
Course – 1
Gavrilut Dragos

rev 12

From C++ to Rust

Gavrilut Dragos

Philosophy

"You fight with the compiler, so you don’t fight
with runtime bugs."

A little bit of history …

What is Rust

Rust is an open-source general programming language that focuses on performance
and safety (memory safety / type safety). It is primarily used for building command
line tools, web applications, server apps or to be used in embedded systems.

Resource:

• Linux & Mac/OSX: run curl --proto '=https' --tlsv1.3 https://sh.rustup.rs -sSf | sh

• GitHub repo: https://github.com/rust-lang/rust

• Windows install link: https://www.rust-lang.org/tools/install
• Documentation: https://doc.rust-lang.org/book/

• Quick install: https://rustup.rs/

• Official site: https://www.rust-lang.org/

https://github.com/rust-lang/rust
https://www.rust-lang.org/tools/install
https://doc.rust-lang.org/book/
https://rustup.rs/
https://www.rust-lang.org/

Rust History

• 2006 → started as a project develop in Mozilla by Graydon Hoare

• 2010 → officially announced as a project

• 2015 → Rust 1.0 (first stable released announce)

• 2021 → Rust Foundation is formed, and the project is no longer
maintained solely by Mozilla. Companies that are part of Rust
Foundations are: AWS, Google, Huawei, Microsoft and Mozilla

• 2022 → Linus Torvalds announce that Rust is probably going to be
used in Linux Kernel in the near future

Rust History

• 2020 → Amazon announced its implication in using Rust as a
language for various project (AWS FireCracker being one of them)

Rust History

• 2020/Sep → While not confirmed by Apple, there are roomers that
Apple is also using Rust internally

Rust History

• 2021 → Google joins Rust Foundation with the director of
Engineering for the Android
Platform – Lars Bergstrom

Rust nation UK (2024)
https://www.youtube.com/watch?v=6mZRWFQRvmw&t=27012s

https://www.youtube.com/watch?v=6mZRWFQRvmw&t=27012s

Rust History

• 2022/Sep → Rust for Linux Kernel is announced to be released in
Linux kernel 6.1

Rust History

• 2022/Sep → Azure announce its support for Rust programming

Rust History

• Close after that event, Microsoft started to change some of its
internal code to Rust.

Rust History

• And after Microsoft Build
Conference from 2023,
Microsoft announces its
first kernel components
written in Rust as part of
their ecosystem.

Rust History

• In May.2024, Microsoft
donates 1M USD to Rust
Foundation to confirm
company interest in this
language.

Rust History

• Additionally, NSA has issued a document that suggest using memory
safety languages (such as Rust)

Rust History

• Finally, it is worth mention that Discord uses Rust on several backend
projects that require memory safety and increase performance:
https://discord.com/blog/search?query=rust

https://discord.com/blog/search?query=rust

Rust History

Other memorable notions:
• 2022 → CloudFlare announced Pingore (their proxy that connects Cloudflare to

Internet – written in Rust): https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-
cloudflare-to-the-internet/

• 2022 → Facebook announced their support for Rust for server side components:
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/

• 2022 → Google announced that they started to use Rust for Android to mitigate
risks: https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/

• 2023 → Github switch to a new search engine (BlackBird) written completely in
Rust: https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/

• 2023 → Meta announces Buck2 (a build system written in Rust):
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/

https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/

Rust History

Or other a little bit different:

Rust IDEs

• Visual Studio Code:
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer

• IntelliJ (RostOver):
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/

• Eclipse:
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-
includes-incubating-components

• Online IDE (Rust playground):
https://play.rust-lang.org/

• Other online compilers:
https://www.tutorialspoint.com/compile_rust_online.php
https://replit.com/languages/rust
https://www.onlinegdb.com/online_rust_compiler
https://rust.godbolt.org/

https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://play.rust-lang.org/
https://www.tutorialspoint.com/compile_rust_online.php
https://replit.com/languages/rust
https://www.onlinegdb.com/online_rust_compiler
https://rust.godbolt.org/

Rust Characteristics

• Strong-typed & statically typed language

• LLVM backend (native compiler) – gcc backend also a possibility in the future

• Ownership and lifetimes for variables

• Memory safety (allocation / access)

• No garbage collector

• Zero cost abstraction

• Move semantics

• Traits (for polymorphism)

• Package manager and build mechanisms

First Rust program

First RUST Program

• C-like syntax

fn main()
{
 print!("Hello world !");
}

Rust

First RUST Program

• C-like syntax

• However, there are some differences:
• A function in C is defined by writing the return type first, while in Rust a

function is defined using a special keyword fn

• “printf” is a function in C/C++, while “print!” is a macro in Rust

fn main()
{
 print!("Hello world !");
}

Rust

void main()
{
 printf("Hello world !");
}

C/C++

First RUST Program

• C-like syntax

• However, there are some differences:
• A function in C is defined by writing the return type first, while in Rust a

function is defined using a special keyword fn

• “printf” is a function in C/C++, while “print!” is a macro in Rust

• To specify the return value of a function, use the following syntax:
“-> <type>”

fn helloWorld() -> i32
{
 print!("Hello world !");
 return 0;
}

Rust

int helloWorld()
{
 printf("Hello world !");
 return 0;
}

C/C++

Create your very first RUST program

1. Using rustc (rust compiler) command line:

• Make sure that rust is installed

• Create a file in a folder named “first.rs” and insert into it the “hello
world example (the one with a main function)

• Run the following command from command line: rustc first.rs

• An executable file (e.g. first.exe if you run this command in Windows)
should appear in the first.rs file

