
Course – 1
Gavrilut Dragos

Rust programming

rev 14

Agenda for today

1. Administrative

2. Intro

3. First rust program

4. Basic Types

5. Variables

6. Operators

7. Functions & Expression Statements

8. Basic statements (if, while, loop, ….)

Administrative

Administrative

Overview:

• Course web page: https://gdt050579.github.io/rust_course_fii/

• Grading: Gauss-like system (check out our Administrative page for more details)

Examination type:

• A lab project →50 points (from week 8)

• Course examination →30 points

• Lab activity →7 points (week 1 to week 7)

Minimal requirements:

• Lab (activity + project) →20 points

• Course examination →10 points

https://gdt050579.github.io/rust_course_fii/

Intro

What is Rust

Rust is an open-source general programming language that focuses on performance
and safety (memory safety / type safety). It is primarily used for building command
line tools, web applications, server apps or to be used in embedded systems.

Resource:

• Linux & Mac/OSX: run curl --proto '=https' --tlsv1.3 https://sh.rustup.rs -sSf | sh

• GitHub repo: https://github.com/rust-lang/rust

• Windows install link: https://www.rust-lang.org/tools/install
• Documentation: https://doc.rust-lang.org/book/

• Quick install: https://rustup.rs/

• Official site: https://www.rust-lang.org/

Rust latest version: 1.90.0 (18.Sep.2024)

https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://rustup.rs/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/

Rust History

• 2006 → started as a project develop in Mozilla by Graydon Hoare

• 2010 → officially announced as a project

• 2015 → Rust 1.0 (first stable released announce)

• 2021 → Rust Foundation is formed, and the project is no longer
maintained solely by Mozilla. Companies that are part of Rust
Foundations are: AWS, Google, Huawei, Microsoft and Mozilla

• 2022 → Linus Torvalds announce that Rust is probably going to be
used in Linux Kernel in the near future

Rust History

• 2020 → Amazon announced its implication in using Rust as a
language for various project (AWS FireCracker being one of them)

Rust History

• 2020/Sep → While not confirmed by Apple, there are roomers that
Apple is also using Rust internally

Rust History

• 2021 → Google joins Rust Foundation with the director of
Engineering for the Android
Platform – Lars Bergstrom

Rust nation UK (2024)
https://www.youtube.com/watch?v=6mZRWFQRvmw&t=27012s

https://www.youtube.com/watch?v=6mZRWFQRvmw&t=27012s

Rust History

• 2022/Sep → Rust for Linux Kernel is announced to be released in
Linux kernel 6.1

Rust History

• 2022/Sep → Azure announce its support for Rust programming

Rust History

• Close after that event, Microsoft started to change some of its
internal code to Rust.

Rust History

• And after Microsoft Build
Conference from 2023,
Microsoft announces its
first kernel components
written in Rust as part of
their ecosystem.

Rust History

• In May.2024, Microsoft
donates 1M USD to Rust
Foundation to confirm
company interest in this
language.

Rust History

• Additionally, NSA has issued a document that suggest using memory
safety languages (such as Rust)

Rust History

• Finally, it is worth mention that Discord uses Rust on several backend
projects that require memory safety and increase performance:
https://discord.com/blog/search?query=rust

https://discord.com/blog/search?query=rust

Rust History

Other memorable notions:
• 2022 → CloudFlare announced Pingore (their proxy that connects Cloudflare to

Internet – written in Rust): https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-
cloudflare-to-the-internet/

• 2022 → Facebook announced their support for Rust for server side components:
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/

• 2022 → Google announced that they started to use Rust for Android to mitigate
risks: https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/

• 2023 → Github switch to a new search engine (BlackBird) written completely in
Rust: https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/

• 2023 → Meta announces Buck2 (a build system written in Rust):
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/

https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/

Rust History

Or other a little bit different:

Rust IDEs

• Visual Studio Code:
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer

• IntelliJ (RostOver):
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/

• Eclipse:
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-
includes-incubating-components

• Online IDE (Rust playground):
https://play.rust-lang.org/

• Other online compilers:
https://www.tutorialspoint.com/compile_rust_online.php
https://replit.com/languages/rust
https://www.onlinegdb.com/online_rust_compiler
https://rust.godbolt.org/

https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://play.rust-lang.org/
https://play.rust-lang.org/
https://play.rust-lang.org/
https://www.tutorialspoint.com/compile_rust_online.php
https://replit.com/languages/rust
https://www.onlinegdb.com/online_rust_compiler
https://rust.godbolt.org/

Rust Characteristics

• Strong-typed & statically typed language

• LLVM backend (native compiler) – gcc backend also a possibility in the future

• Ownership and lifetimes for variables

• Memory safety (allocation / access)

• No garbage collector

• Zero cost abstraction

• Move semantics

• Traits (for polymorphism)

• Package manager and build mechanisms

Language Time Peak Memory Version

Rust 247ms 4.9MB rustc 1.89.0-nightly

Rust 291ms 4.8MB rustc 1.87.0

C 332ms 6.0MB zigcc 0.14.1

C-Sharp 332ms 37.3MB dotnet 9.0.300

C 452ms 6.5MB clang 14.0.0-1ubuntu1.1

C 543ms 6.6MB gcc 15.1.0

Nim 578ms 4.5MB nim 2.2.4

Java 1162ms 55.7MB openjdk 23

Java 1167ms 54.6MB openjdk 21

Java 1194ms 108.9MB graal/jvm 17.0.8

Go 3230ms 7.7MB go 1.24.3

Performance tests (Mandelbrot)

https://programming-language-benchmarks.vercel.app/problem/mandelbrot

The Mandelbrot test is a benchmarking
exercise that measures the performance
of a programming language or compiler
by computing and rendering the
Mandelbrot fractal.

What It Measures:
• Raw CPU performance
• Loop optimization
• Floating-point performance
• Parallelism or threading efficiency
• Compiler code generation quality

https://programming-language-benchmarks.vercel.app/rust
https://programming-language-benchmarks.vercel.app/rust
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/c
https://programming-language-benchmarks.vercel.app/c
https://programming-language-benchmarks.vercel.app/nim
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/go
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot

Language Time
(sec)

Memory
(MB)

1 Rust 0.95 35,598
2 Chapel 1.18 42,156
3 Julia 1.54 357,138
4 C gcc 1.64 35,582
5 C++ g++ 2.36 38,281
6 Intel Fortran 2.72 85,975
7 Go 3.77 37,970
8 Free Pascal 3.91 35,529
9 Java 3.96 58,348
10 Ada 2012 4.01 41,099
11 C# 4.02 40,743
12 Node.js 4.05 144,757
13 Lisp 4.20 60,654

Performance tests (Mandelbrot)

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
(code that have possible hand-written vector instructions or "unsafe“ was removed)

The Mandelbrot test is a benchmarking
exercise that measures the performance
of a programming language or compiler
by computing and rendering the
Mandelbrot fractal.

