
PROGRAMMING IN PYTHON
Gavrilut Dragos

Course 1

(rev.3)



ADMINISTRATIVE
Final grade for the Python course is computed using Gauss over the total points 
accumulated.

One can accumulate a maximum of 300 of points:

 A lab project (developed between week 8 and week 14)  - up to 100 points. Projects selection will be 
decided in week 8

 Lab activity - maximum of 8 points / lab (starting with lab2) => 8 x 6 = 48 points

 Lab test (week 8) - up to 52 points

 Maximum 100 points at the final examination (course)

The minimum number of points that one needs to pass this exam:

 120 points summed up from all tests

 30 points minimum for each category (course,  project and lab activity + lab test)

Course page: https://gdt050579.github.io/python-course-fii/

https://gdt050579.github.io/python-course-fii/


HISTORY
1980 – first design of Python language by Guido van Rossum

1989 – implementation of Python language started

2000 – Python 2.0 (garbage collector, Unicode support, etc)

2008 – Python 3.0 

2020 – Python 2 is discontinued

Current Versions:
❖ 2.x → 2.7.18 (20.Apr.2020) 

❖ 3.x → 3.12.7 (01.Oct.2024)

Download python from: https://www.python.org

Help available at : https://docs.python.org/3/

Python coding style: https://www.python.org/dev/peps/pep-0008/#id32

https://www.python.org/
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/#id32


GENERAL INFORMATION

➢ Companies that are using Python: Google, Reddit, Yahoo, NASA, Red Hat, Nokia, IBM, etc

➢ TIOBE Index for September 2021→ Python is ranked no. 2 (Sep. 2021) ➔
https://www.tiobe.com/tiobe-index/python/

➢ Default for Linux and Mac OSX distribution (both 2.x and 3.x versions)

➢ Open source

➢ Support for almost everything: web development, mathematical complex computations, 
graphical interfaces, etc.

➢ .Net implementation ➔ IronPython ( http://ironpython.net ) for 2.x version

http://ironpython.net/


CHARACTERISTICS

❖ Un-named type variable

❖ Duck typing → type constrains are not checked during compilation phase

❖ Anonymous functions (lambda expressions)

❖ Design for readability (white-space indentation)

❖ Object-oriented programming support

❖ Reflection

❖ Metaprogramming → the ability to modify itself and create new types during 
execution



ZEN OF PYTHON
Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than 
complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough 
to break the rules.

Although practicality beats purity.

Errors should never pass silently.

In the face of ambiguity, refuse the 
temptation to guess.

There should be one-- and 
preferably only one --obvious way 
to do it.

Although that way may not be 
obvious at first unless you're Dutch.

Unless explicitly silenced.

Now is better than never.

Although never is often better than 
*right* now.

If the implementation is hard to 
explain, it's a bad idea.

If the implementation is easy to 
explain, it may be a good idea.

Namespaces are one honking 
great idea -- let's do more of 

those!



PYTHON EDITORS
Notepad++ ➔ https://notepad-plus-plus.org/downloads/v7.7.1/

Komodo IDE ➔ http://komodoide.com

PyCharm ➔ https://www.jetbrains.com/pycharm/

VSCode ➔ https://marketplace.visualstudio.com/items?itemName=donjayamanne.python

Eclipse ➔ http://www.liclipse.com

PyDev ➔ https://wiki.python.org/moin/PyDev

WingWare ➔ http://wingware.com

PyZO ➔ http://www.pyzo.org

Thonny ➔ http://thonny.cs.ut.ee

……..

https://notepad-plus-plus.org/downloads/v7.7.1/
http://komodoide.com/
https://www.jetbrains.com/pycharm/
https://marketplace.visualstudio.com/items?itemName=donjayamanne.python
http://www.liclipse.com/
https://wiki.python.org/moin/PyDev
http://wingware.com/
http://www.pyzo.org/
http://thonny.cs.ut.ee/


FIRST PYTHON PROGRAM

The famous “Hello world”C/C++

void main(void)

{

printf("Hello world");

}

Python 3.x

print ("Hello world“)



VARIABLES

Variable are defined and use as you need them.

Variables don’t have a fixed type – during the execution of a program, a variable 
can have multiple types.