• Run the executable file created on the precedent step (e.g. run
first.exe if you are on Windows)

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

• Make sure that rust is installed

• Run the following command from command line: cargo new first

• You should see a new folder (named first) that was created in the
current folder with the following structure:

\ Current folder

\first A folder that contains your first project

\first\.git A hidden folder with a git integration data

\first\.gitignore Ignore rules for git repo

\first\Cargo.toml Configuration file for first project (INI like format)

\src A folder with all rust sources

\src\main.rs The main file of the rust project

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

• Make sure that rust is installed

• Run the following command from command line: cargo new first

• You should see a new folder (named first) that was created in the
current folder with the following structure:

\ [package]
name = "first"
version = "0.1.0"
edition = "2022"

See more keys and their definitions at…

[dependencies]

\first

\first\.git

\first\.gitignore

\first\Cargo.toml

\src

\src\main.rs

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

• Make sure that rust is installed

• Run the following command from command line: cargo new first

• You should see a new folder (named first) that was created in the
current folder.

• Modify the “\src\main.rs” to contain the hello world example

• In folder “\first” execute the following command: cargo run

Create your very first RUST program

3. Try it using rust playground:

• Open a browser and go to
https://play.rust-lang.org/

• Write the hello world code

• Hit the Run button from
the top-left side of the
web-page

https://play.rust-lang.org/

Create your very first RUST program

4. Use different features from specialized IDEs:

• Use features such as create new project (IntelliJ) or various
command/prompts from Visual Studio Code

• In the backend the cargo utility is usually used

Rust vs other languages

Learning Curve

Language Learning Curve Key Challenges Ideal For

Python Easy
Minimal; focuses on readability
and simplicity

Beginners, data science, web
development

JavaScript Moderate
Asynchronous programming,
dynamic typing

Web development, full-stack
applications

Go Moderate
Understanding goroutines and
channels for concurrency

Backend services, cloud
applications

Java Moderate
Verbose syntax, object-oriented
concepts

Enterprise applications,
Android development

C++ Difficult
Manual memory management,
complex syntax

Systems programming, game
development

Rust Very Difficult
Ownership model, lifetimes,
borrow checker

Systems programming,
performance-critical apps

Learning Difficulty
Language Difficulty

HTML / CSS 10 / 100

Python 20 / 100

Ruby 30 / 100

JavaScript 40 / 100

C# 45 / 100

Switft 50 / 100

PHP 55 / 100

Go 60 / 100

Kotlin 65 / 100

Java 70 / 100

C++ 75 / 100

Rust 80 / 100

https://www.crossover.com/resources/12-programming-languages-ranked-by-difficulty-chart

https://www.crossover.com/resources/12-programming-languages-ranked-by-difficulty-chart

Rust vs C++

Rust vs C++

UN-INITIALIZED VARIABLES: In rust all variables, data members from
structure, enum variants, etc MUST be initialized (if they are not the
code will not compile)

fn main() {
 let a: i32;
 println!("{a}");
}

Rust

int main() {
 int a;
 printf("%d", a);
}

C/C++

Won’t compile → “a” was not
initialized

Compiles OK ! (behavior can
be changed with /SDl flag)

Rust vs C++

MISSING RETURN TYPE: In rust all functions / methods must return a
value if it is being specified in the method / function definition. Failing
to do this results in a compiler error.

fn foo(x: i32, y: i32) {

}

fn main() {
 let a: i32 = foo(10,20);
}

Rust

int foo(int x, int y) {

}
int main() {
 int a = foo(10, 20);
}

C/C++

Won’t compile → “foo” must
return a i32

Compiles OK ! (release mode)

Rust vs C++

IMPLICIT CASTS: In rust you CAN NOT convert a number of a different
type to another type IMPLICITELLY. You need to explicetely specify the
conversion.

fn main() {
 let a: bool = 123.5;
}

Rust

int main() {
 bool x = 123.10;
}

C/C++

Won’t compile → 123.5 is not
a bool value

Compiles OK ! (with warning)

Rust vs C++

EXHAUSTIVENESS CHECKING: In Rust, in a match (switch in C++) block
all possible values must be addressed. Failing to do so results in a
compiler error.

fn main() {
 let x: u8 = rand();
 match x {
 0 => print!("0"),
 1 => print!("1"),
 2 => print!("2"),
 3 => print!("3"),
 };
}

Rust

int main() {
 unsigned char x = rand();
 switch (x) {
 case 0: printf("0"); break;
 case 1: printf("1"); break;
 case 2: printf("2"); break;
 case 3: printf("3"); break;
 }
}

C/C++

Won’t compile → values from
4 to 255 were not addressed.

Compiles OK !

Rust vs C++ (Variables & Functions)

Feature C++ Rust

Variable implicit mutable state Mutable Immutable

Const type
Means a constant numerical value
or a value that can not be changed

Means a constant numerical.

Overflow operations Allowed, not managed Managed on DEBUG

Uninitialized variables Yes (possible) Not Possible

Missing return type for functions Yes (possible) Not Possible

Basic types with clear size
Partial (e.g. int, char might have
different representations)

Yes (i8, i16, i32, … u32, u64, …)

Larger types (128 bytes) No Yes (i128 and u128)

Implicit casts between basic types Yes No (not allowed)

String support Multiple (Ascii, WTF-16/32) UTF-8 (guaranteed)

Exhaustiveness Checking Not enforced Enforced at compile time

Rust vs C++

OWNERSHIP: A memory zone / a resource in Rust has ONLY ONE owner
(or more simply put, you can not have two variables that share the
same memory).

fn main() {
 let a = Box::new(5);
 let b = a;

 println!("{}", a);
}

Rust

int main() {
 int* a = new int(5);
 int* b = a;
 printf("%d", a);
}

C/C++

Won’t compile → “a” does not
have ownership anymore.

