
PROGRAMMING IN PYTHON
Gavrilut Dragos

Course 2

(rev. 1)

LAMBDA FUNCTIONS

A lambda function is a function without any name. It has multiple roles (for example it
is often use as a pointer to function equivalent when dealing with other functions that
expect a callback).

Lambdas are useful to implement closures.

A lambda function is defined in the following way:

The following example uses lambda to define a simple addition function

lambda <list_of_parameters> : return_value

Python 3.x(without lambda) Python 3.x(with lambda)

def addition (x,y):

 return x+y

print (addition (3,5))

addition = lambda x,y: x+y

print (addition(3,5))

LAMBDA FUNCTIONS

Lambdas are bind during the run-time. This mean that a lambda with a specific
behavior can be build at the run-time using the data dynamically generated.

In this case fnDiv2 and fnDiv7 are dynamically generated.

This programming paradigm is called closure.

Python 3.x

def CreateDivizibleCheckFunction(n):

 return lambda x: x%n==0

fnDiv2 = CreateDivizibleCheckFunction (2)

fnDiv7 = CreateDivizibleCheckFunction (7)

x = 14

print (x, fnDiv2(x), fnDiv7(x))

Output

14 True True

SEQUENCES

A sequence in python is a data structure represented by a vector of elements that
don’t need to be of the same type.

Lists have two representation in python:

❖ list ➔mutable vector (elements from that list can be added, deleted, etc). List can be defined
using […] operator or the list keyword

❖ tuple ➔ immutable vector (the closest equivalent is a constant list) ➔ addition, deletion, etc
operation can not be used on this type of object. A tuple is usually defined using (…) or by using
the tuple keyword

list and tuple keywords can also be used to initialized a tuple or list from another list
of tuple

SEQUENCES
Python 3.x

x = list () #x is an empty list

x = [] #x is an empty list

x = [10,20,”test”] #x is list

x = [10,] #x is list containing [10]

x = [1,2] * 5 #x is list containing [1,2, 1,2, 1,2, 1,2, 1,2]

x,y = [1,2] #x is 1 and y is 2

x = tuple () #x is an empty tuple

x = () #x is an empty tuple

x = (10,20,”test”) #x is a tuple

x = 10,20,”test” #x is a tuple

x = (10,) #x is tuple containing (10)

x = (1,2) * 5 #x is tuple containing (1,2, 1,2, 1,2, 1,2, 1,2)

x = 1,2 * 5 #x is tuple containing (1,10)

x,y = (1,2) #x is 1 and y is 2 (the same happens for x,y = 1,2)

SEQUENCES

Elements from a list can be accessed in the following way

Python 3.x

x = ['A', 'B', 2, 3, 'C']

x[0] #Result is A

x[-1] #Result is C

x[-2] #Result is 3

x[:3] #Result is [’A’, ’B’, 2]

x[3:] #Result is [3, ’C’]

x[1:3] #Result is [’B’, 2]

x[1:-3] #Result is [’B’]

SEQUENCES

Elements from a tuple can be accessed in the same way

Python 3.x

x = ('A', 'B', 2, 3, 'C')

x[0] #Result is A

x[-1] #Result is C

x[-2] #Result is 3

x[:3] #Result is (’A’, ’B’, 2)

x[3:] #Result is (3, ’C’)

x[1:3] #Result is (’B’, 2)

x[1:-3] #Result is (’B’)

SEQUENCES

tuple and list keywords can also be used to convert a tuple to a list and vice-versa.

Both lists and tuples can be concatenated, but not with each other.

Python 3.x

x = ('A', 'B', 2, 3, 'C')

y = list (x) #y = [’A’, ’B’, 2, 3, ’C’]

x = ['A', 'B', 2, 3, 'C‘]

y = tuple (x) #y = (’A’, ’B’, 2, 3, ’C’)

Python 3.x

x = ('A', 2)

y = ('B', 3)

z = x + y

#z = (’A’, 2, ’B’, 3)

x = ['A', 2]

y = ['B', 3]

z = x + y

#z = [’A’, 2, ’B’, 3]

x = ('A', 2)

y = ['B', 3]

z = x + y

#!!! Error !!!