Python 3.x

x = 10              #x is a number

s = ”a string”      #s is a string

b = True            #b is a Boolean value

Python 3.x

x = 10

#do some operations with x

x = ”a string”

#x is now a string



BASIC TYPES

Python 3.x

x = 10  #x is an integer (32 bit precision)

x = 999999999999999999999999999999999 #x is a int (unlimited precision)

x = 1.123 #x is an float 

x = 1.2j #x is a complex number

x = True #x is a bool ( a special case of integer )

x = None #x is a NoneType(the closest C/C++ equivalent is NULL/nullptr)

Python 3.x

x = 10

print (x, type (x))

Output

10 <class 'int'>



NUMERICAL OPERATIONS

Arithmetic operators (+, - , *, /, % ) – similar to C like languages

Operator ** is equivalent with the pow function from C like languages

A number can be casted to a specific type using int or float method

Python 3.x

x = 10+20*3           #x will be an integer with value 70

x = 10+20*3.0         #x will be a float with value 70.0

Python 3.x

x = 2**8              #x will be an integer with value 256

x = 2**8.1            #x will be a float with value 274.374

Python 3.x

x = int(10.123)       #x will be an integer with value 10

x = float(10) #x will be a float with value 10.0



NUMERICAL OPERATIONS

Division operator has a different behavior in Python 2.x and Python 3.x

Division between integers is interpreted differently

A special operator exists // that means integer division (for integer operators)

Python 3.x

x = 10.0/3           #x will be a float with value 3.3333

x = 10.0%3           #x will be a float with value 1.0

Python 2.x 

x = 10/3              

#x is 3 (int)

Python 3.x

x = 10.0//3          #x will be a float with value 3.0

x = 11.9//3          #x will be a float with value 3.0

Python 3.x 

x = 10/3              

#x is 3.33333 (float)



NUMERICAL OPERATIONS

Bit-wise operators (& , | , ^ , <<, >> ). In particular & operator can be used to make 
sure that a behavior specific to a C/C++ operation can be achieve

Python 3.x

x = 0xFFFFFFFE

x = (x + x) & 0xFFFFFFFF

y = 123

y = (y + y) & 0xFF

C/C++

void main(void)

{

unsigned int x;

x = 0xFFFFFFFE;

x = x + x;

unsigned char y;

y = 123;

y = y + y;

}



NUMERICAL OPERATIONS

Compare operators ( >, < , >=, <=, ==, != ). C/C++ like operators && and || are 
replaced with and and OR. Similar “! operator" is replaced with not keyword. However, 
unlike C/C++ languages Python supports a more mathematical like evaluation.

All of these operators produce a bool result. There are two special values (keywords) 
defined in Python for constant bool values:

❖ True

❖ False

Python 3.x

x = 10 < 20 > 15      #x is True

#identical to (10<20) and (20>15)



STRING TYPES

Python 3.x

s = ”a string\nwith lines”

s = ’a string\nwith lines’

s = r”a string\nwithout any line”

s = r’a string\nwithout any line’

Python 3.x

s = ”””multi-line

string

”””

Python 3.x

s = ’’’multi-line

string

’’’



STRING TYPES
Strings in python have support for different types of formatting – much like in C/C++ 
language.

If only one parameter has to be replaced, the same expression can be written in a 
simplified form: 

Two special keywords str and repr can be used to convert variables from any type to 
string.

Python 3.x

s = "Name: %8s Grade: %d"%("Ion",10)

Python 3.x

s = "Grade: %d"%10

Python 3.x

s = str (10) #s is ”10”

s = repr (10.25)         #s is ”10.25”



STRING TYPES

Formatting can be extended by adding naming to formatting variables.

A special character “\” can be place at the end of the string to concatenate it with 
another one from the next line.

Python 3.x

s = "Name: %(name)8s Grade: %(student_grade)d" % {"name":"Ion" ,

"student_grade":10}

Python 3.x

s = "Python"\

"Exam“

#s is ”PythonExam”



STRING TYPES

Starting with version 3.6, Python also supports formatted string literals. These are strings 
preceded by an “f” or “F” character

There are some special characters that can be used to trigger a string representation for an 
object: !s (means str), !r (means repr), !a (means ascii)

More on this topic: https://docs.python.org/3/tutorial/inputoutput.html

Python 3.6+

a = 100

s = f"A = {a}"           #s will be ‘A = 100’

s = f"A = {a+10}"        #s will be ‘A = 110’

s = f"A = {float(a)}"    #s will be ‘A = 100.0’

s = f"A = {float(a):10}" #s will be ‘A =        100.0’ (preceded by spaces)

s = f"A = {a#:0x}"       #s will be ‘A = 0x64’

https://docs.python.org/3/tutorial/inputoutput.html


STRING TYPES

Strings also support different ways to access characters or substrings

Python 3.x

s = "PythonExam"   #s is “PythonExam” 

s[1]               #Result is ”y” (second character, first index is 0)

s[-1]              #Result is ”m” ➔ “PythonExam”(last character)

s[-2]              #Result is ”a” ➔ “PythonExam”  

s[:3]              #Result is ”Pyt” ➔ “PythonExam”(first 3 characters)

s[4:]              #Result is ”onExam” ➔ “PythonExam”

