Rust programming
Course—1

Gavrilut Dragos

Agenda for today

Functions & Expression Statements

1. Administrative
2. Intro

3. First rust program
4. Basic Types

5. Variables

6. Operators

/

8.

Basic statements (if, while, loop,)

Administrative

Overview:

» Course web page: https://gdt050579.github.io/rust course fii/

Administrative

* Grading: Gauss-like system (check out our Administrative page for more details)

Examination type:
* Alab project

* Course examination
* Lab activity

Minimal requirements:
* Lab (activity + project)

e Course examination

—=250 points (from week 8)
-2 30 points
-7 points (week 1 to week 7)

- 20 points
- 10 points

https://gdt050579.github.io/rust_course_fii/

Intro

What is Rust

Rust is an open-source general programming language that focuses on performance
and safety (memory safety / type safety). It is Brimarily used for building command
line tools, web applications, server apps or to be used in embedded systems.

Resource:

* Linux & IVIac/OSX: @¥1gBcurl --proto '=https' --tlsv1.3 https://sh.rustup.rs -sSf | sh
GitHub repo: https://github.com/rust-lang/rust

Windows install link: https://www.rust-lang.org/tools/install
Documentation: https://doc.rust-lang.org/book/

Quick install: https://rustup.rs/

Official site: https://www.rust-lang.org/

Rust latest version: 1.90.0 (18.5ep.2024)

https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://rustup.rs/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/

Rust History

* 2006 > started as a project develop in Mozilla by Graydon Hoare
» 2010 —> officially announced as a project
e 2015 - Rust 1.0 (first stable released announce)

» 2021 - Rust Foundation is formed, and the project is no longer
maintained solely by Mozilla. Companies that are part of Rust
Foundations are: AWS, Google, Huawei, Microsoft and Mozilla

e 2022 -2 Linus Torvalds announce that Rust is probably going to be
used in Linux Kernel in the near future

Rust History

* 2020 = Amazon announced its implication in using Rust as a
language for various project (AWS FireCracker being one of them)

C 25 aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/ v

aWS About AWS Contact Us Support v My Account v Sign In Create an AWS Account
v7

Amazon Q Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer En 2 Q

AWS Blog Home Blogs ~ Editions ¥

AWS Open Source Blog

Why AWS loves Rust, and how we'd like to help

by Matt Asay | on 24 NOV 2020 | in Announcements, Open Source, Programing Language |

Resources

Permalink | @ Comments | # Share Open Source at AWS
Projects on GitHub
One of the most exciting things about the Rust programming language is that it makes
infrastructure incredibly boring. That's not a bad thing, in this case. No one wants their electrical
wiring to be exciting; most of us prefer the safety that comes with being able to flip a switch and
have light to see by. For similar reasons, at AWS we increasingly build critical infrastructure like
the Firecracker VMM using Rust because its out-of-the-box features reduce the time and effort
needed to reach Amazon's high security bar, while still delivering runtime performance similar to

Cand C++. Follow

Rust History

* 2020/Sep > While not confirmed by Apple, there are roomers that
Apple is also using Rust internally

: Oskar Groth
L ' @oskargroth - Follow

Wow, Apple seems to be all-in on Rust for low-level
programming:

“Following a very successful first foray into Rust we are
migrating an established codebase from C to Rust, and
building new functionality primarily in Rust."

jobs.apple.com/de-de/details/...

790 L Reply (Z’ Copy link

Read 15 replies

Rust History

* 2021 = Google joins Rust Foundation with the director of
Engineering for the Android (Y —— :
Platform — Lars Bergstrom = C 9

Introducing Lars Bergstrom

April 22, 2021 / Rust Foundation Team

Sponsored by
; HUAWEI

Rust teams at Google are as
productive as ones using Go, and
more thaﬁ twice as productive as Begond Sategind pecRimiust
teams us”’]g C++. Fuels Team Productivity

Lars Bergstrom

Play (k)

P w— »
i i i Over the next five weeks, we'll be running a series called Getting to know the board, publishing blog
posts from each member of the Rust Foundation Board of Directors, introducing them to the
. community. You can view the posts in this series here.
RUSt natlon U K (2024) I'm super excited to have the opportunity to join the Rust Foundation board to both continue to support

https://www.youtube.com/watch?v=6mZRWFQRvmw&t=27012s Rust and help to grow its usage at Google. I am currently the Director of Engineering for Android
Platform Programming languages, where I work with teams supporting C++, Java, Kotlin, and Rust

development. Like many other software projects, improving memory safety in our most performance-
sensitive code is a critical need on Android to both keep our users safe and reduce the number of

https://www.youtube.com/watch?v=6mZRWFQRvmw&t=27012s

Rust History

» 2022/Sep =2 Rust for Linux Kernel is announced to be released in
Linux kernel 6.1 st coming o e ke X

< C' @& theregister.com & = O o (Upciate }

& SIGNIN/UP 'I'heMegister@

OSES 64 (]

This article is more than 1 year old

Linux luminaries discuss efforts to bring Rust to
the kernel

After 31 years, a second programming language will be allowed in

A Liam Proven Fri 16 Sep 2022 16:30 UTC

OPEN SOURCE SUMMIT Both Linus Torvalds' Open Source Summit keynote and Jonathan
Corbet's "Kernel Report" discussed efforts to allow Rust modules in Linux.

Rust History

» 2022/Sep > Azure announce its support for Rust programming

In Rust We Trust: Microsoft Azu X e

&= C @& theregister.com

& SIGNIN/UP 'IheMegister®

In Rust We Trust: Microsoft Azure CTO shuns C

and C++

Mark Russinovich goes hardcore against old languages

A Thomas Claburn Tue 20 Sep 2022 18:16 UTC

UPDATED Microsoft Azure CTO Mark Russinovich has had it with C and C++, time-tested
programming languages commonly used for native applications that require high performance.

Rust History

* Close after that event, Microsoft started to change some of its
internal code to Rust.

Microsoft is rewriting core Wind: X +

< C @ theregister.com = =S O o (Update :

—~

£ SIGNIN/UP meMegister@ Q =

CSO

Microsoft is busy rewriting core Windows code in

memory-safe Rust

Now that's a C change we can back

A Thomas Claburn Thu 27 Apr 2023 20:45 UTC

Microsoft is rewriting core Windows libraries in the Rust programming language, and the more
emory-safe code is already reaching developers.

Rust History

@

* And after Microsoft Build
Conference from 2023,

Home Windows 11 Mobile Cloud + Al Microsoft 365 Home Tech Xbox

First Rust Code Shows Up in the Windows 11 Kernel

Microsoft announces its oo 2] 0]
first kernel components

. . C:\Windows\System32>dir win32kx*
W”tten |n RUSt aS pa rt Of Volumg in df‘i:e C hgs no 1ab:1.

Volume Serial Number is E60B-9A9E

their ecosystem.

