
PROGRAMMING IN PYTHON Gavrilut Dragos

Course 8

REGULAR EXPRESSIONS SUPPORT

Regular expression are implemented in Python in library “re”.

Usual usage:

o Regular expression (string form) is compiled into a binary form (usually an automata)

o The binary form is used for the following:

❖ Checks if a string matches a regular expression

❖ Checks if a sub-string from a string can be identified using a regular expression

❖ Replace substrings from a string based on a regular expression

Documentation:

o Python 3: https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

REGULAR EXPRESSIONS SUPPORT

Regular expression special characters (here is a simple set of special characters)

Character Match

. All characters except new line

^ Matches at the start of the string

$ Matches at the end of the string

* >=0 repetition(s)

? 0 or 1 occurrence

+ >=1 repetition(s)

{x} Matches <x> times

{x,y} Matches between <x> and <y> times

[] Group of characters

| Or condition

Character Match

\d Decimal characters 0,1,2,3,…9

\D All except decimal characters

\s Space, tab, new line (CR/LF) characters

\S All except characters designated by \s

\w Word characters a-z, A-Z, 0-9 and _

\W All except characters designated by \w

\ Escape character

[^…] Not specified group of characters

(…) Grouping

[..-..] ‘-’ interval for a group of characters.

REGULAR EXPRESSIONS SUPPORT

Usage:

o use re.compile (regular_expression_string,flags) to compile a regular expression into its binary form

o Use the “match” method of the resulted object to check if a string matches the regular expression

o The same result can be achieved by using the “match” function from the re module directly

Python 3.x

import re

r = re.compile("07[0-9]{8}")

if r.match("0740123456"):

print("Match")

Output

Match

Python 3.x

import re

if re.match("07[0-9]{8}", "0740123456"):

print("Match")

REGULAR EXPRESSIONS SUPPORT

Pattern String that will be match

\w+\s+\w+ “Gavrilut Dragos”, “Gavrilut Dragos Teodor”

^\w+\s+\w+$ “Gavrilut Dragos”

[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3} “192.168.0.1”, “999.999.999.999”

([0-9]{1,3}\.){3}[0-9]{1,3} “192.168.0.1”, “999.999.999.999”

^((([0-9])|([1-9][0-9])|(1[0-9]{2})|(2[0-4][0-

9])|(25[0-5]))\.){3}(([0-9])|([1-9][0-9])|(1[0-

9]{2})|(2[0-4][0-9])|(25[0-5]))$

Will only match IP addresses

[12]\d{12} CNP (but will not validate the correctness of the

birth date

0x[0-9a-fA-F]+ A hex number

(if|then|else|while|continue|break) A special keyword

REGULAR EXPRESSIONS SUPPORT

re.match starts the matching from the beginning of the string and stops once the
matching ends and not when the string ends except for the case where regular
expression pattern is using the “$” character:

Python 3.x

import re

if re.match("\d+","123 USD"):

print ("Match")

if re.match("\d+","Price is 123 USD"):

print ("Match")

if not re.match("\d+$","123 USD"):

print ("NO Match")

Output

Match

NO Match

REGULAR EXPRESSIONS SUPPORT

If you want to check if a regular expression pattern is matching a part of a string,
the “search” method can be used:

The same can be achieved using a compiled object:

Python 3.x

import re

if re.search("\d+","Price is 123 USD"):

print ("Found")

Output

Found

Python 3.x

import re

r = re.compile(“\d+")

if r.search("Price is 123 USD"):

print ("Found")

REGULAR EXPRESSIONS SUPPORT
search method stops after the first match is achieved.

The object returned by the search or match method is called a match object. A match
object is always evaluated to true. If the search does not find any match, None is
returned and will be evaluated to false. A match object has several members:

o group(index) → returns the substring that matches that specific group. If index is 0, the substring refers
to the entire string that was matched by the regular expression

o lastindex→ returns the index of the last object that was matched by the regular expression. To create a
group within the regular expression, one must use (…).

Python 3.x

import re

result = re.search("\d+","Price is 123 USD")

if result:

print (result.group(0))

Output

123

REGULAR EXPRESSIONS SUPPORT
In case of some operators (like * or +) they can be preceded by ?. This will specify a
NON-greedy behavior.

Python 3.x

import re

result = re.search(".*(\d+)", "File size if 12345 bytes")

if result:

print (result.group(1))

result = re.search(".*?(\d+)", "File size if 12345 bytes")

if result:

print (result.group(1))
Output

5

12345

REGULAR EXPRESSIONS SUPPORT
In case of some operators (like * or +) they can be preceded by ?. This will specify a
NON-greedy behavior.