Compiles OK !

Rust vs C++

MOVE SEMANTICS: Most of the types in Rust use move-semantics (an
object is moved (ownership is transferred) and its lifetime ends (the
source object is destroyed).

fn process(s: String) {
 println!("S = {s}");
}
fn main() {
 let s = String::from("ABC");
 process(s);
 println!("{s}");
}

Rust

#include <string>
#include <iostream>

void process(std::string s) {
 std::cout << s;
}
int main() {
 std::string s = "ABC";
 process(s);
 std::cout << s;
}

C/C++

Won’t compile → println!(“{s}”) won’t wok
because “s” does not exists anymore

Compiles OK !

Rust vs C++

BORROWING LOGIC: An object can borrow either multiple immutable
references or ONE and only ONE mutable reference (every other
combination is not allowed).

fn main() {
 let mut s = String::from("ABC");
 let r1 = &s;
 let r2 = &mut s;
 println!("{r1}");
}

Rust

fn main() {
 let s = String::from("ABC");
 let r1 = &s;
 let r2 = &s;
 println!("{r1}");
}

Rust

Won’t compile → we have both a mutable
and immutable references at the same time

Compiles OK !
(multiple immutable references)

Rust vs C++

LIFETIME LOGIC: References have lifetime associated with lifetime rules
and relations that Rust uses the validate if a reference exists (is being
used outside its lifetime / scope)

fn foo<'a>(a: &'a str,
 b: &'a str) -> &'a str {
 a
}
fn main() {
 let result;
 {
 let s1 = String::from("h");
 let s2 = String::from(“w");
 result = foo(&s1, &s2);
 }
 println!("{}", result);
}

Rust

const char* foo(const char* a, const char* b)
{
 return a;
}
int main() {
 const char* result;
 {
 std::string s1 = "h";
 std::string s2 = “w";
 result = foo(s1.c_str(), s2.c_str());
 }
 std::cout << result;
}

C/C++

Won’t compile → because result lives more
than s1 and s2 (longer lifetime)

Compiles OK !
(even if result points to an invalid memory address)

Rust vs C++ (Memory Overview)

Feature C++ Rust

Manual Memory
new/delete or smart pointers
(unique_ptr, etc.)

Ownership and borrowing system
(no manual free)

Garbage Collector No (manual delete object) No (Automatic clean up)

Undefined Behavior Yes (possible) Not Possible

Use after free Yes (possible) Not Possible

NULL pointer associated risks
Yes (possible)
(via NULL or nullptr)

Not Possible
(there is no null pointer in Rust)

Dangling pointers Yes (possible) Not Possible

Lifetime support No Yes (implicit for each reference)

Thread safety Manual Enforced at compile time

Exception support Yes No

Error handling Not enforced
Enforced at compile time via
Result<T,R> or Option<T>

Rust vs C++

ALGEBRAIC DATA TYPE: An enum in Rust can have different data types
for each of its fields. It can also be a regular enum (just like the ones
from C/C++)

enum Color {
 Red,
 Green,
 Blue,
}

enum ComplexColor {
 Red,
 Green,
 Blue,
 RGB(u32),
 ARGB(u8,u8,u8,u8),
 Named(String)
}

Rust

enum Color {
 Red,
 Green,
 Blue,
}

C/C++

Rust vs C++

SELF-CONSUME: In Rust you can create a method in a struct that can
consume the instance (e.g. make sure that after the execution of that
method the instance is destroyed).

struct Game {
 score: i32,
}
impl Game {
 fn run(self) {}
}

fn main() {
 let g = Game { score: 10 };
 g.run();
 g.run();
}

Rust

struct Game {
 int score;
 void Run() { }
};

int main() {
 Game g;
 g.score = 0;
 g.Run();
 g.Run();
 g.Run();
}

C/C++

Won’t compile → after the first call
“g.run()”, g variable does not exists any more

Compiles OK !
(even if the game should be run only once)

Rust vs C++ (Classes)

Feature C++ Rust

Encapsulation private, protected, public modifiers via pub and modules

Extending existing class No Yes

Inheritance Yes No

Method overloading Yes (possible) Not Possible

Virtual methods / Polymorphism Yes (possible) Yes (highly efficient)

Interfaces Partial (through abstract classes) Yes (with traits)

Constructors Yes No

Copy/Move constructors/assign. Manual or Implcit (unsafe) Yes (safe and fast)

Destructors Yes Yes (with traits – via drop)

Friend functions Yes No

Operator overloading Yes Yes

Self consume capacity No Yes

Rust vs C++

TUPLES: Rust supports tuples (just like Python) that can be used to
return any multiple data from any function. The same can be achived in
C++ using std::pair (but it is not language specific)

fn foo(x: i32, y: i32) -> (i32, i32)
{
 (x + y, x * y)
}

fn main()
{
 let (s,p) = foo(10, 20);
}

Rust

#include <iostream>
#include <utility>

std::pair<int, int> foo(int x, int y)
{
 return {x + y, x * y};
}

int main() {
 auto [s, p] = foo(10, 20);
}

C/C++

Rust vs C++

LAMBDA FUNCTIONS: In Rust you can create a method in a struct that
can consume the instance (e.g. make sure that after the execution of
that method the instance is destroyed).

fn main() {
 let mut x = 1;
 let print_x = || {
 println!("x={}",x);
 x+=1;
 };
 println!("x from main = {}",x);
 print_x();
}

Rust #include <iostream>

int main() {
 int x = 1;

 auto print_x = [&x]() {
 std::cout << "x=" << x
 << std::endl;
 x += 1;
 };
 std::cout << "x from main = "
 << x << std::endl;
 print_x();
 return 0;
}

C/C++

Won’t compile → because is is a mutable reference in a
lambda (can not be used as a immutable reference in main)

Compiles OK !
(even if x is shared)

Rust vs C++

ITERATOR CHAIN: Rust allows the result of one iterator to be the input
of another one. Using this techniques sequences of data can be easily
converted / process.

