation

class Test
{
public:
 int x, y;
};

void main()
{
 auto x = new Test();
}

class Test
{
public:
 int x, y;
};

void main()
{
 Test* x = new Test();
}

C++11 Translation

void main()
{
 const auto x = 5;
}

void main()
{
 const int x = 5;
}

"auto" keyword

 "auto" can be used with another variable / expression.

 In this case because “x” is evaluated by the compiler as an “int” variable, the

rest of the "auto" assignments will be considered of type “int” as well.

 In case of expressions, the resulted type of an expression is used:

C++11 Translation

void main()
{
 auto x = 5;
 auto y = x;
 auto &z = x;
 auto *ptr = &x;
}

void main()
{
 int x = 5;
 int y = x;
 int &z = x;
 int *ptr = &x;
}

C++11 Translation

void main()
{
 auto x = 5;
 auto y = x * 1.5;
 auto z = x > 100;
}

void main()
{
 int x = 5;
 double y = x * 1.5;
 bool z = x > 100;
}

"auto" keyword

 "auto" can also be used to create pointer to a function:

 In this case because “f” becomes a pointer to function “sum”, and “result”

will be of type “int” because “sum” returns an “int”

 In the end, “result” will have the value 6.

C++11 Translation

int sum(int x, int y, int z)
{
 return x + y + z;
}
void main()
{
 auto f = sum;
 auto result = f(1, 2, 3);
}

int sum(int x, int y, int z)
{
 return x + y + z;
}
void main()
{
 int (*f)(int,int,int) = sum;
 int result = f(1, 2, 3);
}

"auto" keyword

 "auto" is also useful when dealing with templates:

 In this case, it is much easier to declare something as "auto" than to write the

entire declaration as a template.

C++11 Translation

using namespace std;
#include <vector>

void main()
{
 vector<int> v;
 auto it = v.begin();
}

using namespace std;
#include <vector>

void main()
{
 vector<int> v;
 vector<int>::iterator it = v.begin();
}

"auto" keyword

 "auto" is also useful when dealing with templates:

 In this example we two variables defined (“it” and “range”).

Cpp code

using namespace std;
#include <map>

void main()
{
 multimap<const char*, int> Grades;
 Grades.insert(pair<const char*, int>("Ionescu", 10));
 Grades.insert(pair<const char*, int>("Ionescu", 8));
 Grades.insert(pair<const char*, int>("Ionescu", 7));

 multimap<const char*, int>::iterator it;
 pair <multimap<const char*, int>::iterator, multimap<const char*, int>::iterator> range;

 range = Grades.equal_range(Grades.find("Ionescu")->first);
 for (it = range.first; it != range.second; it++)
 printf("%s -> %d \n", it->first, it->second);

}

"auto" keyword

 "auto" is also useful when dealing with templates:

 Much easier !

Cpp code

using namespace std;
#include <map>

void main()
{
 multimap<const char*, int> Grades;
 Grades.insert(pair<const char*, int>("Ionescu", 10));
 Grades.insert(pair<const char*, int>("Ionescu", 8));
 Grades.insert(pair<const char*, int>("Ionescu", 7));

 auto range = Grades.equal_range(Grades.find("Ionescu")->first);

 for (auto it = range.first; it != range.second; it++)
 printf("%s -> %d \n", it->first, it->second);

}

Type alias

 The same can option can be achieved using typedef or type alias.

 A type alias is functionally similar to a type def, and implies the following

syntax:

using <alias_type> = <the actual type>.