Directory of C:\Windows\System32

04/15/2023 ©9:50 PM 708,608 win32k.sys
04/15/2023 ©9:49 PM 3,424,256 minlddithaco cys
04/15/2023 ©9:49 PM 110,592 win32kbase_rs.sys
04/15/2023 ©9:50 PM 4,194,304 wins3Zktull svs
04/15/2023 ©9:49 PM 40,960 win32kfull_rs.sys
O4/15/2023 09:49 PM 69,632 WIISZKIIS'SYS
04/15/2023 09:49 PM 98,304 win32ksgd.sys

7 File(s) 8,646,656 bytes

®@ Dir(s) 116,366,049,280 bytes free

Recently, we learned that Micr

programming language Rus

Rust History
THENEWSTACK

* In May.2024, Microsoft ot o o
donates 1M USD to Rust

Foundation to confirm
company interest in this Microsoft's $1M Vote of Confidence in
language. Rust’s Future

Microsoft has made an unrestricted $1 million donation to the Rust Foundation, demonstrating its
commitment to the Rust programming language and its ecosystem.

May 7th, 2024 9:30am by Darryl K. Taft

| ,,37} %

‘I
|
(|
2\ |
)

l‘.l_“\“ 4"*

-

7))
\

NS ‘
7 WS |\

Rust History

* Additionally, NSA has issued a document that suggest using memory
safety languages (such as Rust)

NSA joins CISA in releasing: /< N

THE CASE FOR MEMORY
SAFE ROADMAPS

PRESS RELEASE | Dec. 6, 2023

Rust History

* Finally, it is worth mention that Discord uses Rust on several backend
projects that require memory safety and increase performance:
https://discord.com/blog/search?query=rust

HOW DISCORD STORES TRILLIONS
OF MIESSAGES
WHY DISCORD IS SWITCHING USING RUST TO SCALE ELIXIR FOR
FROM GO TO RUST 11 MILLION CONCURRENT USERS Rust! We'd used it for a few projects
previously, and it lived up to the hype for us.

It gave us fast C/C++ speeds without having
to sacrifice safety....

But Discord has been using Rust to make
things go fast, and we posed a question:
“Could we use Rust to go faster?”. Rust is
not a functional language, and will happily

This service was a great candidate to port to
Rust since it was small and self-contained,
but we also hoped that Rust would fix these
latency spikes....

https://discord.com/blog/search?query=rust

Rust History

Other memorable notions:

e 2022 - CloudFlare announced Pingore (their proxy that connects Cloudflare to

Internet — written in RUSt)Z https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-
cloudflare-to-the-internet/

» 2022 - Facebook announced their support for Rust for server side components:

https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/

« 2022 = Google announced that they started to use Rust for Android to mitigate

N kS: https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/

e 2023 - Github switch to a new search engine (BlackBird) written completely in

Rust: https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/

« 2023 - Meta announces Buck2 (a build system written in Rust):
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck?2/

https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/the-rust-programming-language-just-got-a-big-boost-from-meta/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/google-after-using-rust-we-slashed-android-memory-safety-vulnerabilities/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://www.zdnet.com/article/github-builds-a-search-engine-for-code-from-scratch-in-rust/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/
https://engineering.fb.com/2023/10/23/developer-tools/5-things-you-didnt-know-about-buck2/

Rust History

Or other a little bit different:

Rust is rolling off the Volvo

assembly line >

Rust in Space: How NASA and SpaceX Use Rust
Dion g o for Mission-Critical Systems in 2025

Embedded software engineer

Space agencies need programming languages that prevent system failures while
maintaining high performance. NASA and SpaceX now use Rust for mission-critical
systems that control spacecraft, analyze telemetry data, and manage life support

systems. After multiple successful implementations in 2023-2024, Rust has become

essential for space-bound software in 2025.

Rust's memory safety guarantees without garbage collection make it ideal for space
applications where a single bug could end a billion-dollar mission or endanger

astronaut lives. This article examines how NASA and SpaceX implement Rust, with

Rust IDEs

e Visual Studio Code:
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer

* IntelliJ (RostOver):
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/

* Eclipse:
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-
includes-incubating-components

* Online IDE (Rust playﬁround):
https://play.rust-lang.org

* Other online compilers:
https://www.tutorialspoint.com/compile rust online.php
https://replit.com/languages/rust
https://www.onlinegdb.com/online rust compiler
https://rust.eodbolt.org/

https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://blog.jetbrains.com/rust/2023/09/13/introducing-rustrover-a-standalone-rust-ide-by-jetbrains/
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-rust-developers-includes-incubating-components
https://play.rust-lang.org/
https://play.rust-lang.org/
https://play.rust-lang.org/
https://www.tutorialspoint.com/compile_rust_online.php
https://replit.com/languages/rust
https://www.onlinegdb.com/online_rust_compiler
https://rust.godbolt.org/

Rust Characteristics

e Strong-typed & statically typed language

* LLVM backend (native compiler) — gcc backend also a possibility in the future
* Ownership and lifetimes for variables

* Memory safety (allocation / access)

* No garbage collector

e Zero cost abstraction

* Move semantics

* Traits (for polymorphism)

e Package manager and build mechanisms

Performance tests (Mandelbrot)
The Mandelbrot test is a benchmarking
exercise that measures the performance

of a programming language or compiler Rust 247ms rustc 1.89.0-nightly

by computing and rendering the R 201ms 4.8MB rustc 1.87.0
Mandelbrot fractal.

(o

us

C 332ms 6.0MB zigcc 0.14.1

C-Sharp 332ms 37.3MB dotnet 9.0.300
C 452ms 6.5MB clang 14.0.0-1lubuntul.l
C 543ms 6.6MB gcc 15.1.0
Nim 578ms 4.5MB nim 2.2.4

What It Measures: Java 1162ms 55.7MB openjdk 23
« Raw CPU performance Java 1167ms 54.6MB openjdk 21
* Loop optimization Java 1194ms 108.9MB graal/jvm 17.0.8
* Floating-point performance Go 3930ms 2 TMB g0 1.24.3

* Parallelism or threading efficiency
o Compiler code generation quality https://programming-language-benchmarks.vercel.app/problem/mandelbrot

https://programming-language-benchmarks.vercel.app/rust
https://programming-language-benchmarks.vercel.app/rust
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/csharp
https://programming-language-benchmarks.vercel.app/c
https://programming-language-benchmarks.vercel.app/c
https://programming-language-benchmarks.vercel.app/nim
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/java
https://programming-language-benchmarks.vercel.app/go
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot
https://programming-language-benchmarks.vercel.app/problem/mandelbrot

Performance tests (Mandelbrot)

Language Time | Memory Language Time | Memory
(sec) (MB) (sec) (MB)