What It Measures:
• Raw CPU performance
• Loop optimization
• Floating-point performance
• Parallelism or threading efficiency
• Compiler code generation quality

Language Time
(sec)

Memory
(MB)

14 Dart 4.29 45,175
15 Haskell 6.64 51,057
16 F# 7.17 49,979
17 Swift 7.27 49,312
18 OCaml 7.60 64,643
19 Erlang 53.86 98,140
20 PHP 68.29 53,531
21 Ruby 143.13 118,436
22 Lua 159.01 652,796
23 Python 3 182.94 62,173
24 PHP 258.19 16,437
25 Smalltalk >5min 175,542
26 Perl >8min 114,569

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html

First rust program

First RUST Program

• C-like syntax

fn main()
{
 print!("Hello world !");
}

Rust

First RUST Program

• C-like syntax

• However, there are some differences:
• A function in C is defined by writing the return type first, while in Rust a

function is defined using a special keyword fn

• “printf” is a function in C/C++, while “print!” is a macro in Rust

fn main()
{
 print!("Hello world !");
}

Rust

void main()
{
 printf("Hello world !");
}

C/C++

First RUST Program

• C-like syntax

• However, there are some differences:
• A function in C is defined by writing the return type first, while in Rust a

function is defined using a special keyword fn

• “printf” is a function in C/C++, while “print!” is a macro in Rust

• To specify the return value of a function, use the following syntax:
“-> <type>”

fn helloWorld() -> i32
{
 print!("Hello world !");
 return 0;
}

Rust

int helloWorld()
{
 printf("Hello world !");
 return 0;
}

C/C++

Create your very first RUST program

1. Using rustc (rust compiler) command line:

• Make sure that rust is installed

• Create a file in a folder named “first.rs” and insert into it the “hello
world example (the one with a main function)

• Run the following command from command line: rustc first.rs

• An executable file (e.g. first.exe if you run this command in Windows)
should appear in the first.rs file

• Run the executable file created on the precedent step (e.g. run
first.exe if you are on Windows)

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

• Make sure that rust is installed

• Run the following command from command line: cargo new first

• You should see a new folder (named first) that was created in the
current folder with the following structure:

\ Current folder

\first A folder that contains your first project

\first\.git A hidden folder with a git integration data

\first\.gitignore Ignore rules for git repo

\first\Cargo.toml Configuration file for first project (INI like format)

\src A folder with all rust sources

\src\main.rs The main file of the rust project

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

• Make sure that rust is installed

• Run the following command from command line: cargo new first

• You should see a new folder (named first) that was created in the
current folder with the following structure:

\ [package]
name = "first"
version = "0.1.0"
edition = "2022"

See more keys and their definitions at…

[dependencies]

\first

\first\.git

\first\.gitignore

\first\Cargo.toml

\src

\src\main.rs

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

• Make sure that rust is installed

• Run the following command from command line: cargo new first

• You should see a new folder (named first) that was created in the
current folder.

• Modify the “\src\main.rs” to contain the hello world example

• In folder “\first” execute the following command: cargo run

Create your very first RUST program

3. Try it using rust playground:

• Open a browser and go to
https://play.rust-lang.org/

• Write the hello world code

• Hit the Run button from
the top-left side of the
web-page

https://play.rust-lang.org/
https://play.rust-lang.org/
https://play.rust-lang.org/

Create your very first RUST program

4. Use different features from specialized IDEs:

• Use features such as create new project (IntelliJ) or various
command/prompts from Visual Studio Code

• In the backend the cargo utility is usually used

Basic Types

Basic types

Rust has several basic types, including:

1. Integers

2. Float values

3. Boolean

4. Character type

Basic types

Rust integer types:

 * gcc and c-lang provide a __int128 type (but it is not part of the standard)

Size Rust type C/C++ type C/C++ (approximate type)

8 bit (unsigned) u8 uint8_t unsigned char

8 bit (signed) i8 int8_t char

16 bit (unsigned) u16 uint16_t unsigned short

16 bit (signed) i16 int16_t short

32 bit (unsigned) u32 uint32_t unsigned int

32 bit (signed) i32 int32_t int

64 bit (unsigned) u64 uint64_t unsigned long long

64 bit (signed) i64 int64_t long long

128 bit (unsigned) u128 N/A* N/A

128 bit (signed) i128 N/A* N/A

Basic types

Rust integer types:

• General format is “i<no of bits>” for signed integer or “u<no of bits>”
for unsigned integers

• Signed integers (just like in C) are based on C2 complement format

• Besides this, there are two more integers types that have variable
length (depending on the architecture (32 or 64 bit). These types are
used as indexes in an array or as a representation of an offset or size
of a structure in memory.
Type Rust type C/C++ type

Unsigned (32/64 bit) usize size_t

Signed (32/64 bit) isize ptrdiff_t

Basic types

Rust integer types:

• Rust supports the following notations for integer values:
• 0x => for hexadecimal values

• 0o => for octal values

• 0b => for binary values

• b’char’ => for u8 values

• In addition, rust supports the use of character _ as a digit delimitator

• The type of the integer value (u8,u16,i8,i16,u32 …) can also be
specified as a suffix for a number to specify its type

Basic types

Rust integer types:

123; // i32
0x12u8; // u8
0b11001100i64; // i64 value
123_456_789; // i32 value of 123456789
0xFF_FF_FF_FF; // i32 value with delimitators
b'A'; // an u8 with value 65 (ascii code for character 'A')
0o11_33_77u64; // u64 value written in octal mode with delimitators
100usize; // value 100 as type usize;

Rust

Basic types

Rust float types:

• General format is “f<no of bits>” where number of bits is either 32 or
64

• Format IEEE-754 (similar to C/C++)

• “f32” and “f64” can also be used as
suffixes when creating a float constant

Type Rust type C/C++ type

Float 32 bits f32 float

Float 64 bits f64 double

123.0; // f64
123f64; // 123.0 (f64)
1.23f32; // f32 value
5.200_345; // f64 value of 5.200345

Rust

Basic types

Rust boolean type:

• Identical to C/C++ (bool)

• Size of bool type is 1 byte (just like in C/C++) with 1 indicating a true
value and 0 a false value

• Same constants just like in C/C++: true and false

Type Rust type C/C++ type

Boolean bool bool

Basic types

Rust character type:

• Identical to C/C++ (char)

• However, while the size of one character (for type char) in C/C++ is
one byte, in Rust the size of one character is 4 bytes (so that it can
represent any Unicode character value). The equivalent type in C++ is
char32_t

• Character constants can be written using single quotes ‘A’

Type Rust type C/C++ type (used by people) C++ equivalent type

Character char char char32_t

Variables & constants

Variable & Constants

Rust supports both local and global variables.