Python 3.x

import re

result = re.search(".*(\d+)", "File size if 12345 bytes")

if result:

print (result.group(1))

result = re.search(".*?(\d+)", "File size if 12345 bytes")

if result:

print (result.group(1))
Output

5

12345

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("(\d+)[^\d]*(\d+)","Price is 123 USD aprox 110 EUR")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i)) Output

2

0 => 123 USD, aprox. 110

1 => 123

2 => 110

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("(\d+)[^\d]*(\d+)","Price is 123 USD aprox 110 EUR")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i)) Output

2

0 => 123 USD, aprox. 110

1 => 123

2 => 110

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("(\d+)[^\d]*(\d+)","Price is 123 USD aprox 110 EUR")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i)) Output

2

0 => 123 USD, aprox. 110

1 => 123

2 => 110

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("((\d+),(\d+))[^\d]*(\d+)",

"Color from pixel 20,30 is 123")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i))

Output

4

0 => 20,30 is 123

1 => 20,30

2 => 20

3 => 30

4 => 123

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("((\d+),(\d+))[^\d]*(\d+)",

"Color from pixel 20,30 is 123")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i))

Output

4

0 => 20,30 is 123

1 => 20,30

2 => 20

3 => 30

4 => 123

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("((\d+),(\d+))[^\d]*(\d+)",

"Color from pixel 20,30 is 123")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i))

Output

4

0 => 20,30 is 123

1 => 20,30

2 => 20

3 => 30

4 => 123

REGULAR EXPRESSIONS SUPPORT
(…) is usually used to delimit specific sequences of sub-string within the regular
expression pattern:

Python 3.x

import re

result = re.search("((\d+),(\d+))[^\d]*(\d+)",

"Color from pixel 20,30 is 123")

if result:

print (result.lastindex)

for i in range(0,result.lastindex+1):

print (i, "=>", result.group(i))

Output

4

0 => 20,30 is 123

1 => 20,30

2 => 20

3 => 30

4 => 123

REGULAR EXPRESSIONS SUPPORT
search stops after the first match. To find all substring that match a specific regular
expression from a string, use findall method.

The result is a vector containing all substrings that matched the regular expression.

Python 3.x

import re

result = re.findall("\d+","Color from pixel 20,30 is 123")

if result:

print (result)
Output

['20', '30', '123']

REGULAR EXPRESSIONS SUPPORT
search stops after the first match. To find all substring that match a specific regular
expression from a string, use findall method.

Using groups (…) is also allowed (in this case they will be converted to a tuple in each
list element.

Python 3.x

import re

result = re.findall("(\d)(\d+)","Color from pixel 20,30 is 123")

if result:

print (result)

Output

[('2', '0'), ('3', '0'), ('1', '23')]

REGULAR EXPRESSIONS SUPPORT
search stops after the first match. To find all substring that match a specific regular
expression from a string, use findall method.

Using groups (…) is also allowed (in this case they will be converted to a tuple in each
list element.

Python 3.x

import re

result = re.findall("(\d)(\d+)","Color from pixel 20,30 is 123")

if result:

print (result)

Output

[('2', '0'), ('3', '0'), ('1', '23')]

REGULAR EXPRESSIONS SUPPORT
search stops after the first match. To find all substring that match a specific regular
expression from a string, use findall method.

Using groups (…) is also allowed (in this case they will be converted to a tuple in each
list element.

Python 3.x

import re

result = re.findall("(\d)(\d+)","Color from pixel 20,30 is 123")

if result:

print (result)

Output

[('2', '0'), ('3', '0'), ('1', '23')]

REGULAR EXPRESSIONS SUPPORT
split method can be used to split a string using a regular expression.

The result is a vector with all elements that substrings that were obtained after the split
occurred.

Python 3.x

import re

result = re.split("[aeiou]+","Color from pixel 20,30 is 123")

print (result)

Output

['C', 'l', 'r fr', 'm p', 'x', 'l 20,30 ', 's 123']

C o l o r f r o m p i x e l 2 0 , 3 0 i s 1 2 3

REGULAR EXPRESSIONS SUPPORT

Groups can also be used. In this case the split is done after each group that matches.

Python 3.x

import re

print (re.split("\d\d","Color from pixel 20,30 is 123"))

Elements

'Color from pixel ' ',' ' is ' '3'

Python 3.x

import re

print (re.split("(\d)(\d)","Color from pixel 20,30 is 123"))

Elements

'Color from pixel ' '2' '0' ',' '3' '0' ' is ' '1' '2' '3'

REGULAR EXPRESSIONS SUPPORT
Groups can also be used. In this case the split is done after each group that matches.