The Mandelbrot test is a benchmarking
exercise that measures the performance
of a programming language or compiler

by computing and rendering the 1 Rust 0.95 35,598 14 Dart 4.29 45,175
Mandelbrot fractal. 2 Chapel 1.18 42,156 15 Haskell 6.64 51,057
3 Julia 1.54 357,138 16 F# 7.17 49,979
4 Cgcc 1.64 35,582 17 Swift 7.27 49,312
5 C++g++ 2.36 38,281 18 OCaml 7.60 64,643
6 Intel Fortran 2.72 85,975 19 Erlang 53.86 98,140
7 Go 3.77 37,970 20 PHP 68.29 53,531
8 Free Pascal 3.91 35,529 21 Ruby 143.13 118,436
9 Java 3.96 58,348 22 Lua 159.01 652,796
10 Ada 2012 4.01 41,099 23 Python 3 182.94 62,173
What It Measures: 11 C# 4.02 40,743 24 PHP 258.19 16,437
« Raw CPU performance 12 I\{ode.js 4.05 144,757 25 Smalltalk >5 min 175,542
13 Lisp 4.20 60,654 26 Perl >8 min 114,569

* Loop optimization

* Floating-point performance

* Parallelism or threading efficiency
 Compiler code generation quality

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
(code that have possible hand-written vector instructions or "unsafe” was removed)

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/mandelbrot.html

First rust program

First RUST Program

fn main()

{
}

print!("Hello world !");

* C-like syntax

First RUST Program

fn main() void main()

{ {

print!("Hello world !"); printf("Hello world !");
} }

* C-like syntax

 However, there are some differences:

e A functionin Cis defined by writing the return type first, while in Rust a
function is defined using a special keyword fn

e “printf” is a function in C/C++, while “print!” is a macro in Rust

First RUST Program

fn helloWorld() -> 132
{

int helloWorld()

{
print!("Hello world !");

return 9;

printf("Hello world !");
return 9;

* C-like syntax

 However, there are some differences:

e A functionin Cis defined by writing the return type first, while in Rust a
function is defined using a special keyword fn

e “printf” is a function in C/C++, while “print!” is a macro in Rust

* To specify the return value of a function, use the following syntax:
u_> <type>”

Create your very first RUST program

1. Using rustc (rust compiler) command line:

* Make sure that rust is installed

e Create a file in a folder named “first.rs” and insert into it the “hello
world example (the one with a main function)

* Run the following command from command line:

* An executable file (e.g. first.exe if you run this command in Windows)
should appear in the first.rs file

* Run the executable file created on the precedent step (e.g. run
first.exe if you are on Windows)

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

* Make sure that rust is installed
* Run the following command from command line:

* You should see a new folder (named first) that was created in the
current folder with the following structure:

\ Current folder

\first A folder that contains your first project

\first\.git A hidden folder with a git integration data
\first\.gitignore lgnore rules for git repo

\first\Cargo.toml Configuration file for first project (INI like format)
\src A folder with all rust sources

\src\main.rs The main file of the rust project

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

* Make sure that rust is installed
* Run the following command from command line:

* You should see a new folder (named first) that was created in the
current folder with the following structure:
\ [package]

\first name = "first"
: : version "9.1.0"
\first\.git edition "5022"

\first\.gitignore

\first\Cargo.toml !# See more keys and their definitions at..

\src [dependencies]
\src\main.rs

Create your very first RUST program

2. Using cargo (rust package manager) from command line:

* Make sure that rust is installed

* Run the following command from command line: [Elf{ ISR

* You should see a new folder (named first) that was created in the
current folder.

* Modify the “\src\main.rs” to contain the hello world example
* In folder “\first” execute the following command:

\first>cargo run
Compiling first v@.1.0 (E:\Lucrul\Rust\temp2\first)

Finished dev [unoptimized + debuginfo] target(s) in ©.81s
Running ~target\debug\first.exe"
Hello, world!

Create your very first RUST program

3. Try it using rust playground:

* Open a browser and go to RS ol
https://play.rust-lang.org/ R
* Write the hello world code mvf -

print!("Hello world");

* Hit the button from
the top-left side of the |
We b_page Execution Close

Compiling playground v0.0.1 (/playground)
Finished dev [unoptimized + debuginfo] target(s) in 0.58s
Running "target/debug/playground’

Hello world

https://play.rust-lang.org/
https://play.rust-lang.org/
https://play.rust-lang.org/

Create your very first RUST program

4. Use different features from specialized IDEs:

e Use features such as create new project (IntelliJ) or various
command/prompts from Visual Studio Code

* In the backend the cargo utility is usually used

Basic Types

Basic types

Rust has several basic types, including:

1. Integers

2. Float values
3. Boolean

4. Character type

Basic types

Rust integer types:

8 bit (unsigned) uint8_t unsigned char

8 bit (signed) i8 int8 t char

16 bit (unsigned) ulé uintl6 t unsigned short

16 bit (signed) i16 intl6 t short

32 bit (unsigned) u32 uint32_t unsigned int

32 bit (signed) i32 int32_t int

64 bit (unsigned) u64 uint64_t unsigned long long
64 bit (signed) i64 int64_t long long

128 bit (unsigned) ul28 N/A* N/A

128 bit (signed) i128 N/A* N/A

* gcc and c-lang provide a - type (but it is not part of the standard)

Basic types

Rust integer types:

* General format is ”_” for signed integer or ”_”

for unsigned integers
* Signed integers (just like in C) are based on C, complement format

* Besides this, there are two more integers types that have variable
length (depending on the architecture (32 or 64 bit). These types are
used as indexes in an array or as a representation of an offset or size
of a structure in memory.

Unsigned (32/64 bit) usize size_t
Signed (32/64 bit) isize ptrdiff t

Basic types

Rust integer types:

* Rust supports the following notations for integer values:
e Ox => for hexadecimal values
* 0o => for octal values
* Ob => for binary values
e b’char’ => for u8 values

* In addition, rust supports the use of character [as a digit delimitator

* The type of the integer value (u8,ul6,i8,i16,u32 ...) can also be
specified as a suffix for a number to specify its type

Basic types

Rust integer types:

Rust

123; // 132

Ox12u8; // u8

©b110011001i64; // 164 value

123_456_789; // 132 value of 123456789

OxFF_FF_FF_FF; // 132 value with delimitators

b'A'; // an u8 with value 65 (ascii code for character 'A')
0oll 33 77u64; // u64 value written in octal mode with delimitators
100Qusize; // value 100 as type usize;

Basic types

Rust float types:
* General format is “f<no of bits>" where number of bits is either 32 or
64
* Format IEEE-754 (similar to C/C++) e float
Float 64 bits f64 double

e “32” and “f64” can also be used as

suffixes when creating a float constant
Rust

123.0;
123 5

1.23 ;
5.200 345;

Basic types

Rust boolean type:
* |dentical to C/C++ (bool)

C/C++ type

Boolean bool bool

* Size of bool type is 1 byte (just like in C/C++) with 1 indicating a true
value and O a false value

* Same constants just like in C/C++: - and -

Basic types

Rust character type:
* |dentical to C/C++ (char)

C/Cr+ type (used by people) | G+ equivalent type
Character char char char32_t

* However, while the size of one character (for type char) in C/C++ is
one byte, in Rust the size of one character is 4 bytes (so that it can
represent any Unicode character value). The equivalent type in C++ is
char32 t

* Character constants can be written using single quotes .