A local variable in Rust is declared using the special keywork let .

let <variable_name> : <type> = <initialization_value>;

let <variable_name> = <initialization_value>; Variable type is inferred from the
initialization_value

let <variable_name> : <type> ; Uninitialized variable. Its value must be set up
before using it.

let <variable_name> Uninitiatlize variable without a type
specification. Its value must be set up before
using it. When its value is going to be set up, its
type is going to be inferred at that time.

Variable & Constants

A simple example of local variables in Rust.

fn main() {
 let a: u32 = 123; // a is of type u32 and has a value of 123
 let b = 123; // b is inferred as an i32 and has a value of 123
 let c = 0xFFu64; // c is of type u64 (due to the suffix of u64 from the
 // initialization constant)
 let d: bool; // d is of type bool and must be initialized before using
 let e; // e is not initialized and its type will be inferred upon
 // initialization.
 d = true; // d value is initialized
 e = 4.3; // e is initialized and its type is f64
 println!("a={}, b={}, c={}, d={}, e={}", a, b, c, d, e);
}

Rust

Output

a=123, b=123, c=255, d=true, e=4.3

Variable & Constants

Rust does not allow the usage of uninitialized variables:

fn main() {
 let x: i32;
 println!("x={}", x);
}

Rust

error[E0381]: used binding `x` isn't initialized
 --> src/main.rs:3:22
 |
2 | let x: i32;
 | - binding declared here but left uninitialized
3 | println!("x={}", x);
 | ^ `x` used here but it isn't initialized

Error

Variable & Constants

However, the following code will work:

In the second case the type of “x” is inferred to i32.

fn main() {
 let x: i32;
 println!("Before x is initialized !");
 x = 100;
 println!("x={}", x);
}

Rust

fn main() {
 let x;
 println!("Before x is initialized !");
 x = 100;
 println!("x={}", x);
}

Rust

Output

Before x is initialized !
x=100

Variable & Constants

By default, any variable declared in Rust is immutable. The following
code will not compile because variable “x” can not be modified.

The usage of an in-mutable variable can be optimized when compiling
(e.g inline-ing variable value).

fn main() {
 let x = 10;
 println!("x is {}", x);
 x = 100;
 println!("now x is {}", x);
}

Rust error[E0384]: cannot assign twice to immutable variable `x`
 --> src\main.rs:7:5
 |
5 | let x = 10;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`
6 | println!("x is {}",x);
7 | x = 100;
 | ^^^^^^^ cannot assign twice to immutable variable

Error

Variable & Constants

In contrast, any C/C++ variables are by default mutable and can be
changed. As such, declaring a variable in Rust is similar to the following
code in C/C++;

fn main() {
 let x = 10;
 println!("x is {}", x);
}

Rust

void main() {
 const int x = 10;
 printf("x is %d",x);
}

C/C++ (using const specifier)

void main() {
 constexpr int x = 10;
 printf("x is %d",x);
}

C/C++ (using constexpr specifier)

Variable & Constants

To declare a mutable variable, use the keyword mut in the following
way: let mut <variable_name> ….

Now the previous code compiles and produces the following output:

fn main() {
 let mut x = 10;
 println!("x is {}", x);
 x = 100;
 println!("now x is {}", x);
}

Rust

Output

x is 10
now x is 100

Variable & Constants

Once a variable has a type assigned (via initialization or through type
inference) its type CAN NOT be changed (similar to how C/C++ works).

In this case the second assignment tries to set the value of variable “x”
that is of type “i32” to bool (via constant true)

fn main() {
 let mut x;
 x = 10;
 println!("x is {}", x);
 x = true;
 println!("now x is {}", x);
}

Rust

error[E0308]: mismatched types
 --> src\main.rs:8:10
 |
5 | let mut x;
 | ----- expected due to the type of this binding
...
8 | x = true;
 | ^^^^ expected integer, found `bool`

Error

Variable & Constants

Keep in mind that the same code in C/C++ works (due to the rules of
promotion, any Boolean value can be converted into an int).

fn main() {
 let mut x;
 x = 10;
 println!("x is {}", x);
 x = true;
 println!("now x is {}", x);
}

Rust

void main() {
 int x;
 x = 10;
 printf("x is %d\n",x);
 x = true;
 printf("now x is %d\n",x);
}

C/C++

Compile error Compiles ok

Output

x is 10
now x is 1

Variable & Constants

As a general observation, once a variable is declared with a specific
type, it can not be assigned with a value of a different type, even if an
implicit conversion is possible.

In this case “X” is of type u32 (with values between 0 and 232-1) and
the assigned value is of type u8. Even if every possible value for an u8
(values between 0 and 232-1) can be stored in an u32 value, Rust will
still provide a compiler error.

fn main() {
 let mut x = 10u32;
 x = 1u8;
 println!("x is {}", x);
}

Rust
error[E0308]: mismatched types
 --> src\main.rs:6:10
 |
5 | let mut x = 10u32;
 | ----- expected due to this value
6 | x = 1u8;
 | ^^^ expected `u32`, found `u8`

Error

Variable & Constants

In contrast, the same C/C++ code compiles (rules of conversion will
automatically convert a u8 value to u32).

fn main() {
 let mut x = 10u32;
 x = 1u8;
 println!("x is {}", x);
}

Rust

void main() {
 unsigned int x = 10;
 x = (unsigned char)1;
 printf("x is %d\n",x);
}

C/C++

Compile error Compiles ok

Output

x is 1

Variable & Constants

To cast from a type to another type in Rust there is a keyword called as
that can be used. The general format is <value> as <newType> :

For the previous case to work we need to rewrite it like this:

fn main() {
 let mut x = 10u32;
 x = 1u8 as u32;
 println!("x is {}", x);
}

Rust

Output

x is 1

Variable & Constants

Let’s see some examples:

First case is a simple one (as all possible values from u8) can be stored
in an i32. The second case (i8 to u8) keeps the value as it is (in terms of
bits) and just interprets the value in a different way.

fn main() {
 let mut x = 255 as u8;
 let mut y = 1 as i8;
 y = x as i8;
 println!("y is {}", y); // y is -1
}

Rust

Output

y is 255

fn main() {
 let mut x = 255 as u8;
 let mut y = 1 as i32;
 y = x as i32;
 println!("y is {}", y); // y is 255
}

Rust

Output

y is -1

Variable & Constants

Not all casts are possible (for example a cast between a number and a
bool is not allowed). The following code will not compile:

C/C++ has a different logic (any value that is 0 can be implicitly seen as
false and any value different than 0 can implicitly be seen as true).

fn main() {
 let mut x = 1 as u64;
 let mut y = true;
 y = x as bool;
 println!("y is {}", y);
}

Rust

error[E0054]: cannot cast as `bool`
 --> src\main.rs:7:10
 |
7 | y = x as bool;
 | ^^^^^^^^^ help: compare with zero instead: `x != 0`

Error

Let’s see some examples:

In this case, a truncation to the first 8-bits happens for the value of 258
(keep in mind that an u8 cand only store values between 0 and 255).

