
Course – 2
Gavrilut Dragos

Rust programming

rev 11

Agenda for today

1. Prerequisite: String type

2. Ownership management

3. Borrowing & References

4. Reborrowing

5. Optimizations

Prerequisite: String type

• For the purpose of this course, we need to quickly understand some
things about strings in Rust

• So….
• Rust type: String

• Format: Dynamic (can increase its size)

• Encoding: UTF-8

• Operations: addition, substring, find, …

We will cover strings in more detail on another course, for the moment we will
learn a couple of things about object String that will be useful for the next
chapters.

Prerequisite: String type

• Let’s see some examples:

1. How to create a string (keep in mind that there are several ways to
create a string that we will cover in a different course).

2. How to get the length of a string (via method .len())

Prerequisite: String type

fn main() {
 let mut s: String = String::from("a string");
 println!("s = {s}");
}

Rust

Output

s = a string

fn main() {
 let mut s: String = String::from("a string");
 println!("len = {}", s.len());
}

Rust

Output

len = 8

• Let’s see some examples:

3. Concatenate strings (via operator += or method .push_str(…))

4. How to obtain a substring (a slice) of a string via range op [..])

Prerequisite: String type

fn main() {
 let mut s: String = String::from("123");
 s += "456";
 s.push_str("789");
 println!("{s}");
}

Rust

Output

123456789

fn main() {
 let s: String = String::from("ABCDEFG");
 println!("{}", &s[1..3]);
}

Rust

Output

BC

• Finally, keep in mind that strings in Rust are far more complex and
require a more in-depth analysis.

• However, for the current being, this explanation should be enough.

Prerequisite: String type

Ownership management

• In Rust, every memory zone has ONE and ONLY ONE owner at a time.

• Every owner has a lifetime (it exists within a scope).

• When an owner goes out of scope (its lifetime is over) the memory
zone is freed (“freed” in this context has a different meaning – based
on where that memory zone lies on : stack , heap or global).

Ownership

• As a rule, every variable (local / global) or a parameter can be
considered the owner for the memory zone it represent.

• Let’s analyze the following case:

Ownership

fn main() {

}

Rust Stack of function main
Offset Content (4 bytes alignment)

100.000 ? ? ? ?

99.996 ? ? ? ?

99.992 ? ? ? ?

99.988 ? ? ? ?

• As a general consent, every variable (local / global) or a parameter
can be considered the owner for the memory zone they represent.

• Let’s analyze the following case:

Ownership

fn main() {
 let mut sum: u32 = 10;
}

Rust Stack of function main
Offset Content (4 bytes alignment)

100.000 ? ? ? ?

99.996 10 0 0 0

99.992 ? ? ? ?

99.988 ? ? ? ?

• As a general consent, every variable (local / global) or a parameter
can be considered the owner for the memory zone they represent.

• Let’s analyze the following case:

• We can say that:
• The memory from offset 99.996 to 100.000 is owned by variable sum

Ownership

fn main() {
 let mut sum: u32 = 10;
}

Rust Stack of function main
Offset Content (4 bytes alignment)

100.000 ? ? ? ?

99.996 10 0 0 0

99.992 ? ? ? ?

99.988 ? ? ? ?

• Let’s analyze another case:

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

• Let’s analyze another case:

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

• Let’s analyze another case:

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

s Stack (12 or 24 bytes) and Heap (3 bytes)

String type (*)
Field Type

chars Ptr to heap where the the UTF-8 text lies

len usize (4 or 8 bytes)

capacity usize (4 or 8 bytes)

Heap

a b c

* String internal structure is subject to change (this is an academic representation to
better explain how ownership works).

• Let’s analyze another case:

• A new space of 6 characters is allocated on the heap

• The original text (“abc”) is copied in the new location

• The new string (“456”) is added after “abc”

• The old (3 bytes) space from the heap is freed

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

s Stack (12 or 24 bytes) and Heap (6 bytes)

String type (*)
Field Type

chars Ptr to heap where the the UTF-8 text lies

len usize (4 or 8 bytes)

capacity usize (4 or 8 bytes)

Heap

? ? ?

a b c 4 5 6

• Let’s analyze another case:

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

s Stack (12 or 24 bytes) and Heap (6 bytes)

String type (*)
Field Type

chars Ptr to heap where the the UTF-8 text lies

len usize (4 or 8 bytes)

capacity usize (4 or 8 bytes)

Heap

? ? ?

a b c 4 5 6

At this point the scope of “s” has ended. As such, the
compiler decides to free all memory owned by “s”

Li
fe

ti
m

e
o

f
“s

”

• Let’s analyze another case:

• Freeing “s” means:
• Free all heap memory associated if it

• Clear stack memory where len, capacity and chars pointer
were stored.

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

s Stack (12 or 24 bytes) and Heap (0 bytes)

String type (*)
Field Type

chars Null-pointer (data is deallocated)

len usize (4 or 8 bytes)

capacity usize (4 or 8 bytes)

Heap

? ? ?

? ? ? ? ? ?

• Let’s analyze another case:

• At this point “s” is no longer valid. This means that the memory it owns is no
longer available, nor is the access of variable “s”. In fact, any usage of “s” variable
in this point will be considered a compiler error.