Variables & constants

Variable & Constants

Rust supports both local and global variables.
A local variable in Rust is declared using the special keywork . :

let <variable_name> : <type> = <initialization_value>;

let <variable_name> = <initialization_value>; Variable type is inferred from the
initialization _value

let <variable_name> : <type>; Uninitialized variable. Its value must be set up
before using it.

let <variable_name> Uninitiatlize variable without a type
specification. Its value must be set up before
using it. When its value is going to be set up, its
type is going to be inferred at that time.

Variable & Constants

A simple example of local variables in Rust.
Rust
fn main() {
let a: u32 = 123;
let 123;
OxXFFu64;

= 4.3;
println!("a={}, b={}, C={}, d:{}, ez{}") a, b, c, d, E);

a=123, b=123, c=255, d=true, e=4.3

Variable & Constants

Rust does not allow the usage of uninitialized variables:
Rust
fn main() {

let x: 132;

println! ("x={}", x);

error[EOG381]: used binding "x 1isn't initialized
--> src/main.rs:3:22

2 | let x: i32;
| - binding declared here but left uninitialized
3 | println! ("x={}", x);
| A "x° used here but it isn't initialized

Variable & Constants

However, the following code will work:
Rust

fn main() {
let x: 132;
println! ("Before x is initialized !");

= 100;
println! ("x={}", x);

In the second case the type of “x” is inferred to i32.

Rust x=100

fn main() {
let x;
println! ("Before x is initialized !");

= 100;
println! ("x={}", x);

Variable & Constants

By default, any variable declared in Rust is immutable. The following
code will not compile because variable “x” can not be modified.

error[EO@384]: cannot assign twice to immutable variable "x°

Rust --> src\main.rs:7:5

fn main() {
let x = 10;
println!("x is {}", Xx);

let x = 10;

first assignment to "x°

help: consider making this binding mutable: "mut x°
println!("x is {}",x);
X = 100;
ANNNANN cannot assign twice to immutable variable

= 100;
println!("now x is {}", Xx);

The usage of an in-mutable variable can be optimized when compiling
(e.g inline-ing variable value).

Variable & Constants

In contrast, any C/C++ variables are by default mutable and can be
changed. As such, declaring a variable in Rust is similar to the following
code in C/C++;

Rust C/C++ (using const specifier)

fn main() { void main() {
let x = 10; const int x = 10;
println!("x is {}", x); printf("x is %d",x);

C/C++ (using constexpr specifier)

void main() {
constexpr int x = 10;

printf("x is %d",x);

Variable & Constants

To declare a mutable variable, use the keyword mut in the following
way: let mut <variable _name>

Rust
fn main() {
let mut x = 10;
println!("x is {}", x);
X = 100;
println!("now x is {}", x);

Now the previous code compiles and produces the following output:

xis 10
now x is 100

Variable & Constants

Once a variable has a type assigned (via initialization or through type
inference) its type CAN NOT be changed (similar to how C/C++ works).

Rust

fn main() {
let mut x;
X = 10;

error[EQ308]: mismatched types
--> src\main.rs:8:10

let mut x;

println!("x is {}", x);
= true;
println!("now x is {}", Xx);

expected due to the type of this binding

X = true;
Annn expected integer, found " bool”

In this case the second assighnment tries to set the value of variable “x”
that is of type “i32” to bool (via constant true)

Variable & Constants

Keep in mind that the same code in C/C++ works (due to the rules of
promotion, any Boolean value can be converted into an int).

Rust C/C++
fn main() {
let mut x;
= 10;

void main() {
int x;
X = 10;

println!("x is {}", X);
= true;
println!("now x is {}", x);

Brintf("x is %d\n",x);

X = true;
printf("now x is %d\n",Xx);

Compiles ok

xis 10
now xis 1

Variable & Constants

As a general observation, once a variable is declared with a specific
type, it can not be assigned with a value of a different type, even if an
implicit conversion is possible.

Rust

fn rnaj11() { error[E@308]: mismatched types

--> src\main.rs:6:10
let mut x = 10u32;
5

= 1u8;
println!("x is {}", x);

!
| let mut x = 10u32;

| expected due to this value
|

|

6 X = 1u8;

AN expected "u32’, found "u8

In this case “X” is of type u32 (with values between 0 and 232-1) and
the assigned value is of type U8. Even if every possible value for an u8
(values between 0 and 232-1) can be stored in an u32 value, Rust will
still provide a compiler error.

Variable & Constants

In contrast, the same C/C++ code compiles (rules of conversion will
automatically convert a u8 value to u32).

Rust C/C++

fn main() {
let mut x = 10u32;

void main() {
unsigned int x = 10;

X = 1lu8;
println!("x is {}", Xx);

X = (unsigned char)1l;
printf("x is %d\n",x);

Compiles ok

Variable & Constants

To cast from a type to another type in Rust there is a keyword called @as
that can be used. The general format is value> as <newType> :

For the previous case to work we need to rewrite it like this:
Rust

fn main() {
let mut x = 10u32;

X = 1u8l as u32;
println!("x 1s {}", x);

Variable & Constants

Let’s see some examples:
Rust Rust

fn main() { fn main() {

let mut X 255 as us8; let mut X 255 as us8;
let mut y = 1 as 132; let mut y = 1 as 18;

y = X as 132; y = X as 18;
println!("y is {}", y); println!("y is {}", y);

yis-1

yis 255 visl

First case is a simple one (as all possible values from u8) can be stored
in an i32. The second case (i8 to u8) keeps the value as it is (in terms of
bits) and just interprets the value in a different way.

Variable & Constants

Not all casts are possible (for example a cast between a number and a
bool is not allowed). The following code will not compile:

Rust

fn main() {
let mut x = 1 as u64;
let mut y = true;

error[E@O54]: cannot cast as " bool"
--> src\main.rs:7:10

y = X as bool;
println!("y is {}", y);

y = X as bool;
ANAAAAAAN help: compare with zero instead: -~

C/C++ has a different logic (any value that is O can be implicitly seen as
false and any value different than 0 can implicitly be seen as true).

Variable & Constants

Let’s see some examples:

Rust

fn main() {
let mut x 258 as u6b4;
let mut y = @ as us8;
y = X as us,;
println!("y is {}", y);

¥

In this case, a truncation to the first 8-bits happens for the value of 258
(keep in mind that an u8 cand only store values between 0 and 255).

258 = 0000 0000 0000 0000 0000 0001f0000 0010
= the code will truncate to the last 8bits (least significant one)
= as such the result of the cast will be 1

Variable & Constants

In case of integer to float conversions, the program attempts to obtain
the closest float value to the integer one (that can be represented in

the float format).

Rust

fn main() {
let x = 100 as u32;
let mut y = @ as f32;
y = X as 32;
println!("y is {}",y);
println!("x is {}",x);

y is 100
x is 100

Rust

fn main() {
let x = OXFFFF_FFFF as u32;
let mut y = @0 as f32;

y = X as f32;

println!("y is {}",y);
println!("x is {}",x);

y is 4294967300
X i5/4294967295

Notice the difference

Variable & Constants

In case of float to float conversion (every 32 can be converted into an
164, while an f64 is approximated to the closest f32).