#(all the characters starting from the 5th character

#of the string until the end of the string)

s[3:5]             #Result is ”ho” ➔ “PythonExam” (a substring that

#starts from the 3rd character until the 5th one)  

s[2:-4]            #Result is ”thon” ➔ “PythonExam” 



STRING TYPES

Strings also support a variety of operators 

And slicing:

Python 3.x

s = "Python"+"Exam"#s is “PythonExam” 

s = "A"+"12"*3     #s is “A121212” ➔ ”12” is multiplied 3 times

"A" in "Python"    #Result is False (”A” string does not exists in 

#                 ”Python” string)

"A" not in "ABC"   #Result is False (”A” string exists in ”ABC”)

len (s) #Result is 10 (10 characters in “PythonExam” string) 

Python 3.x

s = "PythonExam"   #s is “PythonExam” 

s[1:7:2]           #Result is ”yhn” (Going from index 1, to index 7 

#with step 2 (1,3,5) ➔ PythonExam



STRING TYPES

Every string is considered a class and has member functions associated with it. 
These methods are accessible through “.” operator.

❖ Str.startswith(“…”) ➔ checks if a string starts with another one

❖ Str.endswith(“…”) ➔ checks if a string ends with another one

❖ Str.replace(toFind,replace,[count]) ➔ returns a string where the substring <toFind> is replaced by 
substring <replace>. Count is a optional parameter, if given only the firs <count> occurrences are 
replaced

❖ Str.index(toFind) ➔ returns the index of <toFind> in current string

❖ Str.rindex(toFind) ➔ returns the right most index of <toFind> in current string

❖ Other functions: lower(), upper(), strip(), rstrip(), lstrip(), format(), isalpha(), isupper(), islower(), 
find(…), count(…), etc



STRING TYPES
Strings splitting via .split function

Strings also support another function .rsplit that is similar to .split function with the only 
difference that the splitting starts from the end and not from the beginning.

Python 3.x

s = "AB||CD||EF||GH"

s.split("||")[2]   #Result is ”EF”. Split produces an array of 4

#elements AB,CD,EF and GH. The second element is EF

s.split("||")[-1]  #Result is ”GH”.

s.split("||",1)[0] #Result is ”AB”. In this case the second parameter

#tells the function to stop after <count> (in this 

#case 1) splits. Split produces an array of 2

#elements AB and CD||EF||GH. The fist element is AB

s.split("||",2)[2] #Result is ”EF||GH”. Split produces an array of 3

#elements AB, CD and EF||GH. 



BUILT-IN FUNCTIONS FOR STRINGS

Python has several build-in functions design to work characters and strings:

❖ chr (charCode) ➔ returns the string formed from one character corresponding to the 
code charCode. charCode is a Unicode code value.

❖ ord (character) ➔ returns the Unicode code corresponding to that specific character

❖ hex (number) ➔ converts a number to a lower-case hex representation

❖ oct (number) ➔ converts a number to a base-8 representation

❖ format ➔ to format a string with different values



STATEMENTS

Python is heavily based on indentation to express a complex instruction

C/C++

if (a>b)

{

a = a + b

b = b + a

}

Python 3.x

if a>b:

a = a + b

b = b + a 

Python 3.x

if a>b:

a = a + b

b = b + a 
Complex instruction



STATEMENTS

While python coding style recommends using indentation, complex instruction can be 
written in a different way as well by using a semicolon and add  simple expression on 
the same line:

For example, the following expression:

Can also be written as follows:

Python 3.x

if a>b:

 a = a + b

 b = b + a

 b = a * b 

Python 3.x

if a>b: a = a + b ; b = b + a ; b = a * b 

Recommended Format 

for readability



IF-STATEMENT

Python 3.x

if expression:

 complex or simple statement

Python 3.x

if expression:

 complex or simple statement

else:

 complex or simple statement

Python 3.x

if expression:

 complex or simple statement

elif expression:

 complex or simple statement

elif expression:

 complex or simple statement

elif expression:

 complex or simple statement

…

else:

 complex or simple statement

Python 3.x

if expression:

 complex or simple statement

elif expression:

 complex or simple statement



SWITCH/CASE - STATEMENTS

Python (until 3.10 version) does not have a special keyword to express a switch 

statement.  However, if-elif-else keywords can be used to describe the same behavior.

