
PROGRAMMING IN PYTHON Gavrilut Dragos

Course 4

CLASSES
Classes exists in Python but have a different understanding about their functionality than
the way classes are defined in C-like languages. Classes can be defined using a special
keyword: class

Where statementi is usually a declaration of a method or data member.

Documentation for Python classes can be found on:

o Python 3: https://docs.python.org/3/tutorial/classes.html

Python 3.x

class <name>:

 <statement1>

 …

 <statementn>

https://docs.python.org/3/tutorial/classes.html

CLASSES
Classes have a special keyword (self) that resembles the keyword this from c-like languages.

Whenever you reference a data member (variable that belongs to a class) within the class
definition the self keyword must be used.

Constructors can be defined by creating a “__init__” function. “__init__” function must have the
first parameter self.

Class Point has two members (x and y)

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p = Point()

print (p.x,p.y)
Output

0 0

CLASSES
For a function defined within a class to be a method of that class it has to have the first
parameter self.

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

 def GetX(self):

 return self.x

p = Point()

print (p.GetX())
Output

0

CLASSES
Defining a function within a class without having the first parameter self means that that
function is a static function for that class.

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

 def GetY():

 print(”Test”)

Point.GetY()

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

 def GetY():

 return self.y

p = Point()

print (p.GetY())
Output

Python 3: will print “Test” on the screen
Execution error

(GetY is static)

CLASSES
A data member can also be defined directly in the class definition. However, if mutable
object are used the behavior is different (similar in terms of behavior to a static
variable) Python 3.x

class Point:

 numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Point()

p2 = Point()

p1.AddNumber(4)

p2.AddNumber(5)

print (p1.numbers)

print (p2.numbers)

Python 3.x

class Point:

 x = 0

 y = 0

p1 = Point()

p2 = Point()

p1.x = 10

p2.x = 20

print (p1.x,p2.x)
Output

10 20 Output

[1,2,3,4,5]

[1,2,3,4,5]

CLASSES
To avoid problems with mutable objects it is better to defined them in a constructor
(__init__) function:

Python 3.x

class Point:

 def __init__(self):

 self.numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Point()

p2 = Point()

p1.AddNumber(4)

p2.AddNumber(5)

print (p1.numbers)

print (p2.numbers)

Output

[1,2,3,4]

[1,2,3,5]

CLASSES
It is not required for two instances of the same class to have the same members. A class
instance is more like a dictionary where each key represent either a member function or
a data member

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

print (p1.x,p1.y,p1.z)
Output

0 0 10

CLASSES
It is not required for two instances of the same class to have the same members. A class
instance is more like a dictionary where each key represent either a member function or
a data member

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

print (p1.x,p1.y,p2.z)

Error during runtine. “p2” does not have a

data member “z” (only “p1” has a data

member “z”)

CLASSES
It is not required for two instances of the same class to have the same members. A class
instance is more like a dictionary where each key represent either a member function or
a data member

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

print ("x" in dir(p1))

print ("z" in dir(p1))

print ("z" in dir(p2))

Output

True

True

False

CLASSES
We can write an equivalent representation of the functionality done by classes by using
dictionaries:

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

Python 3.x (dictionary representation)

def PointClass__init__(obj):

 obj["x"] = 0

 obj["y"] = 0

Point = { "__init__":PointClass__init__ }

p1 = dict(Point)

p1["__init__"](p1)

p2 = dict(Point)

p2["__init__"](p2)

p1["z"] = 10

CLASSES
We can write an equivalent representation of the functionality done by classes by using
dictionaries:

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

Python 3.x (dictionary representation)

def PointClass__init__(obj):

 obj["x"] = 0

 obj["y"] = 0

Point = { "__init__":PointClass__init__ }

p1 = dict(Point)

p1["__init__"](p1)

p2 = dict(Point)

p2["__init__"](p2)

p1["z"] = 10

CLASSES
We can write an equivalent representation of the functionality done by classes by using
dictionaries:

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

Python 3.x (dictionary representation)

def PointClass__init__(obj):

 obj["x"] = 0

 obj["y"] = 0

Point = { "__init__":PointClass__init__ }

p1 = dict(Point)

p1["__init__"](p1)

p2 = dict(Point)

p2["__init__"](p2)

p1["z"] = 10

CLASSES
We can write an equivalent representation of the functionality done by classes by using
dictionaries:

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p1 = Point()

p2 = Point()

p1.z = 10

Python 3.x (dictionary representation)

def PointClass__init__(obj):

 obj["x"] = 0

 obj["y"] = 0

Point = { "__init__":PointClass__init__ }

p1 = dict(Point)

p1["__init__"](p1)

p2 = dict(Point)

p2["__init__"](p2)

p1["z"] = 10

CLASSES
What happens if a class has some objects defined directly in class ?

As both p1.numbers and p2.numbers refer
to the same vector (numbers_vector) they
will both modify the same object thus
creating the illusion of a static variable.

Python 3.x

class Test:

 numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Test()

p2 = Test()

p1.AddNumber(4)

p2.AddNumber(5)

Python 3.x (dictionary representation)

numbers_vector = [1,2,3]

def TestClass_AddNumber(obj,n):

 obj["numbers"]+=[n]

TestClass = {

 "AddNumber":TestClass_AddNumber,

 "numbers":numbers_vector

}

p1 = dict(TestClass)

p2 = dict(TestClass)

p1["AddNumber"](p1,4)

p2["AddNumber"](p2,5)

CLASSES
What happens if a class has some objects defined directly in class ?

As both p1.numbers and p2.numbers refer
to the same vector (numbers_vector) they
will both modify the same object thus
creating the illusion of a static variable.

Python 3.x

class Test:

 numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Test()

p2 = Test()

p1.AddNumber(4)

p2.AddNumber(5)

Python 3.x (dictionary representation)

numbers_vector = [1,2,3]

def TestClass_AddNumber(obj,n):

 obj["numbers"]+=[n]

TestClass = {

 "AddNumber":TestClass_AddNumber,

 "numbers":numbers_vector

}

p1 = dict(TestClass)

p2 = dict(TestClass)

p1["AddNumber"](p1,4)

p2["AddNumber"](p2,5)

CLASSES
What happens if a class has some objects defined directly in class ?

As both p1.numbers and p2.numbers refer
to the same vector (numbers_vector) they
will both modify the same object thus
creating the illusion of a static variable.

Python 3.x

class Test:

 numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Test()

p2 = Test()

p1.AddNumber(4)

p2.AddNumber(5)

Python 3.x (dictionary representation)

numbers_vector = [1,2,3]

def TestClass_AddNumber(obj,n):

 obj["numbers"]+=[n]

TestClass = {

 "AddNumber":TestClass_AddNumber,

 "numbers":numbers_vector

}

p1 = dict(TestClass)

p2 = dict(TestClass)

p1["AddNumber"](p1,4)

p2["AddNumber"](p2,5)

CLASSES
What happens if a class has some objects defined directly in class ?

As both p1.numbers and p2.numbers refer
to the same vector (numbers_vector) they
will both modify the same object thus
creating the illusion of a static variable.

Python 3.x

class Test:

 numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Test()

p2 = Test()

p1.AddNumber(4)

p2.AddNumber(5)

Python 3.x (dictionary representation)

numbers_vector = [1,2,3]

def TestClass_AddNumber(obj,n):

 obj["numbers"]+=[n]

TestClass = {

 "AddNumber":TestClass_AddNumber,

 "numbers":numbers_vector

}

p1 = dict(TestClass)

p2 = dict(TestClass)

p1["AddNumber"](p1,4)

p2["AddNumber"](p2,5)

CLASSES
What happens if a class has some objects defined directly in class ?

As both p1.numbers and p2.numbers refer
to the same vector (numbers_vector) they
will both modify the same object thus
creating the illusion of a static variable.