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 let s:i32 = a.iter()
 .skip(3)
 .take(4)
 .inspect(|x| println!{"{:?}",*x})
 .sum();
 println!("sum is {}",s);
}

Rust

int main() {
 std::vector<int> a = {1,2,3,4,5,6,7,8,9};
 auto begin = std::next(a.begin(), 3);
 auto end = std::next(begin, 4);
 int sum = 0;
 for (auto it = begin; it != end; ++it) {
 std::cout << *it << "\n";
 sum += *it;
 }
 std::cout << "sum is " << sum << "\n";
 return 0;
}

C/C++

Rust vs C++ (Data structures)

Feature C++ Rust

Tuples Yes (via std::pair) Implicit (as part of the language)

Type alias Yes (typedef & using) Yes

New type idiom Partial (through wrapper classes) Yes

Tree structures Yes Yes

Graph (maybe bi-oriented),
Double linked list

Yes
Complicated
(due to ownership requirements)

Vectors, Maps, Sets Yes (from std) Yes (implicit - part of the Rust core)

Iterator chaining Partial (but supported) Yes

Templates/Generics Yes (With a limited constrains) Yes (with a complex constrain)

Smart pointers Not implicit (you need to use std) Implicit (as part of the language)

Lambda Yes (but unsafe) Yes (safe)

Rust vs C++

MACROS: In Rust , macros are evaluated over the AST (Abstract Syntax
Tree) and as such avoid several pitfalls that come with a simple
subsitusion. Parameters must be explained (e.g. expression, const, etc)

macro_rules! multiply {
 ($p1: expr , $p2: expr) => {
 $p1 * $p2
 };
}
fn main() {
 let z = multiply!(1 + 2, 3 + 1);
 println!("{z}");
}

Rust

#include <iostream>

#define MULTIPLY(x,y) x*y

void main() {
 auto z = MULTIPLY(1+2,3+1);

printf("%d,%d,%d",x,y,z);
}

C/C++

Compiles but prints 8
(8 = 1 + 2*3 + 1 = 1+6+1)

Compiles OK (and prints 12)

Rust vs C++

RECURSIVE MACROS: Rust macros support recursion. There are some
limitations on how many such calls the compiler will do, but they can be
overwritten by the use of #![recursion_limit = "256"] (with different values).

macro_rules! count {
 () => {0usize};
 ($first:tt) => {1usize};
 ($first:tt,$($tail:tt),*)=> {
 1usize + count!($($tail),*)
 }
}
fn main() {
 let x = count!(1,2,3,4,5);
 println!("{x}");
}

Rust

Compiles OK

Rust vs C++

PROCEDURAL MACROS: In Rust , you can write a form of compiler
extension that creates
Rust code that will further
be compiled and executed

#[EnumBitFlags(bits=16]
pub enum Test_16bit {
 V1 = 1,
 V2 = 2,
 V3 = 4,
 V4 = 0x8000
}

Rust

#[derive(Copy, Clone, Debug)]
pub struct Test_16Bits { value: u16 }
impl Test_16Bits {
 pub const V1: Test_16Bits = Test_16Bits { value: 0x1u16 };
 pub const V2: Test_16Bits = Test_16Bits { value: 0x2u16 };
 pub const V3: Test_16Bits = Test_16Bits { value: 0x4u16 };
 pub const V4: Test_16Bits = Test_16Bits { value: 0x8000u16 };
 pub const None: Test_16Bits = Test_16Bits { value: 0 };

 pub fn contains(&self, obj: Test_16Bits) -> bool {…}
 pub fn contains_one(&self, obj: Test_16Bits) -> bool {…}
 pub fn is_empty(&self) -> bool {…}
 pub fn clear(&mut self) {…}
 pub fn remove(&mut self, obj: Test_16Bits) {…}
 pub fn set(&mut self, obj: Test_16Bits) {…}
 pub fn get_value(&self) -> u16 {…}
}
impl std::ops::BitOr for Test_16Bits {…}
impl std::ops::BitOrAssign for Test_16Bits {…}
impl std::ops::BitAnd for Test_16Bits {…}
impl std::ops::BitAndAssign for Test_16Bits {…}
impl std::cmp::PartialEq for Test_16Bits {…}
impl std::default::Default for Test_16Bits {…}
impl std::fmt::Display for Test_16Bits {…}

Rust (resulted code)

Rust vs C++ (Macros)

Feature C++ Rust

Type Preprocessor (text substitution) Hygienic (work at AST level)

Compile-time execution No Yes (expend into valid Rust code)

Hygiene (name safety) No Yes (prevents name collisions)

Debug support No Yes (compiler aware)

Error messages
Poor — errors reported after
expansion

Excellent — errors often point to
macro definition

Parameter parsing
Very weak — no parsing, just token
substitution

Strong pattern matching and
repetition with $() syntax

Use cases
Constants, small functions,
platform-specific code

DSLs, declarative code, boilerplate
reduction, metaprogramming

Procedural macros (compiler
extensions)