258 = 0000 0000 0000 0000 0000 0001 0000 0010

 = the code will truncate to the last 8bits (least significant one)

 = as such the result of the cast will be 1

fn main() {
 let mut x = 258 as u64;
 let mut y = 0 as u8;
 y = x as u8;
 println!("y is {}", y); // y is 2
}

Rust

Variable & Constants

Output

y is 2

In case of integer to float conversions, the program attempts to obtain
the closest float value to the integer one (that can be represented in
the float format).

fn main() {
 let x = 0xFFFF_FFFF as u32;
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}",y);
 println!("x is {}",x);
}

Rust

Variable & Constants

Output

y is 4294967300
x is 4294967295

Notice the difference

fn main() {
 let x = 100 as u32;
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}",y);
 println!("x is {}",x);
}

Rust

Output

y is 100
x is 100

In case of float to float conversion (every f32 can be converted into an
f64, while an f64 is approximated to the closest f32).

If the f64 value is outside maximum value possible in f32, the
conversion will enforce inf as the value of f32.

fn main() {
 let x = 1.7976931348623157E+308 as f64;
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}", y);
 println!("x is {}", x);
}

Rust

Variable & Constants

Output

y is inf
x is 17976931348623157000….000

fn main() {
 let x = 1.0123456789 as f64;
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}", y);
 println!("x is {}", x);
}

Rust

Output

y is 1.0123457
x is 1.0123456789

To declare multiple variables at the same time, use the following format:

- let (var1, var2, … varn) = (value1, value2, … valuen)

The types for var1, var2, … varn are inferred from the associated values.

The number of values provided must be the same as the number of
variables.

fn main() {
 let (mut x, mut y, mut z) = (1, 2, 3);
 let (a, b) = (1.23, true);
 println!("{x},{y},{z},{a},{b}");
 x = 10;
 y = 20;
 z = 30;
 println!("{x},{y},{z},{a},{b}");
}

Rust

Variable & Constants

Output

1,2,3,1.23,true
10,20,30,1.23,true

Rust also allows shadowing → meaning that a variable with the same
name and possible different type can be declared within an inner block
and possible be initialized with the value of the initial variable.

fn main() {
 let x: i32 = 10;
 println!("x is {}", x);
 {
 let x: bool = true;
 println!("inner x is {}", x);
 }
 println!("outter x is {}", x);
}

Rust

Variable & Constants

Output

x is 10
inner x is true
outter x is 10

Shadowing is often used to change the mutability state of one variable
for a limited period of time by using a copy of that variable.

fn main() {
 let x: i32 = 10;
 println!("x is {}", x);
 {
 let mut x = x;
 x = 20; // x is now mutable and can be changed
 println!("inner x is {}", x);
 }
 println!("outter x is {}", x);
}

Rust

Variable & Constants

Output

x is 10
inner x is 20
outter x is 10

For global variables, use the keyword static instead of let (let is
designed for stack/local variables).

A static variable implies a possible mutable variable (if mut keyword is
being used) and guarantees an allocated space in the binary data.

Variable & Constants

static x: i32 = 10;

fn main() {
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}", y);
 println!("x is {}", x);
}

Rust

Output

y is 10
x is 10

Rust also allows the usage of the special keyword const to define a
constant. The main difference between a const value and a static value
is that a const value is always immutable and will be replaced with its
value upon compiling phase.

Variable & Constants

const x: i32 = 10;

fn main() {
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}", y);
 println!("x is {}", x);
}

Rust

Output

y is 10
x is 10

Both static and const keywords can be used in a local function:

OBS: a mutable static value requires unsafe code (more about this on a
different course).

Variable & Constants

fn main() {
 static x: i32 = 10;
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}", y);
 println!("x is {}", x);
}

Rust

Output

y is 10
x is 10

fn main() {
 const x: i32 = 10;
 let mut y = 0 as f32;
 y = x as f32;
 println!("y is {}", y);
 println!("x is {}", x);
}

Rust

Variable & Constants

Another difference between static / const and let is that type has to be
provided in case of static and const keywords and can not be inferred.

fn main() {
 const x = 10;
 println!("x is {}",x);
}

Rust

error: missing type for `const` item
 --> src\main.rs:4:12
 |
4 | const x = 10;
 | ^ help: provide a type for the constant: `x: i32`

Error

fn main() {
 static x = 10;
 println!("x is {}",x);
}

Rust

error: missing type for `const` item
 --> src\main.rs:4:12
 |
4 | const x = 10;
 | ^ help: provide a type for the static variable: `x: i32`

Error

Variable & Constants

The same logic applies for initialization value (if in case of let, one can
define a variable and assigned its value after this), in case of const and
static this is not possible.

fn main() {
 static x: i32;
 x = 10;
 println!("x={}",x);
}

Rust

error: free static item without body
 --> src\main.rs:4:6
 |
4 | static x: i32;
 | ^^^^^^^^^^^^^-
 | |
 | help: provide a definition for the static: `= <expr>;`

Error

Variable & Constants

Observations:

1. There is no such thing as 0 initialization in Rust (for global
variables).
From this point of view, Rust tries to make everything clear and
make sure that there is no unknown behavior due to this case.