Python 3.x

import re

print (re.split("\d\d+","Color from pixel 20,30 is 123"))

Output

['Color from pixel ', ',', ' is ', '']

C o l o r f r o m p i x e l 2 0 , 3 0 i s 1 2 3

REGULAR EXPRESSIONS SUPPORT
Groups can also be used. In this case the split is done after each group that matches.

Python 3.x

import re

print (re.split("\d\d+", "12345"))

import re

print (re.split("\d", "12345"))

Output

['', ''] ['', '', '', '', '', '']

Python 3.x

import re

print (re.split("(\d)", "12345"))

Output

['', '1', '', '2', '', '3', '', '4', '', '5', '']

REGULAR EXPRESSIONS SUPPORT
Groups can also be used. In this case the split is done after each group that matches.

”If capturing parentheses are used in pattern, then the text of all groups in the pattern are
also returned as part of the resulting list.”

https://docs.python.org/3/library/re.html#re.split

Python 3.x

import re

print (re.split("(\d\d+)", "Color from pixel 20,30 is 123"))

Output

['Color from pixel ', '20', ',', '30', ' is ', '123', '']

https://docs.python.org/3/library/re.html#re.split

REGULAR EXPRESSIONS SUPPORT
split method also allow flags and to specify how many times a split can be performed.
The full format is split (pattern, string, maxsplit=0, flags=0)

Python 3.x

import re

s = "Today I'm having a python course"

print (re.split("[^a-z']+", s))

print (re.split("[^a-z']+", s, 2))

print (re.split("[^a-z']+", s, flags = re.IGNORECASE))

print (re.split("[^a-z']+", s, 2, flags = re.IGNORECASE))

print (re.split("[^a-z'A-Z]+", s))

Output

['', 'oday', "'m", 'having', 'a', 'python', 'course']

['', 'oday', "'m having a python course"]

['Today', "I'm", 'having', 'a', 'python', 'course']

['Today', "I'm", 'having a python course']

['Today', "I'm", 'having', 'a', 'python', 'course']

REGULAR EXPRESSIONS SUPPORT
Regexp can also be used to replace a matched string with another string using the
method sub.
format is sub (pattern, replace, string, count=0, flags=0)

o pattern is a regular expression to search for

o replace is either a string or a function

o string is the string where you are going to search the pattern

o count represents how many time the replacement can occur. If missing or 0 means for all matches.

o flags represents some flags (like re.IGNORECASE)

Python 3.x

import re

s = "Today I'm having a python course"

print (re.sub("having\s+a\s+\w+\s+course", "not doing anything", s))

Output

Today I’m not doing anything

REGULAR EXPRESSIONS SUPPORT
Regexp can also be used to replace a match with another string using the method sub.
format is sub (pattern, replace, string, count=0, flags=0)

If replace parameter is a string, there is a special operator (\<number>) that if found
within the replacement string will be replace with the group from the match search (for
example \3 will be replaced with .group(3)).

Python 3.x

import re

s = "Today I'm having a python course"

print (re.sub("having\s+a\s+(\w+)\s+course",

r"not doing the \1 course",

s))

Output

Today I’m not doing the python course

REGULAR EXPRESSIONS SUPPORT
Regexp can also be used to replace a match with another string using the method sub.
format is sub (pattern, replace, string, count=0, flags=0)

If replace parameter is a string, there is a special operator (\<number>) that if found
within the replacement string will be replace with the group from the match search (for
example \3 will be replaced with .group(3)).

Python 3.x

import re

s = "Today I'm having a python course"

print (re.sub("having\s+a\s+(\w+)\s+course",

r"not doing the \1 course",

s))

You can also use

\g<number> with the same

effect. In this case \g<1>

REGULAR EXPRESSIONS SUPPORT
Regexp can also be used to replace a match with another string using the method sub.
format is sub (pattern, replace, string, count=0, flags=0)

If replace parameter is a function it receives the match object. Usually that function will
use .group(0) method to get the string that was matched and convert it to the
replacement value.

Python 3.x

import re

def ConvertToHex(s):

return hex(int(s.group(0)))

s = "File size is 12345 bytes"

print (re.sub("\d+",ConvertToHex, s))

Output

File size is 0x3039 bytes

EXTENSIONS

Python regular expressions supports extensions. The form of the extension is (?...)

o (?P<name>…) will set the name of a group to a given string. In case of a match, that group can be
accessed based on its name.