No Yes (powerful support)

Recursive calls No Yes (configurable recursive depth)

Rust vs C++

DATA RACES: Rust can statically (at compile time) analyze cases where a
reference is used in multiple threads (that could lead to data races) and
not allow them.

use std::rc::Rc;
use std::thread;

fn main() {
 let data = Rc::new(42);

 let h = thread::spawn(move || {
 println!("Value = {}", data);
 });

 h.join().unwrap();
}

Rust

#include <thread>
int main() {
 int data = 42;

 std::thread handle([&data]() {
 std::cout << "Value = "
 << data
 << std::endl;
 });

 handle.join();
}

C/C++

Won’t compile → because data can not be
moved from the main thread to another thread)

Compiles and Run !
(but allows access to a stack variable from a different thread)

A channel is MPSC (Multiple Producers Single Consumer) mechanism that can be used
to send data from one thread to another.

Rust Channels

Thread-1 Producer-1

Thread-2 Producer-2

Thread-3 Producer-3

Thread-n Producer-n

Eve
n

t fro
m

 P
ro

d
u

ce
r-3

Eve
n

t fro
m

 P
ro

d
u

ce
r-2

Eve
n

t fro
m

 P
ro

d
u

ce
r-n

A
n

o
th

er eve
n

t fro
m

 P
ro

d
u

ce
r-3

Eve
n

t fro
m

 P
ro

d
u

ce
r-K

Message Queue

Sends
Event

Sends
Event

Sends
Event

Sends
Event

Another
Thread

Consumer
Receives

Event

Using channels (example)

Rust Channels

use std::sync::mpsc;

struct Message { id: u32, text: String }
impl Message { fn new(id: u32, text: &str) -> Self {…} }

fn main() {
 let mut v = Vec::new();
 {
 let (producer, receiver) = mpsc::channel::<Message>();
 v.push(std::thread::spawn(move || loop {…}));
 for i in 0..5 {
 let th_producer = producer.clone();
 v.push(std::thread::spawn(move || {…}));
 }
 }
 for th in v { th.join().unwrap(); }
 println!("All threads finished");
}

Rust (main)
Output (possible)

Received : Hello from 0
Received : Hello from 2
Received : Hello from 2
Received : Hello from 3
Received : Hello from 3
Received : Hello from 4
Received : Hello from 4
Received : Hello from 4
Received : Hello from 1
Terminate the receiver thread
All threads finished

Rust vs C++ (Synchronization)

Feature C++ Rust

Data races Possible and undefined behavior Not possible (safe)

Mutex & Locks Yes Yes

Atomic types Yes Yes

Conditional variables Yes Yes

Channels No Yes (part of the standard library)

Async/await syntax No (maybe in C++26) Yes

Async runtimes No Yes (tokio, async-std, etc)

Green threads No
Yes - via async runtimes (non-
blocking tasks, cooperative
scheduling)

Let’s see a simple example (with code and cargo.toml).

There are two options to run this program:
1. Run “cargo run --features METHOD_A”

Conditional Compilation

#[cfg(feature = "METHOD_A")]
fn foo() {
 println!("Method A");
}
#[cfg(feature = "METHOD_B")]
fn foo() {
 println!("Method B");
}
fn main() {
 foo();
}

Rust

[package]
name = "my_app"
version = "0.1.0"
edition = "2021"

[features]
METHOD_A = []
METHOD_B = []

cargo.toml

#ifdef METHOD_A
 void foo() {
 printf("Method A");
 }
#endif

#ifdef METHOD_B
 void foo() {
 printf("Method B");
 }
#endif

void main() {
 foo();
}

C++ (equivalent code)

Rust allows to write unit tests within your own codebase that validate
that your code runs as expected

Rust unit tests

pub fn add(x: u8, y: u8) -> Option<u8> {
 let result = (x as u32) + (y as u32);
 if result > 255 {
 return None;
 }
 return Some(result as u8);
}

#[test]
fn check_add() {
 assert!(add(1,2)==Some(3));
 assert_eq!(add(100,155),Some(255));
 assert_ne!(add(0,0),Some(1));
}
#[test]
fn check_overflow() {
 assert_eq!(add(200,200),None);
 assert_ne!(add(100,100),None);
}

Rust (main.rs)

To write a documentation, use /// characters (on multiple lines) to explain (in
Markdown format what that function / module is doing).

Rust Documentation (Function/Module)

/// Divides `x` to `y`. If `y` is 0 than it returns None,
/// otherwise it returns Some(x/y)
///
/// # Example
///
/// ```
/// if let Some(result) = div(5/2) {
/// println!("Result is {result}");
/// } else {
/// println!("Division by 0");
/// }
fn div(x: i32, y: i32) -> Option<i32> {
 if y != 0 {
 Some(x / y)
 } else {
 None
 }
}

Rust

Rust vs C++ (CI/CD)

Feature C++ Rust

Build System Fragmented (Make, CMake, Ninja,etc.) Unified: [cargo build]

Cross Platform Builds No Yes

Crate Publishing No Yes (crates.io)

Version pinning No enforcements Strictly versioned via cargo file

Doc generation Not implicit (3rd party tools) Yes, auto generated (rustdoc)

Testing documentation No Yes, automatic via cargo test

Hosted documentation No (manually hosted / updated) Yes, on docs.rs

Unit testing Not implicit (only via 3rd party tools) Yes, implicit, via #[test]

Code coverage Not implicit (only via 3rd party tools) Yes, implicit, via cargo tarpaulin

Benchmarking Not implicit (only via 3rd party tools) Built-in but nightly #[bench]

Linter support / Static analysis 3rd party tools (clang-tidy, cppcheck) Yes, implicit, via cargo clippy

Code formatting clang-format (needs config per project) Yes, implicit, via cargo fmt

Optimizations

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

Where:
• rdi = input
• rsi = output

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

Why do we have this difference ?