Rust Rust
fn main() { fn main() {
let x = 1.0123456789 as f64; let x = 1.7976931348623157E+308 as f64;
let mut y = 0 as f32; let mut y = @ as f32;
y = X as f32; y = X as f32;
println!("y is {}", y); println!("y is {}", y);

println!("x is {}", X); println!("x is {}", X);

y is 1.0123457 yisinf
x is 1.0123456789 X is 17976931348623157000....000

If the f64 value is outside maximum value possible in f32, the
conversion will enforce inf as the value of f32.

Variable & Constants

To declare multiple variables at the same time, use the following format:
- let (var,, var,, ... var,) = (value,, value,, ... value)
The types for var,, var,, ... var_ are inferred from the associated values.

Rust

fn main() {
let (mut x, mut y, mut z) = (1, 2, 3);
let (a, b) = (1.23, true);

println! ("{x},{y},{z},{a},{b}");
X = 10;

y = 20;
Z 30;
println!("{x},{y},{z},{a},{b}");

The number of values provided must be the same as the number of
variables.

Variable & Constants

Rust also allows shadowing 2 meaning that a variable with the same
name and possible different type can be declared within an inner block
and possible be initialized with the value of the initial variable.

Rust

fn main() {
let x: 132 = 10;

princlnd (' 15 1), 0 owpt

{ X is 10
let x: bool = true; inner x is true

printlnl("inner x is {}", X); outter x is 10

}

println! ("outter x is {}", x);

Variable & Constants

Shadowing is often used to change the mutability state of one variable
for a limited period of time by using a copy of that variable.
Rust

fn main() {
let x: 132 = 10;
println!("x is {}", X);

{ Output

let mut x = Xx;

X = 20; x is 10
inner x is 20
} outter xis 10

println!("inner x is {}", X);

println! ("outter x is {}", x);

Variable & Constants

For global variables, use the keyword static instead of let (let is

designed for stack/local variables).

Rust
static x: 132 = 10;

fn main() {
let mut y = @0 as f32;

y = X as f32;

println!("y is {}", y);
println!("x is {}", x);

A static variable implies a possible mutable variable (if mut keyword is
being used) and guarantees an allocated space in the binary data.

Variable & Constants

Rust also allows the usage of the special keyword const to define a
constant. The main difference between a const value and a static value
is that a const value is always immutable and will be replaced with its
value upon compiling phase.

Rust

const x: 132 = 10;

fn main() {
let mut y = 0 as f32;

y = X as f32;
println!("y is {}", y);
println!("x is {}", X);

Variable & Constants

Both static and const keywords can be used in a local function:
Rust Rust
fn main() { fn main() {

static x: 132 = 10; const x: 132 = 10;
let mut y = @0 as f32; let mut y = @ as f32;

y = X as f32; y = X as 32;
println!("y is {}", y); println!("y is {}", y);
println!("x is {}", X); println!("x is {}", x);

OBS: a mutable static value requires unsafe code (more about this on a
different course).

Variable & Constants

Another difference between static / const and let is that type has to be

provided in case of static and const keywords and can not be inferred.
Rust

fn main() {
const x = 10;
println!("x is {}",x);

Error

error: missing type for “const item
--> src\main.rs:4:12

const x = 10;
~ help: provide a type for the constant: “x: i32°

fn main() {
static x = 10;
println!("x is {}"

error: missing type for "const item
--> src\main.rs:4:12

const x = 10;

}

A help: provide a type for the static variable: "x: i

Variable & Constants

The same logic applies for initialization value (if in case of let, one can
define a variable and assigned its value after this), in case of const and
static this is not possible.

Rust

n rnajiw() { error: free static item without body

) . --> src\main.rs:4:6
static x: 132;

= 10; 4 static x: i32;

| AN AN AYAYAYAYAYAYAYAYAYAYA RS

println! ("x={}",x);

) |

help: provide a definition for the static: "= <expr>;"

Variable & Constants

Observations:

1.

There is no such thing as 0 initialization in Rust (for global
variables).

From this point of view, Rust tries to make everything clear and
make sure that there is no unknown behavior due to this case.

In case of constants, Rust recommend using upper cases (this is
considered a warning and will not affect the compilation phase).

warning: constant “x should have an upper case name
--> src\main.rs:4:12

const x: 132 = 10;

N help: convert the identifier to upper case (notice the capitalization): "X

: “#[warn(non_upper_case_globals)] on by default

Variable & Constants

Comparation with C/C++ similar forms:

opword [Rust lgee

let let mut x:i32 = 10; int x = 10;
let mut x: i32; int x;
let mut x = 10; auto x = 10;
let mut x; N/A
x = 10;
const const x: 132 = 10; const int x = 10;

constexpr int x = 10;
#define x 10
static static x: 132 = 10; const int x = 10; // as a global variable

static const int x = 10; // as a local definition

Operators

Rust supports the following operators:

Operators

operator _______________________JRut____[¢C+

Arithmetic (¥ - * / %)
Comparation (¥ K 3= <= |= ==)

Logical OR , AND or NOT (|| &&)
Bit operators: bitwise OR, bitwise AND, shifts (I I I . .)

Assignments (= #= 1= = %= /= &= |2 A= 3= <<=

Increment / Decrement operators (. I)

Negate operator (I)

Conditionally operator (l) = condition ? Value for true : Value for false
Member access operator (Il)

Error propagation (I)

Range literals (1w b= bt)

Functional update (I)

Yes

Yes

Yes

Yes

Yes

N/A

N/A (use I)
N/A

Partial (only I)
Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
N/A
N/A

Partial (proxy ctor)

Operators

Rust has a very comprehensive compiling error system that besides
clearly explaining an error, it also provides some directions/ideas on
how to fix that error. In particular for operators, Rust can identify some
of the widely used operators that are not supported (such as increment
or decrement) and provide guidance on how to fix some errors.

Rust

. error: Rust has no postfix increment operator
fn main() {

--> src\main.rs:5:7
let mut x = 10;
5 X++;

An not a valid postfix operator

X++;
print("x = {}", x);

5 { let tmp = x; x += 1; tmp };
++++++H+H+H+H++
5 X++;

5 + X += 1;

|
|
|
I
lp: use "+= 1 instead
|
|
I

Operators

Rust has a very comprehensive compiling error system that besides
clearly explaining an error, it also provides some directions/ideas on
how to fix that error. In particular for operators, Rust can identify some
of the widely used operators that are not supported (such as increment
or decrement) and provide guidance on how to fix some errors.