2. In case of constants, Rust recommend using upper cases (this is
considered a warning and will not affect the compilation phase).

warning: constant `x` should have an upper case name
 --> src\main.rs:4:12
 |
4 | const x: i32 = 10;
 | ^ help: convert the identifier to upper case (notice the capitalization): `X`
 |
 = note: `#[warn(non_upper_case_globals)]` on by default

Warning

Variable & Constants

Comparation with C/C++ similar forms:
Keyword Rust C/C++

let let mut x: i32 = 10; int x = 10;

let mut x: i32; int x;

let mut x = 10; auto x = 10;

let mut x;
x = 10;

N/A

const const x: i32 = 10; const int x = 10;

constexpr int x = 10;

#define x 10

static static x: i32 = 10; const int x = 10; // as a global variable

static const int x = 10; // as a local definition

Operators

Operators

Rust supports the following operators:

Operator Rust C/C++

Arithmetic (+ - * / %) Yes Yes

Comparation (> < >= <= != ==) Yes Yes

Logical OR , AND or NOT (|| && !) Yes Yes

Bit operators: bitwise OR, bitwise AND, shifts (& | ^ >> <<) Yes Yes

Assignments (= += -= *= %= /= &= |= ^= >>= <<=) Yes Yes

Increment / Decrement operators (++ --) N/A Yes

Negate operator (~) N/A (use !) Yes

Conditionally operator (?:) → condition ? Value for true : Value for false N/A Yes

Member access operator (. ->) Partial (only .) Yes

Error propagation (?) Yes N/A

Range literals (.. ..= …) Yes N/A

Functional update (..) Yes Partial (proxy ctor)

Operators

Rust has a very comprehensive compiling error system that besides
clearly explaining an error, it also provides some directions/ideas on
how to fix that error. In particular for operators, Rust can identify some
of the widely used operators that are not supported (such as increment
or decrement) and provide guidance on how to fix some errors.

fn main() {
 let mut x = 10;
 x++;
 print("x = {}", x);
}

Rust

error: Rust has no postfix increment operator
 --> src\main.rs:5:7
 |
5 | x++;
 | ^^ not a valid postfix operator
 |
help: use `+= 1` instead
 |
5 | { let tmp = x; x += 1; tmp };
 | +++++++++++ ~~~~~~~~~~~~~~~
5 - x++;
5 + x += 1;

Error

Operators

Rust has a very comprehensive compiling error system that besides
clearly explaining an error, it also provides some directions/ideas on
how to fix that error. In particular for operators, Rust can identify some
of the widely used operators that are not supported (such as increment
or decrement) and provide guidance on how to fix some errors.

fn main() {
 let mut x:u32 = 10;
 x = ~x;
 print!("x = {}", x);
}

Rust

error: `~` cannot be used as a unary operator
 --> src\main.rs:5:10
 |
5 | x = ~x;
 | ^ help: use `!` to perform bitwise not

Error

Operators

Operators order:

Operator Associativity

* / % left to right

+ - left to right

<< >> left to right

& left to right

^ left to right

| left to right

== != < > <= >= Require parentheses

&& left to right

|| left to right

.. ..= Require parentheses

= += -= *= /= %= &= |= ^= <<= >>= right to left

Functions &
Expression Statements

Functions

Function in Rust are defined using the keywork fn in the following way:

Where parameters are defined in the following way:

 * <param_name>:<type> [, < param_name >:<type>, …]

 * mut < param_name >:<type> [, ….]

Where <param_name> is the name of a parameter, and <type> is the
type of that variable.

Rust C/C++

fn <name> () {…} void <name> () {…}

fn <name> (parameters) {…} void <name> (parameters) {…}

fn <name> () -> <return_type> {…} <return_type> <name> () {…}

fn <name> (parameters) -> <return_type> {…} <return_type> <name> (parameters) {…}

Functions

Examples:

fn sum(x: u32, y: u32) -> u32 {
 return x + y;
}
fn print_x(x: u32) {
 println!("X is {}", x);
}
fn main() {
 let mut x: u32 = 10;
 print_x(x);
 x = sum(10, 20);
 print_x(x);
}

Rust Output

X is 10
X is 30

Functions

Examples:

fn compute(x: u32, y: u32) -> u32
{
 x = x * y;
 return x + y;
}
fn print_x(x: u32) {
 println!("X is {}", x);
}
fn main() {
 let mut x: u32 = 10;
 print_x(x);
 x = compute(10, 20);
 print_x(x);
}

Rust

error[E0384]: cannot assign to immutable argument `x`
 --> src\main.rs:4:5
 |
3 | fn compute(x:u32, y:u32) -> u32 {
 | - help: consider making this binding mutable: `mut x`
4 | x = x * y;
 | ^^^^^^^^^ cannot assign to immutable argument

Error

Functions

Examples:

fn compute(x:u32, y:u32) -> u32 {
 x = x * y;
 return x+y;
}
fn print_x(x:u32) {
 println!("X is {}",x);
}
fn main() {
 let mut x:u32 = 10;
 print_x(x);
 x = compute(10,20);
 print_x(x);
}

Rust

fn compute(mut x:u32, y:u32) -> u32 {
 x = x * y;
 return x+y;
}
fn print_x(x:u32) {
 println!("X is {}",x);
}
fn main() {
 let mut x:u32 = 10;
 print_x(x);
 x = compute(10,20);
 print_x(x);
}

Rust

Functions

Rust has a keyword (return) that can be used to return a value from a
function (similar to C-like languages). At the same time, Rust allows a
different format of returning a value by writing the value that you want
to return directly.

The following two Rust programs are equivalent.

fn value_3() -> u32
{
 return 3;
}
fn main() {
 let x = value_3();
 println!("x is {}", x);
}

Rust

fn value_3() -> u32
{
 3
}
fn main() {
 let x = value_3();
 println!("x is {}", x);
}

Rust

Functions

Rust has a keyword (return) that can be used to return a value from a
function (similar to C-like languages). At the same time, Rust allows a
different format of returning a value by writing the value that you want
to return directly.

The following two Rust programs are equivalent.

fn value_3() -> u32
{
 return 3;
}
fn main() {
 let x = value_3();
 println!("x is {}", x);
}

Rust

fn value_3() -> u32
{
 3
}
fn main() {
 let x = value_3();
 println!("x is {}", x);
}

Rust

Notice that ; character is not added after
the value that needs to be returned

Expression statements

Rust also allows an expression statement where something gets
computed based within a statement {…}

Notice that the same return format (with a value) is being used in this
case (without the ; character at the end)

fn main() {
 let y = 10;
 let x = { 1 + y };
 println!("x = {x}");
}

Rust

Output

X = 11

Expression statements

In this format, some even more complex operations can be performed:

In this case, the value of “x” will be “a+y+5”

fn main() {
 let y = 10;
 let x = {
 let temp = y;
 let a = temp * y;
 a + y + 5
 };
 println!("x = {x}");
}

Rust

Output

X = 115

Expression statements

In this format, some even more complex operations can be performed:

It is also possible to create nested functions within an expression
statements and use them to compute the return value.

fn main() {
 let y = 10;
 let x = {
 fn sum(x: i32, y: i32) -> i32 { x + y }
 fn dif(x: i32, y: i32) -> i32 { x – y }
 sum(2, 5) + dif(7, 3)
 };
 println!("x = {x}");
}