Cpp code (using alias)

#include <map>

int main() {
 using map = std::map<const char *, int>;
 map m = { {"Popescu",10},{"Ionescu", 9} };
}

Cpp code (using typedef)

#include <map>
typedef std::map<const char *, int> map;

int main() {
 map m = { {"Popescu",10},{"Ionescu", 9} };
}

Cpp code (using alias)

#include <map>
using map = std::map<const char *, int>;

int main() {
 map m = { {"Popescu",10},{"Ionescu", 9} };
}

Cpp code (using typedef)

#include <map>

int main() {
 typedef std::map<const char *, int> map;
 map m = { {"Popescu",10},{"Ionescu", 9} };
}

"auto" keyword

 "auto" is usually used with for statement:

 Or as a reference:

Cpp code

#include <vector>

void main()
{
 std::vector<int> a = { 1, 2, 3, 4, 5 };
 for (auto elem : a)
 printf("%d,", elem);
}

Cpp code

#include <vector>

void main()
{
 std::vector<std::pair<int, char>> a = { { 1, 'A' }, { 2, 'B' }, { 3, 'D' } };
 for (auto& elem : a)
 printf("Pair: %d->%c \n", elem.first,elem.second);
}

" decltype " keyword

 Besides “auto” C++11 also provides a new keyword “decltype” that returns

the type of an object. It is mainly used to declare a variable as of the same

type of another one.

 In this example “xx” has the same type as “x”, “yy” has the same type as “y”

and “aa” has the same type as “a”.

Cpp code

using namespace std;
#include <vector>
#include <map>

void main()
{
 vector<pair<vector<int>, map<int,const char*>>> a;
 int x;
 float y;

 decltype(x) xx;
 decltype(y) yy;
 decltype(a) aa;
}

" decltype " keyword

 decltype can be used with constants as well:

 In this example:

❑ “x” will be of type int (because 10 is an int)

❑ “y” will be of type float (because 10.2f is a float)

❑ “z” will be of type void* (because nullptr is a void*)

❑ “b” will be a bool (because “true” is a bool)

Cpp code

void main()
{
 decltype(10) x;
 decltype(10.2f) y;
 decltype(nullptr) z;
 decltype(true) b;
}

" decltype " keyword

 decltype can be used with arrays:

 In this example:

❑ “x” will be of type int[10] → just like “v” is

❑ “y” will be of type int[10][20] → just like “w” is

Cpp code

void main()
{
 int v[10];
 int w[10][20];

 decltype(v) x;
 decltype(w) y;
}

" decltype " keyword

 decltype can be used with elements from an array – but the result will be a

reference of that type.

 This code will NOT compile because “x” is of type “int &” and it is not

initialized. For this a reference must be added to the initialization of x.

 Now the code compiles and “x” is a reference to the first element from “v”

Cpp code

void main()
{
 int v[10];
 decltype(v[0]) x;
}

Cpp code

void main()
{
 int v[10];
 decltype(v[0]) x = v[0];
}

error C2530: 'x': references must be initialized

" decltype " keyword

 Using references to constant strings / vectors has some limitations. The

following example will not work:

 “x” will be of type “const char (*)[3]” because sizeof(“Te”) is 3 (2 characters

and ‘\0’ at the end. Being a reference it needs to be initialized.

 This code will also fail because &”C++” means “const char (*)[4]” that is not

compatible with “const char (*)[3]”. To make it work, one must use the exact

same number of characters as in the declaration.

Cpp code

void main() {
 decltype(&"Te") x;
}

Cpp code

void main() {
 decltype(&"Te") x = &”C++”;
}

Cpp code (correct code)

void main() {
 decltype(&"Te") x = &”CC”;
}

“decltype" keyword

 The same logic applies when using a string directly as a constant in a decltype

statement.

 In this case, “x” will be of type “const char[3] &”

Cpp code

void main()
{
 decltype("Te") x = *(&“CC");
}

Structured binding

(destructuring)

Structured binding

 Starting with C++17, a new concept has been added to C++ language: structured

binding

 This concept implies that a structure and/or array can be split down into its basic

elements, and each of its elements can be assign to a variable.

 The concept is related to what other languages (like Python) have → the

possibility of returning a tuple with values (instead of one value).

 In C++17, structured binding is done using auto keyword in the following way:

where v1,v2 …vn are variables that are going to be binded.

