
PROGRAMMING IN PYTHON Gavrilut Dragos

Course 5

CLASSES (INHERITANCE)
Python classes supports both simple and multiple inheritance.

Where statementi is usually a declaration of a method or data member.

Python 3.x (simple inheritance)

class <name>(Base):

 <statement1>

 …

 <statementn>

Python 3.x (multiple inheritance)

class <name>(Base1,Base2,… Basem):

 <statement1>

 …

 <statementn>

CLASSES (INHERITANCE)
Python has two keywords (issubclass and isinstance) that can be used to check if an
object is a subclass of an instance of a specific type.

Python 3.x (simple inheritance)

class Base:

 x = 10

class Derived(Base):

 y = 20

d = Derived()

print ("d.X = ",d.x)

print ("d.Y = ",d.y)

print ("Instance of Derived:",isinstance(d,Derived))

print ("Instance of Base:",isinstance(d,Base))

print ("Derived is a subclass of Base:",issubclass(Derived,Base))

print ("Base is a subclass of Derived:",issubclass(Base,Derived))

Output

d.X = 10

d.Y = 20

Instance of Derived: True

Instance of Base: True

Derived is a subclass of Base: True

Base is a subclass of Derived: False

CLASSES (INHERITANCE)
Inheritances does not assume that the __init__ function is automatically called for the
base when the derived object is created.

Python 3.x (simple inheritance)

class Base:

 def __init__(self):

 self.x = 10

class Derived(Base):

 def __init__(self):

 self.y = 20

d = Derived()

print ("d.X = ",d.x)

print ("d.Y = ",d.y)

Execution error – d.X does not

exists because base.__init__

was never called

CLASSES (INHERITANCE)
Inheritances does not assume that the __init__ function is automatically called for the
base when the derived object is created.

Python 3.x (simple inheritance)

class Base:

 def __init__(self):

 self.x = 10

class Derived(Base):

 def __init__(self):

 Base. __init__(self)

 self.y = 20

d = Derived()

print ("d.X = ",d.x)

print ("d.Y = ",d.y)

In Python 3 you can also write

super().__init__()

Output

d.X = 10

d.Y = 20

CLASSES (INHERITANCE)
Inheriting from a class will overwrite all base class members (methods or data members).

Python 3.x (simple inheritance)

class Base:

 def Print(self):

 print("Base class")

class Derived(Base):

 def Print(self):

 print("Derived class")

d = Derived()

d.Print()
Output

Derived class

CLASSES (INHERITANCE)
Inheriting from a class will overwrite all base class members (methods or data members).

Python 3.x (simple inheritance)

class Base:

 def Print(self,value):

 print("Base class",value)

class Derived(Base):

 def Print(self):

 print("Derived class")

d = Derived()

d.Print()

d.Print(100)

Print function from Base class was completely

overwritten by Print function from the derived class.

The code will produce a runtime error.

CLASSES (INHERITANCE)
Inheriting from a class will overwrite all base class members (methods or data members).

In this case member “x” from Base class will be overwritten by member “x” from the
derived class.

Python 3.x (simple inheritance)

class Base:

 x = 10

class Derived(Base):

 x = 20

d = Derived()

print (d.x)
Output

20

CLASSES (INHERITANCE)
Polymorphism works in a similar way. In reality the inheritance is not necessary to
accomplish polymorphism in Python.

Python 3.x (simple inheritance)

class Forma:

 def PrintName(self): pass

class Square(Forma):

 def PrintName(self): print("Square")

class Circle(Forma):

 def PrintName(self): print("Circle")

class Rectangle(Forma):

 def PrintName(self): print("Rectangle")

for form in [Square(),Circle(),Rectangle()]:

 form.PrintName()

Output

Square

Circle

Rectangle

CLASSES (INHERITANCE)
Polymorphism works in a similar way. In reality the inheritance is not necessary to
accomplish polymorphism in Python.

Python 3.x (simple inheritance)

class Square:

 def PrintName(self): print("Square")

class Circle:

 def PrintName(self): print("Circle")

class Rectangle:

 def PrintName(self): print("Rectangle")

for form in [Square(),Circle(),Rectangle()]:

 form.PrintName()

Output

Square

Circle

Rectangle

CLASSES (INHERITANCE)
In case of multiple inheritance, Python derives from the right most class to the left most
class from the inheritance list.

Python 3.x (multiple inheritance)

class BaseA:

 def MyFunction(self):

 print ("Base A")

class BaseB:

 def MyFunction(self):

 print ("Base B")

class Derived(BaseA, BaseB):

 pass

d = Derived()

d.MyFunction()

Output

Base A

CLASSES (INHERITANCE)
In case of multiple inheritance, Python derives from the right most class to the left most
class from the inheritance list.