Python 3.x

class Test:

 numbers = [1,2,3]

 def AddNumber(self,n):

 self.numbers += [n]

p1 = Test()

p2 = Test()

p1.AddNumber(4)

p2.AddNumber(5)

Python 3.x (dictionary representation)

numbers_vector = [1,2,3]

def TestClass_AddNumber(obj,n):

 obj["numbers"]+=[n]

TestClass = {

 "AddNumber":TestClass_AddNumber,

 "numbers":numbers_vector

}

p1 = dict(TestClass)

p2 = dict(TestClass)

p1["AddNumber"](p1,4)

p2["AddNumber"](p2,5)

CLASSES
You can also delete a member of a class instance by using the keyword del.

Python 3.x

class Point:

 def __init__(self):

 self.x = 0

 self.y = 0

p = Point()

print (p.x,p.y)

p.x = 10

print (p.x,p.y)

del p.x

print (p.x,p.y)

“x” is no longer a member of p. Code will

produce a runtine error.

CLASSES
If a class member is like a dictionary – what does this means in terms of POO concepts:

A. method overloading is NOT possible (it would mean to have multiple functions with
the same key in a dictionary). You can however create one method with a lot of
parameters with default values that can be used in the same way.

B. There are no private/protected attributes for data members in Python. This is not
directly related to the similarity to a dictionary, but it is easier this way as all keys
from a dictionary are accessible.

C. CAST-ing does not work in the same way as expected. Up-cast / Down-cast are
usually done with specialized functions that create a new object

D. Polymorphism is implicit (basically all you need to have is some classes with some
functions with the same name). Even if this supersedes the concept of polymorphism,
you don’t actually need to have classes that are derived from the same class to
simulate a polymorphism mechanism.

CLASSES
Just like normal variables in Python, data members can also have their type changed
dynamically.

Python 3.x

class MyClass:

 x = 10

 y = 20

m = MyClass()

print (m.x,"=>",type(m.x))

m.x = "a string"

print (m.x,"=>",type(m.x))

Output

10 => <class 'int'>

a string => <class 'str'>

CLASSES
The same can be applied for class methods – however in this case there are some
restrictions related to the self keyword.

Python 3.x

class MyClass:

 x = 10

 y = 20

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" - "+str(self.x)+","+str(self.y)

m = MyClass()

print (m.Test(15),m.Test(16))

m.Test = m.MyFunction

print (m.Test(1,2))

Output

True False

3 - 10,20

CLASSES
The same can be applied for class methods – however in this case there are some
restrictions related to the self keyword.

Python 3.x

class MyClass:

 x = 10

 y = 20

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" - "+str(self.x)+","+str(self.y)

m = MyClass()

print (m.Test(15),m.Test(16))

m.Test = MyClass.MyFunction

print (m.Test(1,2))

Runtime error because “MyFunction” is a

method that needs to be bound to an

object instance !

CLASSES
The same can be applied for class methods – however in this case there are some
restrictions related to the self keyword.

Python 3.x

class MyClass:

 x = 10

 y = 20

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" - "+str(self.x)+","+str(self.y)

m = MyClass()

print (m.Test(15),m.Test(16))

m.Test = MyClass().MyFunction

print (m.Test(1,2))

Output

True False

3 - 10,20

CLASSES
The same can be applied for class methods – however in this case there are some
restrictions related to the self keyword.

Python 3.x

class MyClass:

 x = 10

 y = 20

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" - "+str(self.x)+","+str(self.y)

m = MyClass()

m2 = MyClass()

print (m.Test(15),m.Test(16))

m.Test = m2.MyFunction

print (m.Test(1,2))

Output

True False

3 - 10,20

CLASSES
Methods are bound to the self object of the class they were initialized in. Even if you
associate a method from a different class to a new method, the self will belong to the
original class.
Python 3.x

class MyClass:

 x = 10

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" - "+str(self.x)

m = MyClass()

m2 = MyClass()

m2.x = 100

m.Test = m2.MyFunction

print (m.Test(1,2))

print (m.MyFunction(1,2))

Output

3 – 100

3 - 10

m.Test actually refers to

m2.MyFunction

CLASSES
A method from another class can also be used, but it will refer to the self from the original class.