Notice that we have used the += operator. This means that the compiler first
needs to read the value from the pointer output, then add to that value the value
from pointer input, and finally write the new value into the output pointer.

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

Why do we have this difference ?

However, there is no guarantee that the output pointer can’t be access from a
different thread. As such, the compiler has to write the new value to output
pointer so that if another thread is trying to read it, it will read a correct value.
This also means that it has to perform a similar write for the second operation !

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

On the other hand, Rust knows that since output is a mutable reference, there is
only one such reference and no other thread can access it. Because of this, it

does not have to write the value after the first call to += operator. Furthermore,
since there can not be mutable reference towards the input variable (as there is

already an immutable one), it can reuse its value for the second operation.

Map comparation between C++
and Rust

Let’s compare how various types of maps work on Rust and C++.

For this we will use:
• std::map (C++)

• std::unordered_map (C++)

• HashMap (Rust)

• BTreeMap (Rust)

The same algorithm will be written in both Rust and C++ and tested in Debug and Release
mode. We will use GetTickCount API to measure time. Each variation of the build will be
executed for 10 times and the average will be compute.

C++ vs Rust (on maps)

So … lets see the testing algorithm:

C++ vs Rust (on maps)

extern "system" { fn GetTickCount64() -> u64; }
fn get_time() -> u64 { unsafe { GetTickCount64() } }

use std::collections::{BTreeMap, HashMap};

#[derive(Debug, Copy, Clone)]
struct Test { v1: u64, v2: f32, v3: bool }

fn main() {
 let mut m: HashMap<u32, Test> = HashMap::new();
 let start = get_time();
 for i in 0..1_000_000 {
 let t = Test { v1: i as u64, v2: 1.5,v3: i%2==0};
 m.insert(i, t);
 }
 let end = get_time();
 println!("{}", end - start);
}

Rust

#include <Windows.h>
#include <map>
#include <unordered_map>
struct Test {
 unsigned long long v1;
 float v2;
 bool v3;
};
void main() {
 std::unordered_map<unsigned int, Test> m;
 auto start = GetTickCount64();
 for (auto i = 0; i < 1000000; i++) {
 m[i] = Test{ (unsigned long long)i,
 1.5,i % 2 == 0 };
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

So … lets see the testing algorithm:

C++ vs Rust (on maps)

extern "system" { fn GetTickCount64() -> u64; }
fn get_time() -> u64 { unsafe { GetTickCount64() } }

use std::collections::{BTreeMap, HashMap};

#[derive(Debug, Copy, Clone)]
struct Test { v1: u64, v2: f32, v3: bool }

fn main() {
 let mut m: HashMap<u32, Test> = HashMap::new();
 let start = get_time();
 for i in 0..1_000_000 {
 let t = Test { v1: i as u64, v2: 1.5,v3: i%2==0};
 m.insert(i, t);
 }
 let end = get_time();
 println!("{}", end - start);
}

Rust

#include <Windows.h>
#include <map>
#include <unordered_map>
struct Test {
 unsigned long long v1;
 float v2;
 bool v3;
};
void main() {
 std::unordered_map<unsigned int, Test> m;
 auto start = GetTickCount64();
 for (auto i = 0; i < 1000000; i++) {
 m[i] = Test{ (unsigned long long)i,
 1.5,i % 2 == 0 };
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

We will run the same algorithm using:
• HashMap
• BTreeMap

We will run the same algorithm using:
• std::unordered_map
• std::map

So … lets see the testing algorithm:

C++ vs Rust (on maps)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
C++ (Debug)
std:unordered_map 938 1266 1390 1328 1250 1297 1250 1344 1485 1437 1298
C++ (Release)
std:unordered_map 297 234 235 281 266 266 234 235 234 234 251
C++ (Debug)
std::map 1312 1765 1953 1875 1875 1859 1813 1812 1797 1828 1788
C++ (Release)
std::map 156 141 172 157 141 171 172 156 172 156 159
Rust (Debug)
HashMap 1141 1297 1265 1250 1281 1312 1359 1297 1343 1297 1284
Rust (Release)
HashMap 78 78 63 78 78 94 93 94 94 94 84
Rust (Debug)
BTreeMap 2703 3156 3078 2906 2765 2875 2937 2844 2860 2781 2890
Rust (Release)
BTreeMap 93 93 109 110 125 110 125 141 125 125 115

The general conclusion after these tests is:

• Rust is slower the C++ when it comes to debug mode (due to many checks)

• In terms of Release mode, Rust is faster (however, it should be noted that we are
not comparing the same algorithms and as such these tests might NOT be
correct). However, since we’ve compared the standard algorithms from each
(Rust and C++) libraries, the results are however relevant.

• The tests were performed on Windows 11 (using Microsoft compiler). To produce
accurate results, other C++ compilers (such as clang and gcc) should be tested as
well.

C++ vs Rust (on maps)

Vector comparation between C++
and Rust

Let’s compare how efficient vector push method is for both C++ and Rust.