Python 3.x

if var == value_1:

 complex or simple statement

elif var == value_2:

 complex or simple statement

elif var == value_3:

 complex or simple statement

…

else:  #default branch from switch 

 complex or simple statement

C/C++

switch (var) {

 case value_1:

  statements;

  break;

 case value_2:

  statements;

  break;

...

 default:

  statements;

  break;

}

Python 3.10 match…case statements will be 

discussed in course no. 2



WHILE - STATEMENT

Python 3.x

while expression:

 complex or simple statement

C/C++

while (expression) {

 statements;

}

Python 3.x

while expression:

 complex or simple statement

else:

 complex or simple statement

Python 3.x

a = 3

while a > 0:

 a = a - 1

 print (a)

else:

 print ("Done")

Output

2

1

0

Done



WHILE - STATEMENT

The break keyword can be used to exit the while loop.  Using the break keyword will 
not move the execution to the else statement if present !

Python 3.x

a = 3

while a > 0:

 a = a - 1

 print (a)

 if a==2: break

else:

 print ("Done")

Output

2



WHILE - STATEMENT

Similarly, the continue keyword can be used to switch the execution from the while 
loop to the point where the while condition is tested.

Python 3.x

a = 10

while a > 0:

 a = a – 1

 if a % 2 == 0: continue

 print (a)

else:

 print ("Done")

Output

9

7

5

3

1

Done



DO…WHILE - STATEMENT

Python does not have a special keyword to express a do … while statement.  However, using 
the while…else statement a similar behavior can be achieved.

Example:

Python 3.x

while test_condition:

 statements

else:

 statements

C/C++

do {

 statements;

}

while (test_condition);

Same

Statements

Python 3.x

while x > 10:

 x = x - 1

else:

 x = x - 1

C/C++

do {

 x = x - 1;

}

while (x > 10);



FOR- STATEMENT

For statement is different in Python that the one mostly used in C/C++ like languages. 
It resembles more a foreach statement (in terms that it only iterates through a list of objects, 
values, etc). Besides this, all of the other known keywords associated with a for (break and 
continue) work in a similar way.

Python 3.x

for <list_of_iterators_variables> in <list>:

 complex or simple statement

Python 3.x

for <list_of_iterators_variables> in <list>:

 complex or simple statement

else:

 complex or simple statement



FOR- STATEMENT

A special keyword range that can be used to simulate a C/C++ like behavior.

Python 3.x

for index in range (0,3):

 print (index)

Output

0

1

2

Python 3.x

for index in range (0,3):

 print (index)

else:

 print (”Done”)

Output

0

1

2

Done



FOR- STATEMENT

range operator in Python 3.x returns an itereable object

range is declared as follows range (start, end, [step] )

for statement will be further discuss in the course no. 2 after the concept of list is 
presented.

Python 3.x

for index in range (0,8,3):

 print (index)

Output

0

3

6



FUNCTIONS
Functions in Python are defined using def keyword

Parameters can have a default value. 

And finally, return keyword can be used to return values from a function. There is no 
notion of void function (similar cu C/C++ language) → however, this behavior can be 
duplicated by NOT using the return keyword.

Python 3.x

def function_name (param1,param2,… paramn ):

 complex or simple statement

Python 3.x

def function_name (param1,param2 [= defaultVal],… paramn[= defaultVal] ):

 complex or simple statement



FUNCTIONS
Example of a function that performs a simple arithmetic operation

Parameters can be explicitly called

Python 3.x

def myFunc (x, y, z):

 return x * 100 + y * 10 + z

print ( myFunc (1,2,3) )                             #Output:123

Python 3.x

def sum (x, y, z):

 return x * 100 + y * 10 + z

print ( sum (z=1,y=2,x=3) )                         #Output:321



FUNCTIONS
Function parameters can have default values. Once a parameter is defined using a 
default value, every parameter that is declared after it should have default values.

Python 3.x

def myFunc (x, y=6, z=7):

 return x * 100 + y * 10 + z

print (myFunc (1) )                                 #Output:167

print (myFunc (2,9) )                               #Output:297

print (myFunc (z=5,x=3) )                           #Output:365

print (myFunc (4,z=3) )                             #Output:463

print (myFunc (z=5) )                               #ERROR: missing x

Python 3.x

def myFunc (x=2, y, z=7):

 return x * 100 + y * 10 + z

Code will not compile as x 

has a default value, but Y 

does not !



FUNCTIONS
A function can return multiple values at once. This will also be discussed in course no. 2 
along with the concept of tuple.