Rust

fn main() {
let mut x:u32

error: "~ cannot be used as a unary operator
--> src\main.rs:5:10

X = ~X;
print!("x = {}", X);

X = ~X;
A help: use ! to perform bitwise not

Operators

Operators order:

* [% left to right
+ - left to right
<< >> left to right
& left to right
A left to right
| left to right
== l=<><=>= Require parentheses
&& left to right
| left to right

= Require parentheses

= +=-=*= [= %= &= [=N=<<=>>= right to left

Functions &
Expression Statements

Functions

Function in Rust are defined using the keywork . in the following way:

RS oo

fn <name> () {...} void <name> () {...}

fn <name> (parameters) {...} void <name> (parameters) {...}

fn <name> () -> <return_type> {...} <return_type> <name> () {...}

fn <name> (parameters) -> <return_type> {...} <return_type> <name> (parameters) {...}

Where parameters are defined in the following way:
* <param_name>:<type> [, < param_name >:<type>, ...]

* - < param_name >:<type> [,]

Where <param _name> is the name of a parameter, and <type> is the
type of that variable.

Functions

Examples:
Rust

fn sum(x: u32, y: u32) -> u32 {
return x + vy;

}

fn print_x(x: u32) {
println! ("X is {}", x);

}

fn main() {
let mut x: u32 = 10;
print x(x);
X = sum(10, 20);
print x(x);

Functions

Examples:
Rust Eror

fn compute(x: u32, y: u32) -> u32
{

X =x*y;
return x + vy,

error[E@384]: cannot assign to immutable argument ~x°
--> src\main.rs:4:5

}
fn print_x(x: u32) {
println! ("X is {}", x);

3 | fn compute(x:u32, y:u32) -> u32 {

|
| - help: consider making this binding mutable: “mut x°
4 | X = X ¥ vy;

|

ANNNNANNN cannot assign to immutable argument

}
fn main() {

let mut x: u32 = 10;
print x(x);

= compute(1l0, 20);
print x(x);

Examples:

Rust

fn compute(x:u32, y:u32) -> u32 {
X =X *y;
return Xx+y;

}

fn print_x(x:u32) {
println! ("X is {}",x);

}
fn main() {

let mut x:u32
print_x(x);

X = compute(10,20);
print_x(x);

Functions

Rust

fn compute(mut x:u32, y:u32) -> u32 {
X =X *vy;
return x+y;
}
fn print_x(x:u32) {
println! ("X is {}",x);
}
fn main() {
let mut x:u32
print x(x);
X = compute(10,20);
print x(x);

Functions

Rust has a keyword (return) that can be used to return a value from a
function (similar to C-like languages). At the same time, Rust allows a
different format of returning a value by writing the value that you want
to return directly.

The following two Rust programs are equivalent.

Rust Rust

fn value 3() -> u32 fn value 3() -> u32
{ {

return 3; 3

} ¥

fn main() { fn main() {
let x = value _3(); let x = value 3();
println!("x is {}", X); println!("x is {}", Xx);

Functions

Rust has a keyword (return) that can be used to return a value from a
function (similar to C-like languages). At the same time, Rust allows a
different format of returning a value by writing the value that you want
to return directly.

The followi ng two Rust SL% Notice that ﬂ character is not added after
the value that needs to be returned

fn value 3() -> u32 n WWle 3() -> u32
{ {

return 3; ' ' 3
} }

fn main() { fn main() {
let x = value _3(); let x = value 3();
println!("x is {}", X); println!("x is {}", Xx);

Expression statements

Rust also allows an expression statement where something gets
computed based within a statement {...}

Rust

fn main() {
let v = 10;

let x ={1+vy };
printInT("x = {X}");

Notice that the same return format (with a value) is being used in this
case (without the ;| character at the end)

Expression statements

In this format, some even more complex operations can be performed:
Rust

fn main() {
let y = 10;
let x = {
let temp = y;
let a = temp * y;
a+y+5

}s
println! ("x = {x}");

In this case, the value of “x” will be “a+y+5”

Expression statements

In this format, some even more complex operations can be performed:
Rust
fn main() {
let y = 10;
let x = {
fn sum(x: 132, y: i32) -> i32 { x + y }
fn dif(x: 132, y: i32) -> i32 { x - y }

sum(2, 5) + dif(7, 3)

}s
println! ("x = {x}");

It is also possible to create nested functions within an expression
statements and use them to compute the return value.

Expression statements

Nested functions can be added within an existing function:
Rust
fn main() {
fn sum(x: 132, y: i32) -> i32 {
X +Yy

}
fn dif(x: 132, y: i32) -> i32 {

X -y

}
let y = sum(10, 20);
let x = dif(20, 10);

println!("x = {x}, y = {y}");

Basic statements

Basic statements

Most of basic statements that exists in C/C++ can be found in Rust as well:

Stomentipe ms e

If statement Yes Yes
While statement Yes Yes
For statement (classic) N/A Yes
For each Yes Yes
Loop Yes N/A
Do...While statement N/A Yes
GoTo N/A (partial support) Yes
switch Yes Yes
Patterns: Yes N/A

if..let, while..let, let..else

If statement format:

. iIf condition <then statement>
. If condition <then statement> else <else statement>
Obs:

1. Notice that condition does not require parentheses (...)

2. Because of this, <then statement> and <else statement> can not be
simple instructions (they have to be embedded in a block).

Example:

Rust

fn main() {
let mut x = 1;
if x > 0 {
X += 1;
}

println! ("x =

{x}");

C/C++ (v1)
void main() {
int x = 1;
if (x>0) {
X+=1;

}
printf("x

%d™, X);

C/C++ (v2)

void main() {
int X

x+=1;
printf("x = %d", X);

Example (if ... else) :

Rust

fn main() {
let mut x =
it x > 0 {
X += 1;
} else {
X -=1;
}

println! ("x

1;

C/C++ (v1)

void main() {
int x = 1;
if (x>0) {

C/C++ (v2)

void main() {
int x =
if (x>0)

printf("x = %d", X);

Parentheses (and) around the condition are allowed, the code
compiles but triggers a warning:

Rust

fn main() { warning: unnecessary parentheses around "if condition

let mut x = 1; —I> src\main.rs:5:8
if (x > 0) {
X += 1;

5 if (x>0) {

| A A

¥

note: “#[warn(unused_parens)] on by default
help: remove these parentheses

|
- if (x>0) {
+ if x>0 {

println! ("x = {x}");

5
5

If statement can also be used as an expression statement:
Rust

fn main() {
let x = 31;

let y = if x > 20 { x / 2 } else { x * 2 };
printlnl("y = {y}");

C++

void main() {

int x = 31;
int y = x>20 ? x/2 : x * 2;
printf("y = %d", y);

Notice the fact the return value is specified just like in the case of
expression statements for both then and else parts.

while

While statement is similar to the one from C/C++:
- while <condition>{ ... do block ... }

Just like in if statement case, notice that the <condition> does not
need to be surrounded by parentheses.

Rust C/C++

fn main() { void main() {
let mut x = 9; int x = 1;

while x < 3 { while (x<3) {

println! ("x={x}"); printf("x = %d", X);
X =X + 1; X+=1;

X
X
X

nn n
N = O

while

Similar to if statement, the condition MUST be followed by a block
(and can not be a simple instruction like in the case of C/C++).