Vectors

extern "system" {
 fn GetTickCount64 () -> u64;
}
fn get_time () -> u64 {
 unsafe { GetTickCount64() }
}
#[derive(Debug,Copy,Clone)]
struct Test { v1: i32, v2: f32, v3: char, v4: [u8;256] }
fn main() {
 let mut v: Vec<Test> = Vec::new();
 let t = Test{v1:5,v2:1.3,v3:'A',v4:[48u8;256]};
 let start = get_time();
 for i in 0..10_000_000 {
 v.push(t);
 }
 let end = get_time();
 println!("{}",end-start);
}

Rust

#include <Windows.h>
#include <vector>
struct Test {
 int v1;
 float v2;
 char32_t v3;
 uint8_t v4[256];
};
void main() {
 std::vector<Test> v;
 Test t;
 auto start = GetTickCount64();
 for (auto i = 0; i < 10000000; i++) {
 v.push_back(t);
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

Both codes were teste in the same environment, for 10 times and the
average was recorded. All tests were run on x64 architecture (Debug and
Release). Times are measures in milliseconds.
Keep in mind that GetTickCount function has an error margin of 16ms.

Vectors

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
C++

(Debug) 2562 2562 2640 2578 2578 2515 2562 2578 2562 2547 2568
Rust

(Debug) 1922 1844 1860 1843 1812 1813 1797 1781 1828 1813 1831
C++

(Release) 1828 1781 1797 1781 1781 1781 1797 1797 1821 1797 1796
Rust

(Release) 1750 1750 1688 1719 1687 1703 1719 1687 1703 1687 1709

As a general conclusion, when it comes to vectors (and copying object not
moving them), Rust is faster than C/C++ (in both debug and release
modes).

We should point out that the build that was tested for C++ was compiled
with Microsoft compiler (cl.exe) and it does not reflect results for gcc or
clang (that might optimize the C++ code in a different way).

However, the question still remains on what's different in Rust vs C++ in
terms of how vector works ?

Vectors

So … the difference lies in how growth algorithm works for those two
cases (Rust and C++).

Vectors

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0

3
0

0
0

0
0

6
0

0
0

0
0

9
0

0
0

0
0

1
2

0
0

0
0

0

1
5

0
0

0
0

0

1
8

0
0

0
0

0

2
1

0
0

0
0

0

2
4

0
0

0
0

0

2
7

0
0

0
0

0

3
0

0
0

0
0

0

3
3

0
0

0
0

0

3
6

0
0

0
0

0

3
9

0
0

0
0

0

4
2

0
0

0
0

0

4
5

0
0

0
0

0

4
8

0
0

0
0

0

5
1

0
0

0
0

0

5
4

0
0

0
0

0

5
7

0
0

0
0

0

6
0

0
0

0
0

0

6
3

0
0

0
0

0

6
6

0
0

0
0

0

6
9

0
0

0
0

0

7
2

0
0

0
0

0

7
5

0
0

0
0

0

7
8

0
0

0
0

0

8
1

0
0

0
0

0

8
4

0
0

0
0

0

8
7

0
0

0
0

0

9
0

0
0

0
0

0

9
3

0
0

0
0

0

9
6

0
0

0
0

0

9
9

0
0

0
0

0

C
ap

ac
it

y

Insertion

Rust

C++

So … lets see the behavior if we reserve the memory from the start.

Vectors

extern "system" {
 fn GetTickCount64 () -> u64;
}
fn get_time () -> u64 {
 unsafe { GetTickCount64() }
}
#[derive(Debug,Copy,Clone)]
struct Test { v1: i32, v2: f32, v3: char, v4: [u8;256] }
fn main() {
 let mut v: Vec<Test> = Vec::with_capacity(10_000_000);
 let t = Test{v1:5,v2:1.3,v3:'A',v4:[48u8;256]};
 let start = get_time();
 for i in 0..10_000_000 {
 v.push(t);
 }
 let end = get_time();
 println!("{}",end-start);
}

Rust
#include <Windows.h>
#include <vector>
struct Test {
 int v1;
 float v2;
 char32_t v3;
 uint8_t v4[256];
};
void main() {
 std::vector<Test> v;
 Test t;
 v.reserve(10000000);
 auto start = GetTickCount64();
 for (auto i = 0; i < 10000000; i++) {
 v.push_back(t);
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

Test were performed in a similar manner like the previous ones (Debug
and Release, 10 iterations and we compute the average).

Keep in mind that there is an error margin of 16 ms for GetTickCount API.
This means that the difference between C++ and Rust is insignificant (we
can consider both at the same level).

Vectors

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
C++

(Debug) 782 766 781 766 781 766 797 797 828 781 784
Rust

(Debug) 984 1094 1063 1031 875 1032 1016 860 906 859 972
C++

(Release) 547 532 531 515 500 515 516 500 531 531 521
Rust

(Release) 532 500 531 516 562 531 547 547 547 515 532

Language Time Peak Memory Version

Rust 247ms 4.9MB rustc 1.89.0-nightly

Rust 291ms 4.8MB rustc 1.87.0

C 332ms 6.0MB zigcc 0.14.1

C-Sharp 332ms 37.3MB dotnet 9.0.300

C 452ms 6.5MB clang 14.0.0-1ubuntu1.1

C 543ms 6.6MB gcc 15.1.0

Nim 578ms 4.5MB nim 2.2.4

Java 1162ms 55.7MB openjdk 23

Java 1167ms 54.6MB openjdk 21

Java 1194ms 108.9MB graal/jvm 17.0.8

Go 3230ms 7.7MB go 1.24.3

Other tests (Mandelbrot)

https://programming-language-benchmarks.vercel.app/problem/mandelbrot

The Mandelbrot test is a benchmarking
exercise that measures the performance
of a programming language or compiler
by computing and rendering the
Mandelbrot fractal.