SEQUENCES

Tuples are also used to return multiple values from a function.

The following example computes both the sum and product of a sequence of numbers

Python 3.x

def ComputeSumAndProduct(*list_of_numbers):

 s = 0

 p = 1

 for i in list_of_numbers:

 s += i

 p *= i

 return (s,p)

suma,produs = ComputeSumAndProduct(1,2,3,4,5)

#suma =15, produs = 120

SEQUENCES

tuple and list can also be organized in matrixes:

Python 3.x

x = ((1,2,3), (4,5,6))

x = ([1,2,3], (4,5,6)) #matrix subcomponents don’t have to be of the

 #same type

x = (((1,2,3), (4,5,6)), ((7,8), (9,10,11, 12)))

#a matrix does not have to have the same number of elements on each

#dimension

#the same rules from tuples apply to lists as well

x = [[1,2,3], [4,5,6]]

x = [[1,2,3], (4,5,6)]

SEQUENCES

Both tuples and lists can be enumerated with a for keyword:

Lists and tuples have a special keyword (len) that can be used to find out the size of
a list/tuple:

Python 3.x

for i in [1,2,3,4,5]:

 print(i)

Output

1

2

3

4

5

Python 3.x

for i in (1,2,3,4,5):

 print(i)

Python 3.x

x = [1,2,3,4,5]

y = (10,20,300)

print (len(x), len(y))

Output 3.x

5 3

SEQUENCES

One can also use the enumerate keyword to enumerate a list and get the index of
the item at the same time:

Or use an external variable:

Python 3.x

for index,name in enumerate(["Dragos","Mihai","Nicu","Vlad"]):

 print("Index:%d => %s"%(index,name))

Output

Index:0 => Dragos

Index:1 => Mihai

Index:2 => Nicu

Index:3 => Vlad

Python 3.x

index = 0

for name in ["Dragos","Mihai","Nicu","Vlad"]):

 print("Index:%d => %s"%(index,name))

 index += 1

SEQUENCES

enumerate functions also allows a second parameter to specify the index base
(default is 0 → just like in C-like languages).

In this example, the index base will be 2:

➢ Dragos (the first name) will have index 2

➢ Mihai (the second name) will have index 3

➢ And so on …

Python 3.x

for index,name in enumerate(["Dragos","Mihai","Nicu","Vlad"], 2):

 print("Index:%d => %s"%(index,name))

Output

Index:2 => Dragos

Index:3 => Mihai

Index:4 => Nicu

Index:5 => Vlad

LISTS AND FUNCTIONAL PROGRAMMING

A list can also be build using functional programming.

❖ A list of numbers from 1 to 9

❖ A list of all divisor of 23 smaller than 100

❖ A list of all square values for number from 1 to 5

Python 3.x

x = [i for i in range(1,10)] #x = [1,2,3,4,5,6,7,8,9]

Python 3.x

x = [i for i in range(1,100) if i % 23 == 0] #x = [23, 46, 69, 92]

Python 3.x

x = [i*i for i in range(1,6)] #x = [1, 4, 9, 16, 25]

LISTS AND FUNCTIONAL PROGRAMMING

A list can also be build using functional programming.

❖ A list of pairs of numbers from 1 to 10 that summed up produce a number that
divides with 7

❖ A list of tuples of numbers from 1 to 10 that summed up produce a number that
divides with 7

Python 3.x

x=[[x, y] for x in range(1,10) for y in range(1,10) if (x+y)%7==0]

#x = [[1, 6], [2, 5], [3, 4], [4, 3], [5, 2], [5, 9], [6, 1],

[6, 8], [7, 7], [8, 6], [9, 5]]

Python 3.x

x=[(x, y) for x in range(1,10) for y in range(1,10) if (x+y)%7==0]

#x = [(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (5, 9), (6, 1),

(6, 8), (7, 7), (8, 6), (9, 5)]

LISTS AND FUNCTIONAL PROGRAMMING

A list can also be build using functional programming.