Rust

fn main() { error: expected "{ , found "x°
let mut x = 9: --> src\main.rs:6:9
-)

while x<3 5'
X = X+1;

println! ("x={x}");

while x<3
this "while condition successfully parsed

while parsing the body of this "while expression
X = X+1;
N expected " {°

6

int x =
while (x<3) 6
xt=1;

printf("x = %d", X); The C/C++ code will compile

{ x = x+1; }
+ +

|
|
|
|
|
|
void main() { help: try placing this code inside a block
|
|
|

while

Both break and continue keywords can be used in a while statement,
with the same logic as the one from C/C++ (break or continue the
loop).

Rust

fn main() {
let mut x = 1;
while x < 10 {
if x % 3 ==0 {
break;

}
X

= X + 1;

}
println! ("{x}");

while

Let’s consider the following problem:

- Let there be a number of form m, where @, b and € are digits
between 1 and 9

- Can we find the smallest number of this form that has the following
relation between @, b and ¢

1)a=bx2
2)b=cx?2

The answer is simple = there are two numbers that respect this
condition: 421 and 842, and as we are searching for the smallest one
the final answer will be 421.

while

Rust

fn main() { This code will run correctly, but it will
1)) =)) 5 . o
ot (e xo Mty it z) = (4 1,) not print the smallest solutions but
instead it will print|all solutions:

(x ==y * 2) & (y ==z * 2) {
println!("{x}, {y}, {z}");

while

Let’s see how the previous problem can be solved in Rust:

Rust

main() {
(X,) z) = (1, 1, 1);
done = ;
(x < 10) && (!done) {
y = 1;
(y < 10) && (!done) {
z = 1;
(z < 10) && (!done) {
(X ==y * 2) & (y ==

One solution will be to create a flag
variable that forces the exit from every
inner while loops. Once the first solution is
found, we enable that flag and for the exit

from every inner while loop.

*2) {
");

4
4

println! ("{x}, {y},
done = ;

while

Rust has a way of providing a name (a label) for every loop statement
(for, while or loop).

This is done via the following format:
- '<name>: <for|while|loop>
Example: 'first_while: while ...

This allows keywords like break or continue to explicitly say if we want
to break the current loop or if we want to break a specific loop based
on the loop name / label.

- break

- break *first_while

while

Let’s see how the previous problem can be solved in Rust:
Rust

This is a more elegant solution as we
2y = (1, 1, 1); can specify what while should the

x < 10 { keyword break;
y < 10 {

Y,

,z<1@{
(x ==y * 2) & (y ==z * 2) {

println! ("{x}, {v}, {z}"); When break first_whilelis called, it

J

will break the most outer while and
stop the entire process.

Rust also has a special loop called loop statement

-loop { ... do block ... }

In a nutshell a loop statement is nothing but a while true {...}
statement.

Rust C/C++
fn main() {
let mut x = 0; void main() {
loop { int x = 1;
println! ("{x}"); while (true) {
if x >= 3 { printf("x = %d", X);

break; if (x>=3) break;
X+=1;

loop

loop

The main advantage of the loop statement stays in the fact that it can
be transformed in an execution statement where the return of the loop
can be obtained via a break <value> statement.

Format: let <variable>:<type> =loop { ... break <value> ... };

Rust

fn main() {
let (mut x, mut y) = (24, 18);
let cmmdc: 132 = loop {

if x>y {x-=y; } m

else { break x; }

}s
println! ("{cmmdc}");

loop

Type can be omitted and will be inferred from the value returned via
break statement.

Format: let <variable> =loop { ... break <value> ... };

Rust

fn main() {
let mut sum = 0;
let mut counter = 0;
let first 10 sum = loop {
it counter > 10 { break sum;
sum += counter;
counter += 1;

}s
println! ("{first_10 sum}");

If let

“if let” tries to match an expression with a specified pattern. If the
expression matches the pattern, the assignment is being performed and
the code from the <then block> is being executed. Otherwise, the <else>
block, if present is executed.

* if let <pattern> = <expression> { ... then block ... }
or
e if let <pattern> = <expression> { ... then block ... } else { ... else block ... }

This statement is NOT to be confused with the if var=<expression>
statement from C/C++, as they serve a different scope.

if let

The assignment (in case of if let <pattern> = <expression> { ...} usually
translates in a match of:

* An enum variant

e A structure with parameters

* Numerical constants

* Tuples

We will discuss more about this type of statement when we talk about
enums, errors and variants (as this is where this statement is mostly used).

if let

If let statement (example):
Rust

fn main() {
let x = 10;
if let 5 = x { println!("x is 5 "); }
if let 10 = x { println!("x is 10"); }
let tuple = (1,2);
if let (x,2) = tuple { println!("A tuple of {x} and 2");}

xis 10
A tuple of 1 and 2
current tuple is not in the form (x,1)

if let (x,1) = tuple {

} else {
println!("current tuple is not in the form (x,1)");

}

If let statement (example):
Rust

let (x,2) = tuple {

This actually translates into the following logic:
*If variable tuple’s second value is 2 then copy its
first value into variable “x” and run the code from

<then> block.

if let

if let

If let statement (example):
Rust

if let (x,2) = tuple { println!("A tuple of {x} and 2");}

An equivalent code will look like this:

if tuple.l == 2 {

let x = tuple.O;
println! ("A tuple of {x} and 2");

if let

Let’s discuss another example:
Rust

warning: irrefutable "if let pattern
--> src\main.rs:2:8

fn main() {
if let v = 0 { 2
println! ("{v}");

if let v =0 {

AVAVAVAVAVAVAWLWAN

help: consider replacing the "if let’ with a "let”

|
|
|
} I
= note: this pattern will always match, so the "if let 1is useless
= note: "#[warn(irrefutable let patterns)] on by default

In this example, “if let v=0" will always be true (in reality there is no
pattern to match here — just a simple assignment). The code will
compile, but this no different than just writing “let v=0".

Let’s discuss another example:

Rust
P—— Output
let v = 20;

if let v = 0 {
println! ("{v}");

}
println! ("{v}");

This is a similar logic 2 however, notice that the “v” variable from
the if let statement has a limited lifetime to the <then> block and
will not affect the outer f'v" variable. As a result, the second printin
will print the value 20.

if let

Let’s discuss another example:

Rust

fn main() { Inner =0
let v = 20; outer =20

if let v = 0 {

#include <stdio.h> m
int main() {
int = 20;
if (v =0) {

println!("inner = {v}"); printf("inner = %d",v);

}

println! ("outer = {v}");)

printf("outer = %d",v);

Keep in mind that these two code are NOT EQUIVALENT. In case of
C++ example, variable v is first instantiated with value 0 and then
evaluated (and since 0 = false) the <then block> is not executed.
Furthermore, it’s the same variable “v” and as such the second
printf will print value 0.

while let

The form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

On the first glance, we would expect this
while to run for 3 iterations, print values

from 1 to 3 and exit.