What It Measures:
• Raw CPU performance
• Loop optimization
• Floating-point performance
• Parallelism or threading efficiency
• Compiler code generation quality

https://programming-language-benchmarks.vercel.app/rust
https://programming-language-benchmarks.vercel.app/rust
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/c
https://programming-language-benchmarks.vercel.app/c
https://programming-language-benchmarks.vercel.app/nim
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/go
https://programming-language-benchmarks.vercel.app/problem/mandelbrot

Language Time
(sec)

Memory
(MB)

1 Rust 0.95 35,598
2 Chapel 1.18 42,156
3 Julia 1.54 357,138
4 C gcc 1.64 35,582
5 C++ g++ 2.36 38,281
6 Intel Fortran 2.72 85,975
7 Go 3.77 37,970
8 Free Pascal 3.91 35,529
9 Java 3.96 58,348
10 Ada 2012 4.01 41,099
11 C# 4.02 40,743
12 Node.js 4.05 144,757
13 Lisp 4.20 60,654

Other tests (Mandelbrot)

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
(code that have possible hand-written vector instructions or "unsafe“ was removed)

The Mandelbrot test is a benchmarking
exercise that measures the performance
of a programming language or compiler
by computing and rendering the
Mandelbrot fractal.

What It Measures:
• Raw CPU performance
• Loop optimization
• Floating-point performance
• Parallelism or threading efficiency
• Compiler code generation quality

Language Time
(sec)

Memory
(MB)

14 Dart 4.29 45,175
15 Haskell 6.64 51,057
16 F# 7.17 49,979
17 Swift 7.27 49,312
18 OCaml 7.60 64,643
19 Erlang 53.86 98,140
20 PHP 68.29 53,531
21 Ruby 143.13 118,436
22 Lua 159.01 652,796
23 Python 3 182.94 62,173
24 PHP 258.19 16,437
25 Smalltalk >5min 175,542
26 Perl >8min 114,569

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html

Q
A&

	Default Section
	Slide 1: Course – 1 Gavrilut Dragos
	Slide 2: Philosophy

	Intro
	Slide 3: A little bit of history …
	Slide 4: What is Rust
	Slide 5: Rust History
	Slide 6: Rust History
	Slide 7: Rust History
	Slide 8: Rust History
	Slide 9: Rust History
	Slide 10: Rust History
	Slide 11: Rust History
	Slide 12: Rust History
	Slide 13: Rust History
	Slide 14: Rust History
	Slide 15: Rust History
	Slide 16: Rust History
	Slide 17: Rust History
	Slide 18: Rust IDEs
	Slide 19: Rust Characteristics

	First rust program
	Slide 20: First Rust program
	Slide 21: First RUST Program
	Slide 22: First RUST Program
	Slide 23: First RUST Program
	Slide 24: Create your very first RUST program
	Slide 25: Create your very first RUST program
	Slide 26: Create your very first RUST program
	Slide 27: Create your very first RUST program
	Slide 28: Create your very first RUST program
	Slide 29: Create your very first RUST program

	Rust vs others
	Slide 30: Rust vs other languages
	Slide 31: Learning Curve
	Slide 32: Learning Difficulty

	Rust vs C++
	Slide 33: Rust vs C++
	Slide 34: Rust vs C++
	Slide 35: Rust vs C++
	Slide 36: Rust vs C++
	Slide 37: Rust vs C++
	Slide 38: Rust vs C++ (Variables & Functions)
	Slide 39: Rust vs C++
	Slide 40: Rust vs C++
	Slide 41: Rust vs C++
	Slide 42: Rust vs C++
	Slide 43: Rust vs C++ (Memory Overview)
	Slide 44: Rust vs C++
	Slide 45: Rust vs C++
	Slide 46: Rust vs C++ (Classes)
	Slide 47: Rust vs C++
	Slide 48: Rust vs C++
	Slide 49: Rust vs C++
	Slide 50: Rust vs C++ (Data structures)
	Slide 51: Rust vs C++
	Slide 52: Rust vs C++
	Slide 53: Rust vs C++
	Slide 54: Rust vs C++ (Macros)
	Slide 55: Rust vs C++
	Slide 56: Rust Channels
	Slide 57: Rust Channels
	Slide 58: Rust vs C++ (Synchronization)
	Slide 59: Conditional Compilation
	Slide 60: Rust unit tests
	Slide 61: Rust Documentation (Function/Module)
	Slide 62: Rust vs C++ (CI/CD)

	Optimizations
	Slide 63: Optimizations
	Slide 64: Optimizations
	Slide 65: Optimizations
	Slide 66: Optimizations
	Slide 67: Optimizations

	Statistics
	Slide 68: Map comparation between C++ and Rust
	Slide 69: C++ vs Rust (on maps)
	Slide 70: C++ vs Rust (on maps)
	Slide 71: C++ vs Rust (on maps)
	Slide 72: C++ vs Rust (on maps)
	Slide 73: C++ vs Rust (on maps)
	Slide 74: Vector comparation between C++ and Rust
	Slide 75: Vectors
	Slide 76: Vectors
	Slide 77: Vectors
	Slide 78: Vectors
	Slide 79: Vectors
	Slide 80: Vectors
	Slide 81: Other tests (Mandelbrot)
	Slide 82: Other tests (Mandelbrot)

	Basic blocks
	Slide 83