❖ A list of prime numbers that a smaller than 100

Using functional programming in Python drastically reduces the size of code. However,
depending on how large the expression is to build a list, functional programming may
not be advisable if the program purpose is readability.

Python 3.x

x=[x for x in range(2,100) if len([y for y in range(2,x//2+1) if x % y==0])==0]

#x = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,

 59, 61, 67, 71, 73, 79, 83, 89, 97]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ Add a new element in the list (either use the member function(method) append or
the operator +=). To add lists or tuples use extend method

Python 3.x

x = [1,2,3] #x = [1, 2, 3]

x.append(4) #x = [1, 2, 3, 4]

x+=[5] #x = [1, 2, 3, 4, 5]

x+=[6,7] #x = [1, 2, 3, 4, 5, 6, 7]

x+=(8,9,10) #x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

x[len(x):] = [11] #x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

x.extend([12,13]) #x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

x.extend((14,15)) #x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

 # 14,15]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieved by
using some operators.

❖ Insert a new element in the list using member function(method) insert

Python 3.x

x = [1,2,3] #x = [1, 2, 3]

x.insert(1,"A") #x = [1, ”A”, 2, 3]

x.insert(-1,"B") #x = [1, ”A”, 2, ”B”, 3]

x.insert(len(x),"C") #x = [1, ”A”, 2, ”B”, 3, ”C”]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ Insert a new element or multiple elements can be done using [:] operator. Similarly
[] operator can be used to change the value of one element

Python 3.x

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

x[2] = 20 #x = [1, 2, 20, 4, 5]

x[3:] = ["A","B","C"] #x = [1, 2, 20, ”A”, ”B”, ”C”]

x[:4] = [10] #x = [10, ”B”, ”C”]

x[1:3] = ['x','y','z'] #x = [10, ”x”, ”y”, ”z”]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ Remove an element in the list ➔ using member function(method) remove. This
method removes the first element with a given value

. Python 3.x

x = [1,2,3] #x = [1, 2, 3]

x.remove(1) #x = [2, 3]

x.remove(100) #!!! ERROR !!! – 100 is not a value from x

LISTS

Lists support a set of functions that can be used to modify and access elements and modify the list of
elements. Some of these functionalities can also be achieve by using some operators.

❖ To remove an element from a specific position the del keyword can be used.

Python 3.x

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

del x[2] #x = [1, 2, 4, 5]

del x[-1] #x = [1, 2, 4]

del x[0] #x = [2, 4]

del x[1000] #!!! ERROR !!! – 1000 is not a valid index

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

del x[4:] #x = [1, 2, 3, 4]

del x[:2] #x = [3, 4]

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

del x[2:4] #x = [1, 2, 5]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ To pop method can be used to remove an element from a desire position an return
it. This method can be use without any parameter (and in this case it refers to the
last element)

Python 3.x

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

y = x.pop(2) #x = [1, 2, 4, 5] y = 3

y = x.pop(0) #x = [2, 4, 5] y = 1

y = x.pop(-1) #x = [2, 4] y = 5

y = x.pop() #x = [2] y = 4

y = x.pop(1000) #!!! ERROR !!! – 1000 is not a valid index

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ To clear the entire list the del command can be used

❖ Python 3.x also has a method clear that can be used to clear an entire list

Python 3.x

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

del x[:] #x = []

Python 3.x

x = [1,2,3,4,5] #x = [1, 2, 3, 4, 5]

x.clear() #x = []

LISTS
Be aware that using the operator (=) does not make a copy but only a reference of
a list.

