
PROGRAMMING IN PYTHON Gavrilut Dragos

Course 7



MODULES

Any Python code (python script) can be used as a module. 

Both files test.py and MyModule.py are located in the same folder.

After the execution of test.py a folder with the name __pycache__ that contains a file 
called MyModule.cpython-37.pyc will appear in the same folder (for Python 3.7) →
the version will be different for different versions of Python 3 (pyc = python compiled 
files)

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

import MyModule

print (MyModule.Sum(10,20))

Output

30



MODULES

Any Python code (python script) can be used as a module. 

Loading a module will automatically execute any code (main code) that 
resides in that module. 

The main code of a module (code that is written directly and not within a 
function or a class) will only me executed once (the first time a module is 
loaded).

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

print ("MyModule loaded")

import MyModule

print (MyModule.Sum(10,20))

import MyModule

Output

MyModule loaded

30



MODULES

Any Python code (python script) can be used as a module. 

What if MyModule is not located in the same folder as test.py file ?

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

print ("MyModule loaded")

import MyModule

print (MyModule.Sum(10,20))

import MyModule

Output

Traceback (most recent call last):

File “test.py", line 1, in <module>

import sys,MyModule

ImportError: No module named 'MyModule'



MODULES
Any Python code (python script) can be used as a module. 

In the above piece of code “<folder>” represents a path to the folder 
where the file MyModule.py resides. 

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

print ("MyModule loaded")

import sys

sys.path += ["<folder>"]

import MyModule

print (MyModule.Sum(10,20))

import MyModule

Output

MyModule loaded

30



MODULES

Any Python code (python script) can be used as a module. 

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

print ("MyModule loaded")

import MyModule

print (dir (MyModule))

Output

['Sum', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', 
'__name__', '__package__', '__spec__']



MODULES
Any Python code (python script) can be used as a module. 

Attributes:

o __file__ ➔ full path of the file that corresponds to the module (it could be a pyc file as well)

o __name__ ➔ name of the module (in this example : MyModule)

o __package__ ➔ name of the package

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

print ("MyModule loaded")

import MyModule

print (MyModule.__file__)

print (MyModule.__name__)

print (MyModule.__package__)



MODULES
Any Python code (python script) can be used as a module. 

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

__doc__ = "Computes the sum of two numbers"

import MyModule as m

print (m.__doc__)

Output

Computes the sum of two numbers



MODULES
Alternatively, the keyword “help” can be used as well

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

__doc__ = "Computes the sum of two numbers"

import MyModule as m

help (m)

Output

Help on module MyModule:

NAME
MyModule - Computes the sum of two numbers

FUNCTIONS
Sum(x, y)

FILE
…\facultate\python_modules\mymodule.py



MODULES
Alternatively, the keyword “help” can be used as well

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

"""returns the sum of x plus y"""

return x+y

__doc__ = "Computes the sum of two numbers"

import MyModule as m

help (m)

Output

Help on module MyModule:

NAME
MyModule - Computes the sum of two numbers

FUNCTIONS
Sum(x, y)

returns the sum of x plus y

FILE
e:\documente\facultate\python\2020-2021\mymodule.py



MODULES
Any Python code (python script) can be used as a module. 

If a python script is executed directly, the value of __name__ parameter will be 
__main__. 

If it is executed using import, the value of __name__ parameter will be the name of the 
module.

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

print (__name__)

import MyModule

Output

MyModule

Output

__main__



MODULES
Any Python code (python script) can be used as a module. 

Python 3.x

File: MyModule.py

Python 3.x

File: test.py

def Sum(x,y):

return x+y

if __name__ == "__main__":

print("Main code")

print("Testing sum(10,20) = ",Sum(10,20))

else:

print("Module loaded")

import MyModule

Output

Module loaded

Output

Main code

Testing sum(10,20) = 30



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

Python 3.x

File: __init__.py

print ("Package MathOps init")

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

Python 3.x

File: __init__.py

print ("Package MathOps.Simple init")

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

Python 3.x

File: Arithmetic.py

def Add(x,y):

return x+y

def Sub(x,y):

return x-y

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

Python 3.x

File: Bits.py

def SHL(x,y):

return x << y

def SHR(x,y):

return x >> y

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

Python 3.x

File: __init__.py

print ("Package MathOps.Complex init")

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES
Python scripts can also be grouped in packages. Packages must be grouped in folder, 
and in each folder a __init__.py must exist. That file is an entry point for that 
package/sub-package.