Python 3.x (multiple inheritance)

class BaseA:

 def MyFunction(self):

 print ("Base A")

class BaseB:

 def MyFunction(self):

 print ("Base B")

class Derived(BaseA, BaseB):

 pass

d = Derived()

d.MyFunction()

First MyFunction from BaseB

is added to Derived class

CLASSES (INHERITANCE)
In case of multiple inheritance, Python derives from the right most class to the left most
class from the inheritance list.

Python 3.x (multiple inheritance)

class BaseA:

 def MyFunction(self):

 print ("Base A")

class BaseB:

 def MyFunction(self):

 print ("Base B")

class Derived(BaseA, BaseB):

 pass

d = Derived()

d.MyFunction()

Then MyFunction from class

BaseA will overwrite

MyFunction from BaseB

CLASSES (SPECIAL METHODS)
If we reverse the order (BaseB will be first and BaseA wil be the last one), MyFunction
will print “Base B” instead of “Base A”

Python 3.x (multiple inheritance)

class BaseA:

 def MyFunction(self):

 print ("Base A")

class BaseB:

 def MyFunction(self):

 print ("Base B")

class Derived(BaseB, BaseA):

 pass

d = Derived()

d.MyFunction()

Output

Base B

CLASSES (SPECIAL METHODS)
Python defines a special set of functions that can be use do add additional properties to
a class. Just like the initialization function (__init__) , these functions start and end with
“__”.

Function Purpose

__repr__, __str__ Called when the object needs to be converted into string

__lt__, __le__, __eq__, __ne__, __gt__,

__ge__

Operators used to compare instances of the same class.

__bool__ To evaluate the truth value of an object (instance of a class)

__getattr__, __getattribute__ For attribute look-ups

__setattr__, __delattr__

__set__, __get__

For attribute operations

__len__, __del__, For len / del operators

__setitem__, __getitem__, __contains__,

__reversed__, __iter__, __next__

Iterator operators

CLASSES (SPECIAL METHODS)
Python also defines a set of mathematical functions that can be used for the same
purpose:

❖ __add__, __sub__, __mul__, __matmul__, __truediv__, __floordiv__, __mod__, __divmod__,
__pow__, __lshift__, __rshift__, __and__, __xor__, __or__

❖ __radd__, __rsub__, __rmul__, __rmatmul__, __rtruediv__, __rfloordiv__, __rmod__, __rdivmod__,
__rpow__, __rlshift__, __rrshift__, __rand__, __rxor__, __ror__,

❖ __iadd__, __isub__, __imul__, __imatmul__, __itruediv__, __ifloordiv__, __imod__, __ipow__,
__ilshift__, __irshift__, __iand__, __ixor__, __ior__

❖ __neg__, __int__, __float__, __round__

CLASSES (SPECIAL METHODS)
Converting a class to a string. It is recommended to overwrite both __str__ and
__repr__

Python 3.x

class Test:

 x = 10

class Test2:

 x = 10

 def __str__(self): return "Test2 with X = "+str(self.x)

t = Test()

t2 = Test2()

print (t,”:”,str(t))

print (t2, ”:”, str(t2))

Output (Python 3)

<__main__.Test object at 0x..> : <__main__.Test object at 0x..>

Test2 with X = 10 : Test2 with X = 10

CLASSES (SPECIAL METHODS)
Converting to an integer value.

Python 3.x

class Test:

 x = 10

class Test2:

 x = 10

 def __int__(self): return self.x

t = Test()

t2 = Test2()

Value = int(t)

This code will produce a runtime error because

Python don’t know how to translate an object of

type Test to an integer

CLASSES (SPECIAL METHODS)
Converting to an integer value.

Python 3.x

class Test:

 x = 10

class Test2:

 x = 10

 def __int__(self): return self.x

t = Test()

t2 = Test2()

Value = int(t2) This code works, Value will be 10

CLASSES (SPECIAL METHODS)
Iterating through a class instance

Python 3.x

class CarList:

 cars = ["Dacia","BMW","Toyota"]

 def __iter__(self):

 self.pos = -1

 return self

 def __next__(self):

 self.pos += 1

 if self.pos==len(self.cars): raise StopIteration

 return self.cars[self.pos]

c = CarList()

for i in c:

 print (i)

Output (Python 3)

Dacia

BMW

Toyota

CLASSES (SPECIAL METHODS)
Using class operators. In this case we overwrite __eq__ (==) operator.