App.py (Python code)

def GetCarSpecifics():
 return ("Toyota",180,22.5)
def main():
 car_name,max_speed,co2 = GetCarSpecifics()

auto [v1, v2, … vn] = expression
auto& [v1, v2, … vn] = expression

Structured binding

 Let’s analyze the following code:

 In reality, what the compiler does is to

copy the value of a[0] to “x” and the

value of a[1] to “y” similar to the code

bellow:

App.cpp

int main()
{
 int a[2] = { 1,2 };
 auto [x, y] = a;
 x = 10;
 return 0;
}

int a[2] = { 1,2 };
mov dword ptr [&a+0],1
mov dword ptr [&a+4],2
 auto [x, y] = a;
lea eax,[a]
mov dword ptr [temp_ptr_to_a],eax
mov eax,4
imul ecx,eax,0
mov edx,dword ptr [temp_ptr_to_a]
mov eax,dword ptr [edx+ecx]
mov dword ptr [x],eax
mov eax,4
shl eax,0
mov ecx,dword ptr [temp_ptr_to_a]
mov edx,dword ptr [ecx+eax]
mov dword ptr [y],edx
 x = 10;
mov eax,4
imul ecx,eax,0
mov dword ptr x[ecx],0Ah App.cpp

int main() {
 int a[2] = { 1,2 };
 auto x = a[0];
 auto y = a[1];
 x = 10;
 return 0;
}

Structured binding

 Let’s analyze the following code:

 This code will compile and will print upon execution the following:
a=[1,2] and x=10

App.cpp

int main()
{
 int a[2] = { 1,2 };
 auto[x, y] = a;
 x = 10;
 printf("a=[%d,%d] and x=%d", a[0], a[1], x);
 return 0;
}

Structured binding

 Let’s analyze the following code:

 Structure binding can also be used with references “auto&”. In this case a

reference to an object is created.

 This code will compile and will print upon execution the following:
a=[10,2] and x=10

App.cpp

int main()
{
 int a[2] = { 1,2 };
 auto&[x, y] = a;
 x = 10;
 printf("a=[%d,%d] and x=%d", a[0], a[1], x);
 return 0;
}

auto& x = a[0];
auto& y = a[1];

Structured binding

 One of the most common usage of this technique is to bind the result of a

function/method that returns a structure to its basic components:

 This code will compile and will print upon execution the following:
Student: Popescu, Grade:10

App.cpp

struct Student
{
 const char * Name;
 int Grade;
};
Student GetInfo()
{
 return Student{ "Popescu",10 };
}
int main()
{
 auto[name, grade] = GetInfo();
 printf("Student: %s, Grade:%d ", name, grade);
 return 0;
}

Structured binding

 Structured bindings takes into account the access specifier.

 In this case, “x”, “y” and “z” are public and the binding is possible.

 This code will compile and will print upon execution the following:
x=1, y=2, z=4

App.cpp

class A
{
public:
 int x, y, z;
 A(int value) : x(value), y(value * 2), z(value * 4) {}
};
int main()
{
 A a(1);

auto[x, y, z] = a;
printf("x=%d, y=%d, z=%d", x, y, z);

 return 0;
}

Structured binding

 Structured bindings takes into account the access specifier.

 In this case, “x”, “y” and “z” are private

and the binding is NOT possible.

 This code will not compile !

App.cpp

class A
{
 int x, y, z;
public:
 A(int value) : x(value), y(value * 2), z(value * 4) {};
};
int main()
{
 A a(1);

auto[x, y, z] = a;
printf("x=%d, y=%d, z=%d", x, y, z);

 return 0;
}

error C3647: 'A': cannot decompose type with non-public members
note: see declaration of 'A::x'
error C2248: 'A::x': cannot access private member declared in
class 'A'
note: see declaration of 'A::x'
note: see declaration of 'A'
error C2248: 'A::y': cannot access private member declared in
class 'A'
note: see declaration of 'A::y'
note: see declaration of 'A'
error C2248: 'A::z': cannot access private member declared in
class 'A'
note: see declaration of 'A::z'
note: see declaration of 'A'

Structured binding

 You ca not bind only some data members – you have to bind all of them.

 In this case, “x”, “y” and “z” are public and the binding is possible, but as

“auto[x,y]” only tries to bind two parameters (and class A has 3), the code

will not compile.