Python 3.x

import re

s = "File size if 12345 bytes"

result = re.search("(?P<file_size>\d+)",s)

if result:

print ("Size is ",result.group("file_size"))

Output

Size is 12345

EXTENSIONS

Python regular expressions supports extensions. The form of the extension is (?...)

o (?P<name>…)→The match object also has a groupdict method that returns a dictionary with all
the keys and strings that match the specified regular expression

Python 3.x

import re

s = "File config.txt was create on 2016-10-20 and has 12345 bytes"

result = re.search("File\s+(?P<name>[a-z\.]+)\s.*(?P<date>\d{4}-\d{2}-

\d{2}).*\s(?P<size>\d+)",s)

if result:

print (result.groupdict())

Result

{
'date' : '2016-10-20',
'name' : 'config.txt',
'size' : '12345‘

}

EXTENSIONS

Python regular expressions supports extensions. The form of the extension is (?...)

o (?i)(…) ignore case will be applied for the current block match

o (?s)(…) “.” (dot) will match everything

Python 3.x

import re

s = "12345abc54321"

result = re.search("(?i)([A-Z]+))",s)

if result:

print (result.group(1))

Output

abc

EXTENSIONS

Python regular expressions supports extensions. The form of the extension is (?...)

o (?=…) will match the previous expression only if next expression is … (this is called look ahead
assertion)

o (?!…) similarly, will match only if the next expression will not match …

Python 3.x

import re

s = "Python Course"

result = re.search("(Python)\s+(?=Course)",s)

if result:

print (result.group(1))

Output

Python

EXTENSIONS

Python regular expressions supports extensions. The form of the extension is (?...)

o (?#…) represents a comment / information that can be added in the regular expression to reflect
the purpose of a specific group

Python 3.x

import re

s = "Size is 1234 bytes"

result = re.search("(?# file size)(\d+)",s)

if result:

print ("Size is ",result.group(1))

Output

Size is 1234

BUILDING A TOKENIZER

Python has a way to iterate through a string applying different regular expression. Because
of this, a tokenizer can be built for different languages. Use method finditer for this.

Python 3.x

import re

number = "(?P<number>\d+)"

operation = "(?P<operation>[+\-*\/])"

braket = "(?P<braket>[\(\)])"

space = "(?P<space>\s)"

other = "(?P<other>.)"

r = re.compile(number+"|"+operation+"|"+braket+

"|"+space+"|"+other)

expr = "10 * (250+3)"

for matchobj in r.finditer(expr):

key = matchobj.lastgroup

print (matchobj.group(key)+" => "+key)

Output

10 => number

=> space

* => operation

=> space

(=> braket

250 => number

+ => operation

3 => number

) => braket

REGULAR EXPRESSIONS SUPPORT
Recommendations:

1. If the same regular expression is used multiple times using it in the compile form will
improve the performance of the script

2. Even if Python recognizes some escape sequences (such as \d or \w) it is better to
either use a raw string r”…” or to duplicate the escape character
❑ Instead of “\d” → use r”\d” or “\\d”

3. Regular expression need memory. If all you need is to search a substring within
another substring or perform simple string operation, don’t use regular expression for
this.

4. If you are trying to use the regular expression in a portable way, don’t use some
features like (?P=name) → other languages or regular expression engines might not
support this.

	Slide 1: Programming in Python
	Slide 2: Regular expressions support
	Slide 3: Regular expressions support
	Slide 4: Regular expressions support
	Slide 5: Regular expressions support
	Slide 6: Regular expressions support
	Slide 7: Regular expressions support
	Slide 8: Regular expressions support
	Slide 9: Regular expressions support
	Slide 10: Regular expressions support
	Slide 11: Regular expressions support
	Slide 12: Regular expressions support
	Slide 13: Regular expressions support
	Slide 14: Regular expressions support
	Slide 15: Regular expressions support
	Slide 16: Regular expressions support
	Slide 17: Regular expressions support
	Slide 18: Regular expressions support
	Slide 19: Regular expressions support
	Slide 20: Regular expressions support
	Slide 21: Regular expressions support
	Slide 22: Regular expressions support
	Slide 23: Regular expressions support
	Slide 24: Regular expressions support
	Slide 25: Regular expressions support
	Slide 26: Regular expressions support
	Slide 27: Regular expressions support
	Slide 28: Regular expressions support
	Slide 29: Regular expressions support
	Slide 30: Regular expressions support
	Slide 31: Regular expressions support
	Slide 32: Extensions
	Slide 33: Extensions
	Slide 34: Extensions
	Slide 35: Extensions
	Slide 36: Extensions
	Slide 37: Building a tokenizer
	Slide 38: Regular expressions support