Python 3.x

class MyClass:

 x = 10

 y = 20

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

class AnotherClass:

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" - "+str(self.x)+","+str(self.y)

m = MyClass()

print (m.Test(15),m.Test(16))

m.Test = AnotherClass().MyFunction

print (m.Test(1,2))

The code will produce a runtime error

because the self object from AnotherClass

does not have “x” and “y” members.

CLASSES
Normal functions can also be used. However, in this case, the self object will not be send
when calling them and it will not be accessible.

Python 3.x

class MyClass:

 x = 10

 y = 20

 def Test(self,value):

 return ((self.x+self.y)/2 == value)

def MyFunction(self,v1,v2):

 return str(v1+v2)

m = MyClass()

print (m.Test(15),m.Test(16))

m.Test = MyFunction

print (m.Test(1,2))

Output

True False

3

CLASSES
Similarly a class method can be associated (linked) to a normal variable and used as
such. It will be able to use the self and it will be affected if self members are changed.

Python 3.x

class MyClass:

 x = 10

 def MyFunction(self,v1,v2):

 return str(v1+v2)+" – self.x:"+str(self.x)

m = MyClass()

fnc = m.MyFunction

print (fnc(15,35))

m.x = 123

print (fnc(15,35))
Output

50 - self.x: 10

50 - self.x: 123

CLASSES
self object is assign during the construction of an object. This means that a function can
be defined outside the class and used within the class if it is set during the construction
phase.

Python 3.x

def MyFunction(self,v1,v2):

 return str(v1+v2)+" - X = "+str(self.x)

class MyClass:

 x = 10

 Test = MyFunction

m = MyClass()

m2 = MyClass()

m2.x = 15

print (m.Test(1,2))

print (m2.Test(10,20))

Output

3 - X = 10

30 - X = 15

CLASSES
This type of assignment can not be done within the constructor method (__init__), it must
be done through direct declaration in the class body.

Python 3.x

def MyFunction(self,v1,v2):

 return str(v1+v2)+" - X = "+str(self.x)

class MyClass:

 x = 10

 def __init__(self):

 self.Test = MyFunction

m = MyClass()

m2 = MyClass()

m2.x = 15

print (m.Test(1,2))

print (m2.Test(10,20))

The code will produce a runtime error

because MyFunction is not bound to any self

at this point

CLASSES
The same error will appear if we try to link a method from a class using it’s instance with
a non-class function.

Python 3.x

def MyFunction(self,v1,v2):

 return str(v1+v2)+" - X = "+str(self.x)

class MyClass:

 x = 10

m = MyClass()

m.Test = MyFunction

print (m.Test(1,2)) The code will produce a runtime error

because MyFunction is not bound to any self

at this point

CLASSES
A class can be used like a container of data (a sort of name dictionary). It’s closest
resemblance is to a struct in C-like languages. For this an empty class need to be create
(using keyword pass)

Python 3.x

class Point:

 pass

p = Point()

p.x = 100

p.y = 200

p_3d = Point()

p_3d.x = 10

p_3d.y = 20

p_3d.z = 30

print ("P = ",p.x,p.y)

print ("3D= ",p_3d.x,p_3d.y,p_3d.z)

Output

P = 100 200

3D= 10 20 30

	Slide 1: Programming in Python
	Slide 2: Classes
	Slide 3: Classes
	Slide 4: Classes
	Slide 5: Classes
	Slide 6: Classes
	Slide 7: Classes
	Slide 8: Classes
	Slide 9: Classes
	Slide 10: Classes
	Slide 11: Classes
	Slide 12: Classes
	Slide 13: Classes
	Slide 14: Classes
	Slide 15: Classes
	Slide 16: Classes
	Slide 17: Classes
	Slide 18: Classes
	Slide 19: Classes
	Slide 20: Classes
	Slide 21: Classes
	Slide 22: Classes
	Slide 23: Classes
	Slide 24: Classes
	Slide 25: Classes
	Slide 26: Classes
	Slide 27: Classes
	Slide 28: Classes
	Slide 29: Classes
	Slide 30: Classes
	Slide 31: Classes
	Slide 32: Classes
	Slide 33: Classes
	Slide 34: Classes