If you want to make a copy of a list, use the list keyword:

Python 3.x

x = [1,2,3]

y = x

y.append(10)

#x = [1,2,3,10]

#y = [1,2,3,10]

Python 3.x

x = [1,2,3]

y = list (x)

y.append(10)

#x = [1,2,3]

#y = [1,2,3,10]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ Python 3.x also has a method copy that can be used to create a shallow copy of
a list

❖ The operator [:] can also be use to achieve the same result

Python 3.x

x = [1,2,3] #x = [1, 2, 3]

b = x.copy() #x = [1, 2, 3] b = [1, 2, 3]

b += [4] #x = [1, 2, 3] b = [1, 2, 3, 4]

Python 3.x

x = [1,2,3] #x = [1, 2, 3]

b = x[:] #x = [1, 2, 3] b = [1, 2, 3]

b += [4] #x = [1, 2, 3] b = [1, 2, 3, 4]

LISTS

Lists support a set of functions that can be used to modify and access elements and modify the
list of elements. Some of these functionalities can also be achieve by using some operators.

❖ Use index method to find out the position of a specific element in a list

❖ The operator in can be used to check if an element exists in the list

Python 3.x

x = ["A","B","C","D"] #x = [”A”, ”B”, ”C”, ”D”, ”E”]

y = x.index("C") #y = 2

y = x.index("Y") #!!! ERROR !!! – ”Y” is not part of list x

Python 3.x

x = ["A","B","C","D"] #x = [”A”, ”B”, ”C”, ”D”, ”E”]

y = "C" in x #y = True

y = "Y" in x #y = False

LISTS

Lists support a set of functions that can be used to modify and access elements and modify the
list of elements. Some of these functionalities can also be achieve by using some operators.

❖ Use count method to find out how many elements of a specific value exists in a list

❖ The reverse method can be used to reverse the elements order from a list

Python 3.x

x = [1,2,3,2,5,3,1,2,4,2] #x = [1,2,3,2,5,3,1,2,4,2]

y = x.count(2) #y = 4 [1,2,3,2,5,3,1,2,4,2]

y = x.count(0) #y = 0

Python 3.x

x = [1,2,3] #x = [1,2,3]

x.reverse () #x = [3,2,1]

LISTS

Lists support a set of functions that can be used to modify and access elements and
modify the list of elements. Some of these functionalities can also be achieve by using
some operators.

❖ Use sort method to sort elements from the list

Python 3.x (version 3.7.4 → sort algorithm might be different from one version to another)

x = [2,1,4,3,5]

x.sort() #x = [1,2,3,4,5]

x.sort(reverse=True) #x = [5,4,3,2,1]

x.sort(key = lambda i: i%3) #x = [3,4,1,2,5]

x.sort(key = lambda i: i%3,reverse=True) #x = [5,2,4,1,3]

sort (key=None, reverse=False)

BUILT-IN FUNCTIONS FOR LIST

Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use map to create a new list where each element is obtained based on the
lambda expression provided.

Python 3.x

x = [1,2,3,4,5]

y = list(map(lambda element: element*element,x)) #y = [1,4,9,16,25]

x = [1,2,3]

y = [4,5,6]

z = list(map(lambda e1,e2: e1+e2,x,y)) #z = [5,7,9]

map (function, iterableElement1, [iterableElement2,… iterableElementn])

BUILT-IN FUNCTIONS FOR LIST

Python has several build-in functions design to work with list (iterators). These functions rely heavily on
lambda expressions:

❖ map function returns an iterable objetc in Python 3.x

❖ to create a list from an iterable object, use the list keyword

Python

x = [1,2,3]

y = map(lambda element: element*element,x)

#y = iterable object →Python 3.x

Python

x = [1,2,3]

y = [4,5,6,7]

z = list(map(lambda e1,e2: e1+e2,x,y)) #z = [5,7,9] → Python 3.x

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use filter to create a new list where each element is filtered based on the lambda
expression provided.

Python 3.x

x = [1,2,3,4,5]

y = list(filter(lambda element: element%2==0,x)) #y = [2,4]

Filter (function, iterableElement)

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Both filter and map can also be used to create a list (usually in conjunction with
range keyword)

Python 3.x

x = list(map(lambda x: x*x, range(1,10)))

#x = [1, 4, 9, 16, 25, 36, 49, 64, 81]

x = list(filter(lambda x: x%7==1,range(1,100)))

#x = [1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99]

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use min and max functions to find out the biggest/smallest element from an iterable
list based on the lambda expression provided.