Python 3.x

File: Series.py

def Sum(*p):

c = 0

for i in p:

c+= i

return c

def Product(*p):

c = 1

for i in p:

c *= i

return c

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES

Usage:

Python 3.x

import MathOps.Simple.Arithmetic

print (MathOps.Simple.Arithmetic.Add(2,3))

from MathOps.Simple import Arithmetic as a

print (a.Add(2,3))

Output 

Package MathOps init

Package MathOps.Simple init

5



PACKAGES

Usage:

Python 3.x

from MathOps.Simple import *

print (Arithmetic.Add(2,3))

print (Bits.SHL(2,3))

Output 

Package MathOps init

Package MathOps.Simple init

Traceback (most recent call last):

File “test.py", line 3, in <module>

print (Arithmetic.Add(2,3))

NameError: name 'Arithmetic' is not defined



PACKAGES
To be able to use a syntax similar to “from <module> import *” a module variable 
“__all__” must be defined. That variable will hold a list of all modules that belongs to 
that package.

Python 3.x

File: __init__.py

print ("Package MathOps.Simple init

with __all__ set")

__all__ = ["Arithmetic","Bits"]

MathOps
 __init__.py
 Simple
  __init__.py
  Arithmetic.py
  Bits.py
 Complex
  __init__.py
  Series.py



PACKAGES

Usage:

Python 3.x

from MathOps.Simple import *

print (Arithmetic.Add(2,3))

print (Bits.SHL(2,3))

Output 

Package MathOps init

Package MathOps.Simple init with __all__ set

5

16



MODULES/PACKAGES

If you want a module and/or package to be available to all the scripts that are 
executed on that system just copy the module or the entire package folder on the 
Python search path and you will be able to access it directly. These paths are:

o Windows: <PythonFolder>\Lib 
Exemple: C:\Python27\Lib or C:\Python37\Lib

o Linux: /usr/lib/<PythonVersion> 
Example: /usr/lib/python2.7 or /usr/lib/python3.7)



MODULES/PACKAGES

Python also has a special library (importlib) that can be used to dynamically import a 
module.

o importlib.import_module (moduleName,package=None) ➔ to import a module

o importlib.reload (module) ➔ to reload a module that was already loaded

Python 3.x 

File: C:\Python3\Lib\MyModule.py

Python 3.x 

File: test.py

def Sum(x,y):

return x+y

print ("MyModule loaded")

import importlib

m = importlib.import_module("MyModule")

print (m.Sum(10,20))

Output

MyModule loaded

30



DYNAMIC CODE

Python has a keyword (exec) that can be used to dynamically compile and execute 
python code. 

The format is exec (code, [global],[local] ) where [global] and [local] represents a list 
of global and local definition that should be used when executing the code.

Output

100

Python 3.x

exec("x=100")

print(x)

exec("def num_sum(x,y): return x+y")

print(num_sum(10,20))

s = "abcdefg"

exec("s2=s.upper()")

print(s2)

Output

30

Output

ABCDEFG



DYNAMIC CODE

Because of this keyword, python code can obfuscate or modify itself during runtime.

Python 3.x

data = [0x65, 0x66, 0x67, 0x21, 0x54, 0x76, 0x6E, 0x62, 0x29, 0x79, 

0x2D, 0x7A, 0x2D, 0x7B, 0x2A, 0x3B, 0x0E, 0x0B, 0x0A, 0x73, 

0x66, 0x75, 0x76, 0x73, 0x6F, 0x21, 0x79, 0x2C, 0x7A, 0x2C,

0x7B]

s = ""

for i in data:

s += chr(i-1)

exec(s)

print(Suma(1,2,3))

Output

6



DYNAMIC CODE

Because of this keyword, python code can obfuscate or modify itself during runtime.

Python 3.x

data = [0x65, 0x66, 0x67, 0x21, 0x54, 0x76, 0x6E, 0x62, 0x29, 0x79, 

0x2D, 0x7A, 0x2D, 0x7B, 0x2A, 0x3B, 0x0E, 0x0B, 0x0A, 0x73, 

0x66, 0x75, 0x76, 0x73, 0x6F, 0x21, 0x79, 0x2C, 0x7A, 0x2C,

0x7B]

s = ""

for i in data:

s += chr(i-1)

exec(s)

print(Suma(1,2,3))

Output

6

def Suma(x,y,z):

        return x+y+z



DYNAMIC CODE

Multiple layers of encryption are also possible:

Python 3.x

buf = 

[0x74,0x21,0x3E,0x21,0x23,0x67,0x68,0x69,0x5D,0x23,0x76,0x2B,0x64,0x2F,0x65,

0x2C,0x3D,0x5D,0x23,0x75,0x68,0x77,0x78,0x75,0x71,0x5D,0x23,0x64,0x2E,0x65,0

x23,0x0E,0x0B,0x74,0x33,0x21,0x3E,0x21,0x23,0x23,0x0E,0x0B,0x67,0x70,0x73,0x

21,0x64,0x21,0x6A,0x6F,0x21,0x74,0x3B,0x0E,0x0B,0x0A,0x74,0x33,0x21,0x2C,0x3

E,0x21,0x64,0x69,0x73,0x29,0x70,0x73,0x65,0x29,0x64,0x2A,0x2E,0x33,0x2A,0x0E

,0x0B,0x66,0x79,0x66,0x64,0x29,0x74,0x33,0x2A]

s = ""

for i in buf:

s += chr(i-1)

exec(s)

print(s(10,20))

Output

30



DYNAMIC CODE

Multiple layers of encryption are also possible:

Python 3.x

buf = 

[0x74,0x21,0x3E,0x21,0x23,0x67,0x68,0x69,0x5D,0x23,0x76,0x2B,0x64,0x2F,0x65,

0x2C,0x3D,0x5D,0x23,0x75,0x68,0x77,0x78,0x75,0x71,0x5D,0x23,0x64,0x2E,0x65,0

x23,0x0E,0x0B,0x74,0x33,0x21,0x3E,0x21,0x23,0x23,0x0E,0x0B,0x67,0x70,0x73,0x

21,0x64,0x21,0x6A,0x6F,0x21,0x74,0x3B,0x0E,0x0B,0x0A,0x74,0x33,0x21,0x2C,0x3

E,0x21,0x64,0x69,0x73,0x29,0x70,0x73,0x65,0x29,0x64,0x2A,0x2E,0x33,0x2A,0x0E

,0x0B,0x66,0x79,0x66,0x64,0x29,0x74,0x33,0x2A]

s = ""

for i in buf:

s += chr(i-1)

exec(s)

print(s(10,20))

Output

30

s = "fgh\"u*c.d+<\"tgvwtp\"c-d"
s2 = ""
for c in s:
 s2 += chr(ord(c)-2)
exec(s2)



DYNAMIC CODE

Multiple layers of encryption are also possible:

Python 3.x

buf = 

[0x74,0x21,0x3E,0x21,0x23,0x67,0x68,0x69,0x5D,0x23,0x76,0x2B,0x64,0x2F,0x65,

0x2C,0x3D,0x5D,0x23,0x75,0x68,0x77,0x78,0x75,0x71,0x5D,0x23,0x64,0x2E,0x65,0

x23,0x0E,0x0B,0x74,0x33,0x21,0x3E,0x21,0x23,0x23,0x0E,0x0B,0x67,0x70,0x73,0x

21,0x64,0x21,0x6A,0x6F,0x21,0x74,0x3B,0x0E,0x0B,0x0A,0x74,0x33,0x21,0x2C,0x3

E,0x21,0x64,0x69,0x73,0x29,0x70,0x73,0x65,0x29,0x64,0x2A,0x2E,0x33,0x2A,0x0E

,0x0B,0x66,0x79,0x66,0x64,0x29,0x74,0x33,0x2A]

s = ""

for i in buf:

s += chr(i-1)

exec(s)

print(s(10,20))

Output

30

s = "fgh\"u*c.d+<\"tgvwtp\"c-d"
s2 = ""
for c in s:
 s2 += chr(ord(c)-2)
exec(s2)

def s(a,b): return a+b


	Slide 1: Programming in Python
	Slide 2: Modules
	Slide 3: Modules
	Slide 4: Modules
	Slide 5: Modules
	Slide 6: Modules
	Slide 7: Modules
	Slide 8: Modules
	Slide 9: Modules
	Slide 10: Modules
	Slide 11: Modules
	Slide 12: Modules
	Slide 13: Packages
	Slide 14: Packages
	Slide 15: Packages
	Slide 16: Packages
	Slide 17: Packages
	Slide 18: Packages
	Slide 19: Packages
	Slide 20: Packages
	Slide 21: Packages
	Slide 22: Packages
	Slide 23: Packages
	Slide 24: Modules/Packages
	Slide 25: Modules/Packages
	Slide 26: Dynamic code
	Slide 27: Dynamic code
	Slide 28: Dynamic code
	Slide 29: Dynamic code
	Slide 30: Dynamic code
	Slide 31: Dynamic code