App.cpp

class A
{
public:
 int x, y, z;
 A(int value) : x(value), y(value * 2), z(value * 4) {};
};
int main()
{
 A a(1);

auto[x, y] = a;
printf("x=%d, y=%d", x, y);

 return 0;
}

error C3448: the number of identifiers must match

the number of array elements or members in a
structured binding declaration

Structured binding

 Structured bindings copies vectors/arrays as well.

 In this case local variable “x” is an array with two elements that copied the

content from A::x.

 This code will compile and will print upon execution the following:
x=1,2, y=3, a={x=[10,2], y=3}

App.cpp

class A
{
public:
 int x[2], y;
 A(int value) : x{ value,value*2 }, y(value * 3) {};
};
int main()
{
 A a(1);
 auto[x,y] = a;
 a.x[0] = 10;

printf("x=%d,%d, y=%d, a={x=[%d,%d], y=%d}", x[0],x[1], y,a.x[0],a.x[1],a.y);
 return 0;
}

Structured binding

 Structured bindings are often used with for-each loops and STL, especially for

maps where access to both components (key and value) can be obtains

simultaneously.

 This code will compile and will print upon execution the following:
Name:Popescu, Grade:10
Name:Ionescu, Grade:9

App.cpp

#include <map>
using namespace std;

int main()
{
 map<const char *, int> Grades = { {"Popescu",10},{"Ionescu",9} };
 for (auto[name, grade] : Grades)
 printf("Name:%s, Grade:%d\n", name, grade);
 return 0;
}

Structured binding

 STL also has two functions: std::make_tuple and std::tie that can be used to

create a similar functionality (for C++ compilers prior to C++17 standard).

 This code will compile and will print upon execution the following:
Name:Popescu, Grade:10

App.cpp

struct Student
{
 const char * Name;
 int Grade;
 auto GetParams() {
 return std::make_tuple(Name, Grade);
 }
};
int main()
{
 Student s = { "Popescu",10 };
 const char * name;
 int grade;
 std::tie(name, grade) = s.GetParams();
 printf("Name:%s, Grade:%d\n", name, grade);
 return 0;
}

This method is however not that

effective as it implies creating

your own local variables and a

translation function within the

class (something that can return

a std::tuple)

Static Polymorphism

(CRTP)

Static Polymorphism

 Static polymorphism (also called Curiously Recurring Template Pattern or CRTP)

is a technique that takes advantage that a template is not instantiated

(constructed) when it is written – but when it’s instance is actually created. This

allows one to use some functions in a template that are not available at the time

the template was written.

 In this case – we can create a class (Derived) that has as a base class a template

that can further be used with the exact class that we are creating (the Derived

class).

Example

template <typename T>

class Base { ... };

class Derived: public Base<Derived> { ...};

Static Polymorphism

 Let’s see an example:

App.cpp

template <typename T>
struct Car {
 void PrintName() {
 printf("%s\n", (static_cast<T*>(this))->GetName());
 }
};

struct Toyota : public Car<Toyota> {
 const char * GetName() { return "Toyota"; }
};
struct Dacia : public Car<Dacia> {
 const char * GetName() { return "Dacia"; }
};

int main() {
 Toyota t;
 Dacia d;
 t.PrintName();
 d.PrintName();
 return 1;
}

This code compiles and upon

execution will print on the

screen: Toyota and then Dacia

Static Polymorphism

 Let’s see an example:

App.cpp

template <typename T>
struct Car {
 void PrintName() {
 printf("%s\n", (static_cast<T*>(this))->GetName());
 }
};

struct Toyota : public Car<Toyota> {
 const char * GetName() { return "Toyota"; }
};
struct Dacia : public Car<Dacia> {
 const char * GetName() { return "Dacia"; }
};

int main() {
 Toyota t;
 Dacia d;
 t.PrintName();
 d.PrintName();
 return 1;
}

The main trick here is that static_cast<T*>

Template Car assumes that the object of

type T has a method called GetName that

returns a const char *

Static Polymorphism

 Let’s see an example:

App.cpp

template <typename T>
struct Car {
 void PrintName() {
 printf("%s\n", (static_cast<T*>(this))->GetName());
 }
};

struct Toyota : public Car<Toyota> {
 const char * GetName() { return "Toyota"; }
};
struct Dacia : public Car<Dacia> {
 const char * GetName() { return "Dacia"; }
};

int main() {
 Toyota t;
 Dacia d;
 t.PrintName();
 d.PrintName();
 return 1;
}

Because Car is a template, it is evaluated

when it is used. This means, that the code

from the method Car::PrintName will only

be evaluated when creating the class Toyota

As this class has a method GetName,

everything will work as excepted.

Static Polymorphism

 The same logic can be used for data members.

 In this case, it is expected that class associated with type T have a data member

of type const char * named Name.

 The code compiles correctly and upon execution will print Toyota and then Dacia

App.cpp

template <typename T>
struct Car {
 void PrintName() {
 printf("%s\n", (static_cast<T*>(this))->Name);
 }
};

struct Toyota : public Car<Toyota> { const char * Name = "Toyota"; };
struct Dacia : public Car<Dacia> { const char * Name = "Dacia"; };

int main() {
 Toyota t;
 Dacia d;
 t.PrintName();
 d.PrintName();
 return 1;
}

Static Polymorphism

 It works in a similar way for static data members (however in this case casting

this pointer is not required (we can use T:: to refer to static members of type T)

 The code compiles correctly and upon execution will print Toyota and then Dacia

App.cpp

template <typename T>
struct Car {
 static void PrintName() {
 printf("%s\n", T::Name);
 }
};

struct Toyota : public Car<Toyota> { static const char * Name; };
struct Dacia : public Car<Dacia> { static const char * Name; };

const char * Toyota::Name = "Toyota";
const char * Dacia::Name = "Dacia";

int main() {
 Toyota::PrintName();
 Dacia::PrintName();
 return 1;
}

Static Polymorphism

Polymorphic chaining

 Another interesting thing that can be achieved in this way is called polymorphic

chaining.

 It implies that the base class returns a value that is a self reference to the

template type !

 In this case, we make sure that the method SomeMethod returns a reference to

the type T (template type)

Example

template <typename T>

class Base
{

 T& SomeMethod() {
 …

 return static_cast<T&>(*this);
 }
};

class Derived: public Base<Derived> { ...};

Static Polymorphism

Polymorphic chaining

 Let’s analyze this example:

 The code will print “11 12 2.5 3.5”. What happens is the i.Inc() will not return a
reference to type Number<>, but to type Integer, thus allowing the chaining to
continue.

App.cpp

#include <iostream>

template <typename T>
struct Number {
 T& Inc() { static_cast<T*>(this)->Value += 1; return static_cast<T&>(*this); }
 T& Dec() { static_cast<T*>(this)->Value -= 1; return static_cast<T&>(*this); }
 T& Print() { std::cout << static_cast<T*>(this)->Value << " "; return static_cast<T&>(*this); }
};
struct Integer : public Number<Integer> { int Value; };
struct Float : public Number<Float> { float Value; };

int main() {
 Integer i; i.Value = 10;

i.Inc().Print().Dec().Inc().Inc().Print();
 Float f; f.Value = 1.5;

f.Inc().Print().Dec().Inc().Inc().Print();
}

Static Polymorphism

Barton–Nackman trick

 Barton–Nackman trick implies using CRTP and an inner friend function definition

to move the friend function from the base class to de derived one.

 This is in particular useful to automatically overload relationship operators.

Example

template <typename T>
struct Comparable {
 friend bool operator== (const T& obj1, const T& obj2) { return obj1.CompareWith(obj2) == 0; }
 friend bool operator< (const T& obj1, const T& obj2) { return obj1.CompareWith(obj2) < 0; }
};
struct Integer : public Comparable<Integer> {
 int Value;

Integer(int v): Value(v) {}
 int CompareWith(const Integer& obj) const {
 if (Value < obj.Value) return -1;
 if (Value > obj.Value) return 1;
 return 0;
 }
};
void main() {
 Integer i1(10);
 Integer i2(20);
 if (i1 < i2) printf("i1 is smaller than i2");
}

In this case, Integer class has both

operator== and operator< defined and as

such a syntax like (if (i1<i2)) will compile.