Rust

Output

X = 11

Expression statements

Nested functions can be added within an existing function:

fn main() {
 fn sum(x: i32, y: i32) -> i32 {
 x + y
 }
 fn dif(x: i32, y: i32) -> i32 {
 x - y
 }
 let y = sum(10, 20);
 let x = dif(20, 10);
 println!("x = {x}, y = {y}");
}

Rust

Output

X = 10, Y = 30

Basic statements

Basic statements

Most of basic statements that exists in C/C++ can be found in Rust as well:
Statement type Rust C/C++

If statement Yes Yes

While statement Yes Yes

For statement (classic) N/A Yes

For each Yes Yes

Loop Yes N/A

Do…While statement N/A Yes

GoTo N/A (partial support) Yes

switch Yes Yes

Patterns:
 if..let, while..let, let..else

Yes N/A

if

If statement format:

• if condition <then statement>

• if condition <then statement> else <else statement>

Obs:

1. Notice that condition does not require parentheses (…)

2. Because of this, <then statement> and <else statement> can not be
simple instructions (they have to be embedded in a block).

if

Example:

fn main() {
 let mut x = 1;
 if x > 0 {
 x += 1;
 }
 println!("x = {x}");
}

Rust

Output

X = 2

void main() {
 int x = 1;
 if (x>0) {
 x+=1;
 }
 printf("x = %d", x);
}

C/C++ (v1)

void main() {
 int x = 1;
 if (x>0)
 x+=1;
 printf("x = %d", x);
}

C/C++ (v2)

if

Example (if … else) :

fn main() {
 let mut x = 1;
 if x > 0 {
 x += 1;
 } else {
 x -= 1;
 }
 println!("x = {x}");
}

Rust

Output

X = 2

void main() {
 int x = 1;
 if (x>0) {
 x+=1;
 } else {
 x-=1;
 }
 printf("x = %d", x);
}

C/C++ (v1)

void main() {
 int x = 1;
 if (x>0)
 x+=1;
 else
 x-=1;
 printf("x = %d", x);
}

C/C++ (v2)

if

Parentheses (and) around the condition are allowed, the code
compiles but triggers a warning:

fn main() {
 let mut x = 1;
 if (x > 0) {
 x += 1;
 }
 println!("x = {x}");
}

Rust

Output

X = 2

warning: unnecessary parentheses around `if` condition
 --> src\main.rs:5:8
 |
5 | if (x>0) {
 | ^ ^
 |
 = note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
 |
5 - if (x>0) {
5 + if x>0 {

Warning

if

If statement can also be used as an expression statement:

Notice the fact the return value is specified just like in the case of
expression statements for both then and else parts.

fn main() {
 let x = 31;
 let y = if x > 20 { x / 2 } else { x * 2 };
 println!("y = {y}");
}

Rust

Output

y = 15

void main() {
 int x = 31;
 int y = x>20 ? x/2 : x * 2;
 printf("y = %d", y);
}

C++

while

While statement is similar to the one from C/C++:

- while <condition> { … do block … }

Just like in if statement case , notice that the <condition> does not
need to be surrounded by parentheses.

fn main() {
 let mut x = 0;
 while x < 3 {
 println!("x={x}");
 x = x + 1;
 }
}

Rust

Output

X = 0
X = 1
X = 2

void main() {
 int x = 1;
 while (x<3) {
 printf("x = %d", x);
 x+=1;
 }
}

C/C++

while

Similar to if statement , the condition MUST be followed by a block
(and can not be a simple instruction like in the case of C/C++).

fn main() {
 let mut x = 0;
 while x<3
 x = x+1;
 println!("x={x}");
}

Rust

void main() {
 int x = 1;
 while (x<3)
 x+=1;
 printf("x = %d", x);
}

C/C++

error: expected `{`, found `x`
 --> src\main.rs:6:9
 |
5 | while x<3
 | ----- --- this `while` condition successfully parsed
 | |
 | while parsing the body of this `while` expression
6 | x = x+1;
 | ^ expected `{`
 |
help: try placing this code inside a block
 |
6 | { x = x+1; }
 | + +

Error

The C/C++ code will compile

while

Both break and continue keywords can be used in a while statement,
with the same logic as the one from C/C++ (break or continue the
loop).

fn main() {
 let mut x = 1;
 while x < 10 {
 if x % 3 == 0 {
 break;
 }
 x = x + 1;
 }
 println!("{x}");
}

Rust

Output

3

while

Let’s consider the following problem:

- Let there be a number of form abc, where a, b and c are digits
between 1 and 9

- Can we find the smallest number of this form that has the following
relation between a, b and c

 1) a = b x 2

 2) b = c x 2

The answer is simple → there are two numbers that respect this
condition: 421 and 842, and as we are searching for the smallest one
the final answer will be 421.

while

Let’s see how the previous problem can be solved in Rust:

fn main() {
 let (mut x, mut y, mut z) = (1, 1, 1);
 while x < 10 {
 y = 1;
 while y < 10 {
 z = 1;
 while z < 10 {
 if (x == y * 2) && (y == z * 2) {
 println!("{x}, {y}, {z}");
 break;
 }
 z += 1;
 }
 y += 1;
 }
 x += 1;
 }
}

Rust

This code will run correctly, but it will
not print the smallest solutions but

instead it will print all solutions.

Output

4, 2, 1
8, 4, 2

while

Let’s see how the previous problem can be solved in Rust:

fn main() {
 let (mut x, mut y, mut z) = (1, 1, 1);
 let mut done = false;
 while (x < 10) && (!done) {
 y = 1;
 while (y < 10) && (!done) {
 z = 1;
 while (z < 10) && (!done) {
 if (x == y * 2) && (y == z * 2) {
 println!("{x}, {y}, {z}");
 done = true;
 }
 z += 1;
 }
 y += 1;
 }
 x += 1;
 }
}

Rust

One solution will be to create a flag
variable that forces the exit from every

inner while loops. Once the first solution is
found, we enable that flag and for the exit

from every inner while loop.

Output

4, 2, 1

while

Rust has a way of providing a name (a label) for every loop statement
(for, while or loop).

This is done via the following format:

- '<name>: <for|while|loop>

Example: 'first_while: while …

This allows keywords like break or continue to explicitly say if we want
to break the current loop or if we want to break a specific loop based
on the loop name / label.