Python also uses global keyword to specify within a function that a specific variable is in 
fact a global variable.

Python 3.x

x = 10

def ModifyX ():

 x = 100

ModifyX ()

print ( x ) #Output:10

Python 3.x

x = 10

def ModifyX ():

 global x

 x = 100

ModifyX ()

print ( x ) #Output:100



FUNCTIONS
Functions can have a variable – length parameter ( similar to the … from C/C++). 
It is preceded by “*” operator. 

Python 3.x

def multi_sum (*list_of_numbers):

 s = 0

 for number in list_of_numbers:

  s += number

 return s

print ( multi_sum (1,2,3) )                  #Output:6

print ( multi_sum (1,2) )                    #Output:3

print ( multi_sum (1) )                      #Output:1

print ( multi_sum () )                       #Output:0



FUNCTIONS
Functions can return values of different types. In this case you should check the type 
before using the return value.

Python 3.x

def myFunction(x):

 if x>0: 

  return "Positive"

 elif x<0: 

  return "Negative"

 else: 

  return 0

result = myFunction (0)

if type(result) is int:

 print("Zero")

else:

 print(result)



FUNCTIONS
Functions can also contain another function embedded into their body. 

That function can be used to compute results needed in the first function.

The previous code will print 14 into the screen.

Python 3.x

def myFunction(x):

 def add (x,y):

  return x+y

 def sub(x,y):

  return x-y

 return add(x,x+1) + sub(x,2):

print (myFunction (5))



FUNCTIONS
Functions can also be recursive (see the following implementation for computing a 
Fibonacci number)

The previous code will print 55 into the screen.

Python 3.x

def Fibonacci (n):

 if n == 1:

  return 1

 elif n == 2:

  return 1

 else:

  return Fibonacci (n-1) + Fibonacci (n-2)

print ( Fibonacci (10) )



FUNCTIONS
It is recommended to add a short explanation for every defined function by adding a 
multi-line string immediately after the function definition 
https://www.python.org/dev/peps/pep-0257/#id15 

Python 3.x

def Fibonacci (n):

 ”””

 Computes the n-th Fibonaci number using recursive calls

 ”””

 if n == 1:

  return 1

 elif n == 2:

  return 1

 else:

  return Fibonacci (n-1) + Fibonacci (n-2)

https://www.python.org/dev/peps/pep-0257/#id15


HOW TO CREATE A PYTHON FILE

❖ Create a file with the extension .py

❖ If you run on a Linux/OSX operation system, you can add the following line at the 
beginning of the file (the first line of the file):
❖ #!/usr/bin/python3 ➔ for python 3

❖ #!/usr/bin/python ➔ for python (current version – usually 2)

❖ These lines can be added for windows as well (“#” character means comment in 
python so they don’t affect the execution of the file too much

❖ Write the python code into the file

❖ Execute the file.
❖ You can use the python interpreter directly (usually C:\Python27\python.exe or 

C:\Python310\python.exe for Windows) and pass the file as a parameter

❖ Current distributions of python make some associations between .py files and their interpreter. In this 
cases you should be able to run the file directly without using the python executable. 


	Slide 1: Programming in Python
	Slide 2: Administrative
	Slide 3: History
	Slide 4: General information
	Slide 5: Characteristics
	Slide 6: Zen Of Python
	Slide 7: Python editors
	Slide 8: First Python program
	Slide 9: Variables
	Slide 10: Basic types
	Slide 11: Numerical operations
	Slide 12: Numerical operations
	Slide 13: Numerical operations
	Slide 14: Numerical operations
	Slide 15: String Types
	Slide 16: String Types
	Slide 17: String Types
	Slide 18: String Types
	Slide 19: String Types
	Slide 20: String Types
	Slide 21: String Types
	Slide 22: String Types
	Slide 23: Built-in functions for strings
	Slide 24: Statements
	Slide 25: Statements
	Slide 26: IF-Statement
	Slide 27: SWITCH/CASE - Statements
	Slide 28: WHILE - Statement
	Slide 29: WHILE - Statement
	Slide 30: WHILE - Statement
	Slide 31: DO…WHILE - Statement
	Slide 32: FOR- Statement
	Slide 33: FOR- Statement
	Slide 34: FOR- Statement
	Slide 35: Functions
	Slide 36: Functions
	Slide 37: Functions
	Slide 38: Functions
	Slide 39: Functions
	Slide 40: Functions
	Slide 41: Functions
	Slide 42: Functions
	Slide 43: Functions
	Slide 44: How to create a python file