Python 3.x

class Number:

 def __init__(self, value):

 self.x = value

 def __eq__(self, obj):

 return self.x+obj.x == 0

n1 = Number(-5)

n2 = Number(5)

n3 = Number(6)

print (n1==n2)

print (n1==n3)

Output

True

False

CLASSES (SPECIAL METHODS)
Overwriting the “in” opertator (__contains__).

Python 3.x

class Number:

 def __init__(self, value):

 self.x = value

 def __contains__(self, value):

 return str(value) in str(self.x)

n = Number(123)

print (12 in n)

print (5 in n)

print (3 in n)

Output

True

False

True

CLASSES (SPECIAL METHODS)
Overwriting the “len” opertator (__len__).

Python 3.x

class Number:

 def __init__(self, value):

 self.x = value

 def __len__(self):

 return len(str(self.x))

n1 = Number(123)

n2 = Number(99999)

n3 = Number(2)

print (len(n1),len(n2),len(n3))

Output

3 5 1

CLASSES (SPECIAL METHODS)
Building your own dictionary (overwrite __setitem__ and __getitem__)

Python 3.x

class MyDict:

 def __init__(self): self.data = []

 def __setitem__(self,key,value): self.data += [(key,str(value))]

 def __getitem__(self,key):

 for i in self.data:

 if i[0]==key:

 return i[1]

d = MyDict()

d["test"] = "python"

d["numar"] = 123

print (d["test"],d["numar"])

Output

python 123

CLASSES (SPECIAL METHODS)
Building a bit set (overloading operator [])

Python 3.x

class BitSet:

 def __init__(self): self.value = 0

 def __setitem__(self,index,value):

 if value: self.value |= (1 << (index & 31))

 else: self.value -= (self.value & (1 << (index & 31))

 def __getitem__(self,key):

 return (self.value & (1 << (index & 31)))!=0

b = BitSet()

b[0] = True

b[2] = True

b[4] = True

for i in range(0,8):

 print("Bit ",i," is ",b[i])

Output

Bit 0 is True

Bit 1 is False

Bit 2 is True

Bit 3 is False

Bit 4 is True

Bit 5 is False

Bit 6 is False

Bit 7 is False

CONTEXT MANAGER
A context manager is a mechanism where an object is created an notification about the
moment that object is being access and the moment that object is being terminated.

Context managers are used along with with keyword. The objects that available in a
context manager should implement __enter__ and __exit__ methods.

with item1 as alias1, [item2 as alias2 , … itemn as aliasn]:

 <statement 1>

 <statement 2>

 ….

 <statement n>

with item1, [item2, … itemn]:

 <statement 1>

 <statement 2>

 ….

 <statement n>

CONTEXT MANAGER
Whenever a with command is encounter, the following steps happen:

1. All items are evaluated

2. For all items __enter__ is called

3. If aliases are provided, the result of the __enter__ method is store into the alias

4. The block within the with is executed

5. If an exception appears, __exit__ is called and information related to the exception
(type, value and traceback) are provided as parameters. If the __exit__ method
returns false, the exception is re-raised. If the __exit__ method returns true, the
exception is ignored.

6. If no exception appear, __exit__ is called with None parameters for (type, value and
traceback). The result from the __exit__ method will be ignored.

CONTEXT MANAGER
File context manager

Python 3.x

class CachedFile:

 def __init__(self,fileName):

 self.data = ""

 self.fileName = fileName

 def __enter__(self):

 print("__enter__ is called")

 return self

 def __exit__(self, exc_type, exc_value, traceback):

 print("__exit__ is called")

 open(self.fileName,"wt").write(self.data)

 return False

with CachedFile("Test.txt") as f:

 f.data = "Python course"

Output

__enter__ is called

__exit__ is called

	Slide 1: Programming in Python
	Slide 2: Classes (inheritance)
	Slide 3: Classes (inheritance)
	Slide 4: Classes (inheritance)
	Slide 5: Classes (inheritance)
	Slide 6: Classes (inheritance)
	Slide 7: Classes (inheritance)
	Slide 8: Classes (inheritance)
	Slide 9: Classes (inheritance)
	Slide 10: Classes (inheritance)
	Slide 11: Classes (inheritance)
	Slide 12: Classes (inheritance)
	Slide 13: Classes (inheritance)
	Slide 14: Classes (special methods)
	Slide 15: Classes (special methods)
	Slide 16: Classes (special methods)
	Slide 17: Classes (special methods)
	Slide 18: Classes (special methods)
	Slide 19: Classes (special methods)
	Slide 20: Classes (special methods)
	Slide 21: Classes (special methods)
	Slide 22: Classes (special methods)
	Slide 23: Classes (special methods)
	Slide 24: Classes (special methods)
	Slide 25: Classes (special methods)
	Slide 26: Context manager
	Slide 27: Context manager
	Slide 28: Context manager