- break

- break 'first_while

while

Let’s see how the previous problem can be solved in Rust:

fn main()
{
 let (mut x, mut y, mut z) = (1, 1, 1);
 'first_while: while x < 10 {
 y = 1;
 'second_while: while y < 10 {
 z = 1;
 while z < 10 {
 if (x == y * 2) && (y == z * 2) {
 println!("{x}, {y}, {z}");
 break 'first_while;
 }
 z += 1;
 }
 y += 1;
 }
 x += 1;
 }
}

Rust

This is a more elegant solution as we
can specify what while should the

break keyword break;

Output

4, 2, 1

When break ‘first_while is called, it
will break the most outer while and

stop the entire process.

loop

Rust also has a special loop called loop statement

- loop { … do block … }

In a nutshell a loop statement is nothing but a while true {…}
statement.

fn main() {
 let mut x = 0;
 loop {
 println!("{x}");
 if x >= 3 {
 break;
 }
 x += 1;
 }
}

Rust

Output

0
1
2
3

void main() {
 int x = 1;
 while (true) {
 printf("x = %d", x);
 if (x>=3) break;
 x+=1;
 }
}

C/C++

loop

The main advantage of the loop statement stays in the fact that it can
be transformed in an execution statement where the return of the loop
can be obtained via a break <value> statement.

Format: let <variable>:<type> = loop { … break <value> … };

fn main() {
 let (mut x, mut y) = (24, 18);
 let cmmdc: i32 = loop {
 if x > y { x -= y; }
 else if y < x { y -= x }
 else { break x; }
 };
 println!("{cmmdc}");
}

Rust

Output

6

loop

Type can be omitted and will be inferred from the value returned via
break statement.

Format: let <variable> = loop { … break <value> … };

fn main() {
 let mut sum = 0;
 let mut counter = 0;
 let first_10_sum = loop {
 if counter > 10 { break sum; }
 sum += counter;
 counter += 1;
 };
 println!("{first_10_sum}");
}

Rust

Output

55

If let

“if let” tries to match an expression with a specified pattern. If the
expression matches the pattern, the assignment is being performed and
the code from the <then block> is being executed. Otherwise, the <else>
block, if present is executed.

• if let <pattern> = <expression> { … then block … }

or

• if let <pattern> = <expression> { … then block … } else { … else block … }

This statement is NOT to be confused with the if var=<expression>
statement from C/C++, as they serve a different scope.

if let

The assignment (in case of if let <pattern> = <expression> { …} usually
translates in a match of:

• An enum variant

• A structure with parameters

• Numerical constants

• Tuples

• …

We will discuss more about this type of statement when we talk about
enums, errors and variants (as this is where this statement is mostly used).

if let

If let statement (example):

fn main() {
 let x = 10;
 if let 5 = x { println!("x is 5 "); }
 if let 10 = x { println!("x is 10"); }
 let tuple = (1,2); // a tuple with two integers 1 and 2
 if let (x,2) = tuple { println!("A tuple of {x} and 2");}
 if let (x,1) = tuple {
 /* do something */
 } else {
 println!("current tuple is not in the form (x,1)");
 }
}

Rust
Output

x is 10
A tuple of 1 and 2
current tuple is not in the form (x,1)

if let

If let statement (example):

fn main() {
 let x = 10;
 if let 5 = x { println!("x is 5 "); }
 if let 10 = x { println!("x is 10"); }
 let tuple = (1,2); // a tuple with two integers 1 and 2
 if let (x,2) = tuple { println!("A tuple of {x} and 2");}
 if let (x,1) = tuple {
 /* do something */
 } else {
 println!("current tuple is not in the form (x,1)");
 }
}

Rust

This actually translates into the following logic:
* If variable tuple’s second value is 2 then copy its
first value into variable “x” and run the code from

<then> block.

if let

If let statement (example):

fn main() {
 let x = 10;
 if let 5 = x { println!("x is 5 "); }
 if let 10 = x { println!("x is 10"); }
 let tuple = (1,2); // a tuple with two integers 1 and 2
 if let (x,2) = tuple { println!("A tuple of {x} and 2");}
 if let (x,1) = tuple {
 /* do something */
 } else {
 println!("current tuple is not in the form (x,1)");
 }
}

Rust

An equivalent code will look like this:
// if the second value from a tuple is 2
if tuple.1 == 2 {
 // assign the first value from the tuple to variable x
 let x = tuple.0;
 println!("A tuple of {x} and 2");
}

if let

Let’s discuss another example:

In this example, “if let v = 0” will always be true (in reality there is no
pattern to match here – just a simple assignment). The code will
compile, but this no different than just writing “let v = 0”.

fn main() {
 if let v = 0 {
 println!("{v}");
 }
}

Rust
warning: irrefutable `if let` pattern
 --> src\main.rs:2:8
 |
2 | if let v = 0 {
 | ^^^^^^^^^
 |
 = note: this pattern will always match, so the `if let` is useless
 = help: consider replacing the `if let` with a `let`
 = note: `#[warn(irrefutable_let_patterns)]` on by default

WarningOutput

0

if let

Let’s discuss another example:

This is a similar logic → however, notice that the “v” variable from
the if let statement has a limited lifetime to the <then> block and
will not affect the outer “v” variable. As a result, the second println
will print the value 20.

fn main() {
 let v = 20;
 if let v = 0 {
 println!("{v}");
 }
 println!("{v}");
}

Rust
Output

0
20

if let

Let’s discuss another example:

Keep in mind that these two code are NOT EQUIVALENT. In case of
C++ example, variable v is first instantiated with value 0 and then
evaluated (and since 0 = false) the <then block> is not executed.
Furthermore, it’s the same variable “v” and as such the second
printf will print value 0.

fn main() {
 let v = 20;
 if let v = 0 {
 println!("inner = {v}");
 }
 println!("outer = {v}");
}

Rust
Output

Inner = 0
outer = 20

#include <stdio.h>
int main() {
 int v = 20;
 if (v = 0) {
 printf("inner = %d",v);
 }
 printf("outer = %d",v);
}

C++ Output

outer = 0

while let

The while let form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

This is not to be confused with while var=expression statement

from C/C++.

fn main() {
 while let mut y = 0 {
 if y >= 3 { break; }
 y = y + 1;
 println!("{y}");
 }
}

Rust

On the first glance, we would expect this
while to run for 3 iterations , print values

from 1 to 3 and exit.

while let

The while let form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

This is not to be confused with while var=expression statement

from C/C++.

fn main() {
 while let mut y = 0 {
 if y >= 3 { break; }
 y = y + 1;
 println!("{y}");
 }
}

Rust

On the first glance, we would expect this
while to run for 3 iterations , print values

from 1 to 3 and exit.