Static Polymorphism

 Static polymorphism has the following advantages:

o We no longer need virtual table, dynamic types, etc to perform polymorphism.

o Since the linkage is static and not real-time, the performance is much better than with

the usage of virtual function (no vpftr call)

 Static polymorphism has the following pitfalls:

o In reality, there is not a common root like in case of inheritance (if class A is derived

from Base<A> and class B is derived from Base we CAN NOT say that they are both

derived out of Base !!!

o This means that casting to the base class is not possible ➔ so we can create a pointer

of type Base that has multiple elements (one that points to an object A, another one

that points to an object B)

Static Polymorphism

 Differences between static polymorphism and dynamic polymorphism.

Static polymorphism

template <typename T> struct Base { };

class A : public Base<A> { };
class B : public Base { };

int main() {
 A a;
 B b;
 Base * base[2];
 base[0] = &a;
 base[1] = &b;
 return 0;
}

Dynamic polymorphism

struct Base { };

class A: public Base { };
class B: public Base { };

int main() {
 A a;
 B b;
 Base * base[2];
 base[0] = &a;
 base[1] = &b;
 return 0;
}

error C2955: 'Base': use of class template
requires template argument list
error C2440: '=': cannot convert from 'A *' to
'Base *’
error C2440: '=': cannot convert from 'B *' to
'Base *'

Code will compile and run
as expected.

Plain Old Data

(POD)

POD

 Plain old data (POD) means a type that has a C-like memory layout.

 In many cases a class / struct in C/C++ has other fields such as virtual

functions or indexes for members from a virtually derived class

 This means that a compiler has some problems when copying such objects.

 To ease this process, a type of data can be:

❑ Trivial

❑ Standard layout

 POD data is important for initialization lists.

POD

 Trivial types means that:

o Has a default constructor (that is not provided by the programmer)

o Has a default destructor (that is not provided by the programmer)

o Has a default copy - constructor (that is not provided by the programmer)

o Has a assignment operator (=) (that is not provided by the programmer)

o It has no virtual functions

o It has no base class that has a user provided (specific) constructor / destructor /
copy-constructor or assignment operator

o It has no members that have a user provided (specific) constructor / destructor /
copy-constructor or assignment operator

o It has not data member that is a reference value

Trivial types can be copied using memcpy from an object to a memory buffer or
an array. The compiler can change the order of data members

Trivial types can have different access modifier for their members.

POD

 STL provides a function to check if a type is trivial or not : std::is_trivial

 This code will print “true” for TypeA and “false” for TypeB (because it has a

user defined constructor)

App.cpp

#include <type_traits>
#include <iostream>

class TypeA {
 int x, y;
};

class TypeB {
 int x, y;
public:
 TypeB(int value) { x = y = value; }
};

void main()
{
 std::cout << std::boolalpha << std::is_trivial<TypeA>::value << std::endl;
 std::cout << std::boolalpha << std::is_trivial<TypeB>::value << std::endl;
}

POD

 STL provides a function to check if a type is trivial or not : std::is_trivial

 This code will print “true” for TypeC

App.cpp

#include <type_traits>
#include <iostream>

class TypeC
{
 int x, y;
public:
 int z;
 const char* ptr;
 void Set(int _x, int _y, int _z) { x = _x; y = _y; z = _z; }
};

void main()
{
 cout << std::boolalpha << std::is_trivial<TypeC>::value << endl;
}

POD

 STL provides a function to check if a type is trivial or not : std::is_trivial

 This code will print “false” for TypeD (because it is using a initialization

function → it will be discuss in the Initialization list chapter)