This is not to be confused with while var=expression statement
from C/C++.

while let

The form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

Rust

On the first glance, we would expect this
while to run for 3 iterations, print values

from 1 to 3 and exit.

. . M In reality, the code runs indefinitely. The initialization
This is not to be confused wit of y to 0 is evaluated on every iteration and as a result

from C/C++_ y will always be 0 and as such the break condition will
not be achieved.

while let

The while let form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

Rust

fn main() { warning: irrefutable “while let® pattern
while |let mut y = © { --> src\main.rs:4:11
ity >= 3 { break; }
y =y +1;

|

4 |

|

println! ("{y}"); |

while let mut y = 0 {

AVAVAVAVAVAVAWAWAVAWAWAWAN

note: “#[warn(irrefutable let patterns)] on by default
note: this pattern will always match, so the loop will never exit
help: consider instead using a "loop { ... } with a "let inside it

Rust notifies about this behavior through a warning !

while let

The while let form can be used in a loop with a similar logic (pattern
must match in order for the loop to run).

Rust Rust

fn main() A4 tn maip() {
while [let mut y = 0|{ while true {

: let mut = 0;
ity >= 3 { break; } ﬁ if y >=)?: { break;}

y =y + 1;
println! ("{y}");

y =y + 1
println! ("{y}");

This is not to be confused with while var=expression statement
from C/C++.

while let

The assignment (in case of while let <pattern> = <expression> { ...} usually
translates in a match of:

* An enum variant

e A structure with parameters

* Numerical constants

* Tuples

We will discuss more about this type of statement when we talk about
enums, errors and variants (as this is where this statement is mostly used).

let ... else

“let ... else” tries to match an expression with a specified pattern. If the
expression matches the pattern, the assignment is being executed.
Otherwise, an error (that will be discuss in the next courses) will be

thrown:
let <pattern> = <expression> else { ... error ... }

This is mostly used with enum , variants or structs and we will further
discuss this type of behavior at that point.

let ... else

Some examples of “let ... else”:

Rust Rust

fn main() { fn main() {
let tuple (1,2); let tuple (1,3);
let (x,2) = tuple else { let (x,2) = tuple else {
panic!("Fail to assign !") panic!("Fail to assign !")
}s }s
println! ("{x}"); println! ("{x}");

thread 'main' panicked at 'Fail to assign !',
src\main.rs:3:31
stack backtrace:

@: std::panicking::begin_panic_handler

let ... else

Some examples of “let ... else”:

Rust Rust

This code compiles and runs without any
error. Since tuple variable matches the Notice that tuple variable is (1,3) and does
format (<number>,2), the value of the first not match the let ... else requirement and
field from the tuple will be copied to as such a runtime error (panic) is thrown.
variable “x”.

other statements

There are other more complex statement in Rust, such as:
* for (equivalent for classical for from C/C++ and a foreach)

* match (an equivalent for switch in C/C++ but more oriented to
pattern matching)

As all these statements are either more complex or require
understanding of different concepts in Rust, we will discuss them
during the next courses.

	Default Section
	Slide 1: Course – 1 Gavrilut Dragos
	Slide 2: Agenda for today

	Administrative
	Slide 3: Administrative
	Slide 4: Administrative

	Intro
	Slide 5: Intro
	Slide 6: What is Rust
	Slide 7: Rust History
	Slide 8: Rust History
	Slide 9: Rust History
	Slide 10: Rust History
	Slide 11: Rust History
	Slide 12: Rust History
	Slide 13: Rust History
	Slide 14: Rust History
	Slide 15: Rust History
	Slide 16: Rust History
	Slide 17: Rust History
	Slide 18: Rust History
	Slide 19: Rust History
	Slide 20: Rust IDEs
	Slide 21: Rust Characteristics
	Slide 22: Performance tests (Mandelbrot)
	Slide 23: Performance tests (Mandelbrot)

	First rust program
	Slide 24: First rust program
	Slide 25: First RUST Program
	Slide 26: First RUST Program
	Slide 27: First RUST Program
	Slide 28: Create your very first RUST program
	Slide 29: Create your very first RUST program
	Slide 30: Create your very first RUST program
	Slide 31: Create your very first RUST program
	Slide 32: Create your very first RUST program
	Slide 33: Create your very first RUST program

	Basic Types
	Slide 35: Basic Types
	Slide 36: Basic types
	Slide 37: Basic types
	Slide 38: Basic types
	Slide 39: Basic types
	Slide 40: Basic types
	Slide 41: Basic types
	Slide 42: Basic types
	Slide 43: Basic types

	Variables
	Slide 44: Variables & constants
	Slide 45: Variable & Constants
	Slide 46: Variable & Constants
	Slide 47: Variable & Constants
	Slide 48: Variable & Constants
	Slide 49: Variable & Constants
	Slide 50: Variable & Constants
	Slide 51: Variable & Constants
	Slide 52: Variable & Constants
	Slide 53: Variable & Constants
	Slide 54: Variable & Constants
	Slide 55: Variable & Constants
	Slide 56: Variable & Constants
	Slide 57: Variable & Constants
	Slide 58: Variable & Constants
	Slide 59: Variable & Constants
	Slide 60: Variable & Constants
	Slide 61: Variable & Constants
	Slide 62: Variable & Constants
	Slide 63: Variable & Constants
	Slide 64: Variable & Constants
	Slide 65: Variable & Constants
	Slide 66: Variable & Constants
	Slide 67: Variable & Constants
	Slide 68: Variable & Constants
	Slide 69: Variable & Constants
	Slide 70: Variable & Constants
	Slide 71: Variable & Constants

	Operators
	Slide 72: Operators
	Slide 73: Operators
	Slide 74: Operators
	Slide 75: Operators
	Slide 76: Operators

	Functions
	Slide 77: Functions & Expression Statements
	Slide 78: Functions
	Slide 79: Functions
	Slide 80: Functions
	Slide 81: Functions
	Slide 82: Functions
	Slide 83: Functions
	Slide 84: Expression statements
	Slide 85: Expression statements
	Slide 86: Expression statements
	Slide 87: Expression statements

	Basic blocks
	Slide 88: Basic statements
	Slide 89: Basic statements
	Slide 90: if
	Slide 91: if
	Slide 92: if
	Slide 93: if
	Slide 94: if
	Slide 95: while
	Slide 96: while
	Slide 97: while
	Slide 98: while
	Slide 99: while
	Slide 100: while
	Slide 101: while
	Slide 102: while
	Slide 103: loop
	Slide 104: loop
	Slide 105: loop
	Slide 106: If let
	Slide 107: if let
	Slide 108: if let
	Slide 109: if let
	Slide 110: if let
	Slide 111: if let
	Slide 112: if let
	Slide 113: if let
	Slide 114: while let
	Slide 115: while let
	Slide 116: while let
	Slide 117: while let
	Slide 118: while let
	Slide 119: let … else
	Slide 120: let … else
	Slide 121: let … else
	Slide 122: other statements
	Slide 123