❖ If you want to use a key for max and/or min function, be sure that you added with
the parameter name decoration: key = <function>, and not just the key_function or a
lambda.

Python 3.x

x = [1,2,3,4,5]

y = max (x) #y = 5

y = max (1,3,2,7,9,3,5) #y = 9

y = max (x,key = lambda i: i % 3) #y = 2

max (iterableElement, [key])

max (el1, el2, … [key])

min (iterableElement, [key])

min (el1, el2, … [key])

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use sum to add all elements from an iterable object. Elements from the iterable
objects should allow the possibility of addition with other elements.

❖ startValue represent the value from where to start summing the elements. Default is 0

Python 3.x

x = [1,2,3,4,5]

y = sum (x) #y = 15

y = sum (x,100) #y = 115 (100+15)

x = [1,2,”3”,4,5]

y = sum (x) #ERROR→ Can’t add int and string

sum (iterableElement, [startValue])

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions rely heavily on
lambda expressions:

❖ Use sorted to sort the element from a list (iterable object). The key in this case represents a compare
function between two elements of the iterable object.

❖ The reverse parameter if not specified is considered to be False

❖ Just like in the precedent case, you must use the optional parameter with their name

Python 3.x

x = [2,1,4,3,5]

y = sorted (x) #y = [1,2,3,4,5]

y = sorted (x,reverse=True) #y = [5,4,3,2,1]

y = sorted (x,key = lambda i: i%3) #y = [3,1,4,2,5]

y = sorted (x,key = lambda i: i%3,reverse=True) #y = [2,5,1,4,3]

sorted (iterableElement, [key],[reverse])

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use reversed to reverse the element from a list (iterable object).

❖ Use any and all to check if at least one or all elements from a list (iterable objects)
can be evaluated to true.

Python 3.x

x = [2,1,4,3,5]

y = list (reversed(x)) #y = [5,3,4,1,2]

Python 3.x

x = [2,1,0,3,5]

y = any(x) #y = True, all numbers except 0 are evaluated to True

y = all(x) #y = False, 0 is evaluated to False

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use zip to group 2 or more iterable objects into one iterable object

❖ Use zip with * character to unzip such a list. The unzip variables are tuples

Python 3.x

x = [1,2,3]

y = [10,20,30]

z = list(zip(x,y)) #z = [(1,10) , (2,20) , (3,30)]

Python 3.x

x = [(1,2) , (3,4) , (5,6)]

a,b = zip(*x) #a = (1,3,5) and b = (2,4,6)

BUILT-IN FUNCTIONS FOR LIST
Python has several build-in functions design to work with list (iterators). These functions
rely heavily on lambda expressions:

❖ Use del to delete a list or a tuple

Python 3.x

x = [1,2,3]

del x

print (x) #!!!ERROR!!! x no longer exists

	Slide 1: Programming in Python
	Slide 2: Lambda functions
	Slide 3: Lambda functions
	Slide 4: Sequences
	Slide 5: Sequences
	Slide 6: Sequences
	Slide 7: Sequences
	Slide 8: Sequences
	Slide 9: Sequences
	Slide 10: Sequences
	Slide 11: Sequences
	Slide 12: Sequences
	Slide 13: Sequences
	Slide 14: Lists and functional programming
	Slide 15: Lists and functional programming
	Slide 16: Lists and functional programming
	Slide 17: Lists
	Slide 18: Lists
	Slide 19: Lists
	Slide 20: Lists
	Slide 21: Lists
	Slide 22: Lists
	Slide 23: Lists
	Slide 24: Lists
	Slide 25: Lists
	Slide 26: Lists
	Slide 27: Lists
	Slide 28: Lists
	Slide 29: Built-in functions for list
	Slide 30: Built-in functions for list
	Slide 31: Built-in functions for list
	Slide 32: Built-in functions for list
	Slide 33: Built-in functions for list
	Slide 34: Built-in functions for list
	Slide 35: Built-in functions for list
	Slide 36: Built-in functions for list
	Slide 37: Built-in functions for list
	Slide 38: Built-in functions for list