App.cpp

#include <type_traits>
#include <iostream>

class TypeD
{
 int x, y;
public:
 int z = 10;
 const char* ptr;
 void Set(int _x, int _y, int _z) { x = _x; y = _y; z = _z; }
};

void main()
{
 cout << std::boolalpha << std::is_trivial<TypeD>::value << endl;
}

POD

 Standard layout types means that:

o A type that has no virtual functions or virtual inheritance

o It has not data member that is a reference value

o All data members (except static ones) have the same access control

o All data members have a standard layout

o The diamond problems is not applied for the type (it has no two sub-classes that

are derived from the same class).

o The first member (non-static) of the class, is not of the same type as one of the

base classes (this is a condition related to empty base optimization problem)

 STL also provides a function that can be used to see if a type has a standard layout

or not: std::is_standard_layout

 A class or a struct that is trivial and has a standard layout is a POD (plain old

data). Scalar types (int,char, etc) are also considered to be POD.

POD

Empty base optimization

 Let’s consider the following code:

 The code compiles and the result is 1 byte for Base class and 4 bytes for

Derived class.

 Base class has 1 byte because it is empty (it has no fields).

App.cpp

class Base {};

class Derived : Base {
 int x;
};

void main()
{
 printf("SizeOf(Base) = %d\n", sizeof(Base));
 printf("SizeOf(Derived) = %d\n", sizeof(Derived));
}

POD

Empty base optimization

 Let’s consider the following code:

 The code compiles but now the size of Derived class is 8. Normally as Base

class is empty, the result should have been 4, but because the first member of

the class is of type Base it forces an alignment.

 This form of layout is considered to be non-standard.

App.cpp

class Base {};

class Derived : Base {
 Base b;
 int x;
};

void main()
{
 printf("SizeOf(Base) = %d\n", sizeof(Base));
 printf("SizeOf(Derived) = %d\n", sizeof(Derived));
}

POD

 Examples:

 This code will print “true,false” for MyType. It is not a standard layout

because if has both public and private members.

App.cpp

using namespace std;
#include <type_traits>
#include <iostream>

class MyType
{
 int x, y;
public:
 int z;
 const char* ptr;
 void Set(int _x, int _y, int _z) { x = _x; y = _y; z = _z; }
};

void main()
{
 cout << boolalpha << is_trivial<MyType>::value << "," << is_standard_layout<MyType>::value;
}

POD

 Examples:

 This code will print “true,true” for MyType.

App.cpp

using namespace std;
#include <type_traits>
#include <iostream>

class MyType
{
public:
 int x, y;
 int z;
 const char* ptr;
 void Set(int _x, int _y, int _z) { x = _x; y = _y; z = _z; }
};

void main()
{
 cout << boolalpha << is_trivial<MyType>::value << "," << is_standard_layout<MyType>::value;
}

POD

 Examples:

 This code will print “false,false” for MyType. It is not trivial nor standard

layout because it has a field that is of a reference value.

App.cpp

using namespace std;
#include <type_traits>
#include <iostream>

class MyType
{
public:
 int x, y;
 int& z;
 const char* ptr;
 void Set(int _x, int _y, int _z) { x = _x; y = _y; z = _z; }
};

void main()
{
 cout << boolalpha << is_trivial<MyType>::value << "," << is_standard_layout<MyType>::value;
}

POD

 Examples:

 This code will print “false,false” for MyType. It is not a standard layout
because MyType has a private member “Base::xx” . It is not trivial because
the constructor from class MyType is defined.

App.cpp

using namespace std;
#include <type_traits>
#include <iostream>

class Base
{

int xx;
};
class MyType: Base
{
public:

int x, y;
MyType() : x(0), y(1) {}

};
void main() {
 cout << boolalpha << is_trivial<MyType>::value << "," << is_standard_layout<MyType>::value;
}