In reality, the code runs indefinitely. The initialization
of y to 0 is evaluated on every iteration and as a result
y will always be 0 and as such the break condition will

not be achieved.

while let

The while let form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

fn main() {
 while let mut y = 0 {
 if y >= 3 { break; }
 y = y + 1;
 println!("{y}");
 }
}

Rust

Rust notifies about this behavior through a warning !

warning: irrefutable `while let` pattern
 --> src\main.rs:4:11
 |
4 | while let mut y = 0 {
 | ^^^^^^^^^^^^^
 |
 = note: `#[warn(irrefutable_let_patterns)]` on by default
 = note: this pattern will always match, so the loop will never exit
 = help: consider instead using a `loop { ... }` with a `let` inside it

Warning

while let

The while let form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

This is not to be confused with while var=expression statement

from C/C++.

fn main() {
 while let mut y = 0 {
 if y >= 3 { break; }
 y = y + 1;
 println!("{y}");
 }
}

Rust

Equivalent code

fn main() {
 while true {
 let mut y = 0;
 if y >= 3 { break;}
 y = y + 1;
 println!("{y}");
 }
}

Rust

while let

The assignment (in case of while let <pattern> = <expression> { …} usually
translates in a match of:

• An enum variant

• A structure with parameters

• Numerical constants

• Tuples

• …

We will discuss more about this type of statement when we talk about
enums, errors and variants (as this is where this statement is mostly used).

let … else

“let … else” tries to match an expression with a specified pattern. If the
expression matches the pattern, the assignment is being executed.
Otherwise, an error (that will be discuss in the next courses) will be
thrown:

let <pattern> = <expression> else { … error … }

This is mostly used with enum , variants or structs and we will further
discuss this type of behavior at that point.

let … else

Some examples of “let … else”:

fn main() {
 let tuple = (1,2);
 let (x,2) = tuple else {
 panic!("Fail to assign !")
 };
 println!("{x}");
}

Rust

fn main() {
 let tuple = (1,3);
 let (x,2) = tuple else {
 panic!("Fail to assign !")
 };
 println!("{x}");
}

Rust

Output

1 thread 'main' panicked at 'Fail to assign !',
src\main.rs:3:31
stack backtrace:
 0: std::panicking::begin_panic_handler

Error

let … else

Some examples of “let … else”:

fn main() {
 let tuple = (1,2);
 let (x,2) = tuple else {
 panic!("Fail to assign !")
 };
 println!("{x}");
}

Rust

fn main() {
 let tuple = (1,3);
 let (x,2) = tuple else {
 panic!("Fail to assign !")
 };
 println!("{x}");
}

Rust

This code compiles and runs without any
error. Since tuple variable matches the

format (<number>,2), the value of the first
field from the tuple will be copied to

variable “x”.

Notice that tuple variable is (1,3) and does
not match the let … else requirement and
as such a runtime error (panic) is thrown.

other statements

There are other more complex statement in Rust, such as:

• for (equivalent for classical for from C/C++ and a foreach)

• match (an equivalent for switch in C/C++ but more oriented to
pattern matching)

As all these statements are either more complex or require
understanding of different concepts in Rust, we will discuss them
during the next courses.

Q
A&

	Default Section
	Slide 1: Course – 1 Gavrilut Dragos
	Slide 2: Agenda for today

	Administrative
	Slide 3: Administrative
	Slide 4: Administrative

	Intro
	Slide 5: Intro
	Slide 6: What is Rust
	Slide 7: Rust History
	Slide 8: Rust History
	Slide 9: Rust History
	Slide 10: Rust History
	Slide 11: Rust History
	Slide 12: Rust History
	Slide 13: Rust History
	Slide 14: Rust History
	Slide 15: Rust History
	Slide 16: Rust History
	Slide 17: Rust History
	Slide 18: Rust History
	Slide 19: Rust History
	Slide 20: Rust IDEs
	Slide 21: Rust Characteristics
	Slide 22: Performance tests (Mandelbrot)
	Slide 23: Performance tests (Mandelbrot)

	First rust program
	Slide 24: First rust program
	Slide 25: First RUST Program
	Slide 26: First RUST Program
	Slide 27: First RUST Program
	Slide 28: Create your very first RUST program
	Slide 29: Create your very first RUST program
	Slide 30: Create your very first RUST program
	Slide 31: Create your very first RUST program
	Slide 32: Create your very first RUST program
	Slide 33: Create your very first RUST program

	Basic Types
	Slide 35: Basic Types
	Slide 36: Basic types
	Slide 37: Basic types
	Slide 38: Basic types
	Slide 39: Basic types
	Slide 40: Basic types
	Slide 41: Basic types
	Slide 42: Basic types
	Slide 43: Basic types

	Variables
	Slide 44: Variables & constants
	Slide 45: Variable & Constants
	Slide 46: Variable & Constants
	Slide 47: Variable & Constants
	Slide 48: Variable & Constants
	Slide 49: Variable & Constants
	Slide 50: Variable & Constants
	Slide 51: Variable & Constants
	Slide 52: Variable & Constants
	Slide 53: Variable & Constants
	Slide 54: Variable & Constants
	Slide 55: Variable & Constants
	Slide 56: Variable & Constants
	Slide 57: Variable & Constants
	Slide 58: Variable & Constants
	Slide 59: Variable & Constants
	Slide 60: Variable & Constants
	Slide 61: Variable & Constants
	Slide 62: Variable & Constants
	Slide 63: Variable & Constants
	Slide 64: Variable & Constants
	Slide 65: Variable & Constants
	Slide 66: Variable & Constants
	Slide 67: Variable & Constants
	Slide 68: Variable & Constants
	Slide 69: Variable & Constants
	Slide 70: Variable & Constants
	Slide 71: Variable & Constants

	Operators
	Slide 72: Operators
	Slide 73: Operators
	Slide 74: Operators
	Slide 75: Operators
	Slide 76: Operators

	Functions
	Slide 77: Functions & Expression Statements
	Slide 78: Functions
	Slide 79: Functions
	Slide 80: Functions
	Slide 81: Functions
	Slide 82: Functions
	Slide 83: Functions
	Slide 84: Expression statements
	Slide 85: Expression statements
	Slide 86: Expression statements
	Slide 87: Expression statements

	Basic blocks
	Slide 88: Basic statements
	Slide 89: Basic statements
	Slide 90: if
	Slide 91: if
	Slide 92: if
	Slide 93: if
	Slide 94: if
	Slide 95: while
	Slide 96: while
	Slide 97: while
	Slide 98: while
	Slide 99: while
	Slide 100: while
	Slide 101: while
	Slide 102: while
	Slide 103: loop
	Slide 104: loop
	Slide 105: loop
	Slide 106: If let
	Slide 107: if let
	Slide 108: if let
	Slide 109: if let
	Slide 110: if let
	Slide 111: if let
	Slide 112: if let
	Slide 113: if let
	Slide 114: while let
	Slide 115: while let
	Slide 116: while let
	Slide 117: while let
	Slide 118: while let
	Slide 119: let … else
	Slide 120: let … else
	Slide 121: let … else
	Slide 122: other statements
	Slide 123