Q & A

	Default Section
	Slide 1: OOP
	Slide 2: Summary

	Constant Expressions
	Slide 3: Constant expressions
	Slide 4: Constant expressions
	Slide 5: Constant expressions
	Slide 6: Constant expressions
	Slide 7: Constant expressions
	Slide 8: Constant expressions
	Slide 9: Constant expressions
	Slide 10: Constant expressions
	Slide 11: Constant expressions
	Slide 12: Constant expressions
	Slide 13: Constant expressions
	Slide 14: Constant expressions
	Slide 15: Constant expressions
	Slide 16: Constant expressions
	Slide 17: Constant expressions
	Slide 18: Constant expressions
	Slide 19: Constant expressions
	Slide 20: Constant expressions
	Slide 21: Constant expressions
	Slide 22: Constant expressions
	Slide 23: Constant expressions
	Slide 24: Constant expressions
	Slide 25: Constant expressions
	Slide 26: Constant expressions
	Slide 27: Constant expressions
	Slide 28: Constant expressions
	Slide 29: Constant expressions
	Slide 30: Constant expressions
	Slide 31: Constant expressions
	Slide 32: Constant expressions
	Slide 33: Constant expressions
	Slide 34: Constant expressions
	Slide 35: Constant expressions
	Slide 36: Constant expressions
	Slide 37: Constant expressions
	Slide 38: Constant expressions
	Slide 39: Constant expressions

	For each (Range-based for loop)
	Slide 40: For each (Range-based for loop)
	Slide 41: For each (Range-based for loop)
	Slide 42: For each (Range-based for loop)
	Slide 43: For each (Range-based for loop)
	Slide 44: For each (Range-based for loop)
	Slide 45: For each (Range-based for loop)
	Slide 46: For each (Range-based for loop)
	Slide 47: For each (Range-based for loop)
	Slide 48: For each (Range-based for loop)
	Slide 49: For each (Range-based for loop)
	Slide 50: For each (Range-based for loop)
	Slide 51: For each (Range-based for loop)
	Slide 52: For each (Range-based for loop)
	Slide 53: For each (Range-based for loop)
	Slide 54: For each (Range-based for loop)

	Type inference (auto)
	Slide 55: Type inference
	Slide 56: "auto" keyword
	Slide 57: "auto" keyword
	Slide 58: "auto" keyword
	Slide 59: "auto" keyword
	Slide 60: "auto" keyword
	Slide 61: "auto" keyword
	Slide 62: "auto" keyword
	Slide 63: "auto" keyword
	Slide 64: "auto" keyword
	Slide 65: "auto" keyword
	Slide 66: Type alias
	Slide 67: "auto" keyword
	Slide 68: " decltype " keyword
	Slide 69: " decltype " keyword
	Slide 70: " decltype " keyword
	Slide 71: " decltype " keyword
	Slide 72: " decltype " keyword
	Slide 73: “decltype" keyword

	Structured binding
	Slide 74: Structured binding (destructuring)
	Slide 75: Structured binding
	Slide 76: Structured binding
	Slide 77: Structured binding
	Slide 78: Structured binding
	Slide 79: Structured binding
	Slide 80: Structured binding
	Slide 81: Structured binding
	Slide 82: Structured binding
	Slide 83: Structured binding
	Slide 84: Structured binding
	Slide 85: Structured binding

	Static Polymorphism (CRTP)
	Slide 86: Static Polymorphism (CRTP)
	Slide 87: Static Polymorphism
	Slide 88: Static Polymorphism
	Slide 89: Static Polymorphism
	Slide 90: Static Polymorphism
	Slide 91: Static Polymorphism
	Slide 92: Static Polymorphism
	Slide 93: Static Polymorphism Polymorphic chaining
	Slide 94: Static Polymorphism Polymorphic chaining
	Slide 95: Static Polymorphism Barton–Nackman trick
	Slide 96: Static Polymorphism
	Slide 97: Static Polymorphism

	POD
	Slide 98: Plain Old Data (POD)
	Slide 99: POD
	Slide 100: POD
	Slide 101: POD
	Slide 102: POD
	Slide 103: POD
	Slide 104: POD
	Slide 105: POD Empty base optimization
	Slide 106: POD Empty base optimization
	Slide 107: POD
	Slide 108: POD
	Slide 109: POD
	Slide 110: POD

	Q & A
	Slide 111: Q & A