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

s Stack (12 or 24 bytes) and Heap (0 bytes)

• Let’s analyze another case:

• At this point, the scope of “sz” has ended and as such it is freed (all stack space is
cleared).

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust Owner Memory Type

sz Stack (4 bytes)

s Stack (12 or 24 bytes) and Heap (0 bytes)

Li
fe

ti
m

e
o

f
“s

z”

• Let’s analyze another case:

• A similar “C” code implies freeing the heap manually. If this action would have
not been performed, the memory allocated by “s” remains allocated (a bug often
called <<memory leak>>).

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust

void main() {
 unsigned int sz = 0;
 {
 char* s = new char[4] {"abc"});
 …
 delete []s;
 s = NULL;
 }
 …
}

C representation

• Let’s analyze another case:

• Modern C++ has a type of allocation similar to what Rust has (called unique_ptr)
that behaves in a similar manner.

Ownership

fn main() {
 let mut sz: u32 = 0;
 {
 let mut s = String::from("abc");
 s.push_str("456");
 sz += s.len() as u32;
 println!("{s}");
 }
 println!("{sz}");
}

Rust

void main() {
 unsigned int sz = 0;
 {
 unique_ptr<char[]> s (new
 char[4] {"abc"});
 }
 …
}

C++ representation (from C++11)

• What is the problem with the following C/C++ code ?

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C

• What is the problem with the following C/C++ code ?

• Let’s run this code step by step …

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C HeapStack

• What is the problem with the following C/C++ code ?

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C Heap

a b c

Stack

100 s1 (pointer)

96

92

88

…

• What is the problem with the following C/C++ code ?

• What is the problem at this point ?

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C Heap

a b c

Stack

100 s1 (pointer)

96 s2 (pointer)

92

88

…

• What is the problem with the following C/C++ code ?

• What is the problem at this point ?

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C Heap

a b c

Stack

100 s1 (pointer)

96 s2 (pointer)

92

88

…

Both “s1” and “s2” point to the same memory location. Or in other
words, for a specific memory address we have TWO OWNERS.

• What is the problem with the following C/C++ code ?

• “s1” pointer is deleted → and this translates that the memory zone
that was allocated in the Heap to store the content for “s1” is freed as
well.

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C Heap

? ? ?

Stack

100 s1 (null)

96 s2 (pointer)

92

88

…

• What is the problem with the following C/C++ code ?

• At this point, printf will try to access the content of “s2” that now
points to a memory zone that was already freed from the previous
line.

• The behavior is undefined, and it is likely to produce a crash !!!

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C Heap

? ? ?

Stack

100 s1 (null)

96 s2 (pointer)

92

88

…

• What is the problem with the following C/C++ code ?

• The main issue from this code is that the assignment “char* s2 = s1”
creates two owners (both s1 and s2 point to the same memory
address)

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C

• So what can we do to make this code safe ?

• The main issue is how we understand the assignment (“char* s2 = s1”). The worst
thing we can do is to duplicate the pointer (make two owners).

• Rust has a concept (called trait) that for the moment can be considered as a
property list for each type that explain how certain operations can be performed.

• For this particular example , the traits that are important are Copy and Move

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C

Disclaimer:

• Move trait does not exist in Rust (it is considered by default as something to be
used if the trait Copy is not present).

• However, for the purpose of the next slides, we will consider that this trait
(Move) exists (this will allow us to easily explain how some decisions in Rust are
being made by the compiler).

Ownership

Copy vs Move operations

Student

MathGrade → type u8

EnglishGrade → type u8

Name → heap buffer

Let’s consider that we have a type (called Student) and we write a statement like in the following way:

What happens when s2 is assigned with the value s1 ?
It depends on some traits that the object of type Student has. A trait (at this point) can be considered a
property defined as a function with a specific purpose (in reality a trait is more similar to an interface).

If type Student has the trait Copy then Rust will compile the statement s2 = s1 in a specific way, while if
the Student has the trait Move, Rust will compile things differently.

fn main() {
 let mut s1:Student = …;
 let mut s2:Student;
 s2 = s1;
}

Rust

What does Copy operation means

s1

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Copy trait implies for s2 = s1 :

s2

MathGrade = ?

EnglishGrade = ?

Name → <none> or <null>

What does Copy operation means

s1

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Copy trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = ?

Name → <none> or <null>

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade

1

What does Copy operation means

s1

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Copy trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = 10

Name → <none> or <null>

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade

2

What does Copy operation means

s1

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Copy trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 200.000

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade
3. Allocated 4 bytes to a new location on the heap and assign s2.Name pointer to that location

3

Offset +0 +1 +2 +3

200.000 ? ? ? ?

What does Copy operation means

s1

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Copy trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 200.000

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade
3. Allocated 4 bytes to a new location on the heap and assign s2.Name pointer to that location
4. Bitwise copy 4 bytes from address 100.000 (s1.Name) to address 200.000 (s2.Name)

4

Offset +0 +1 +2 +3

200.000 J o h n

What does Move operation means

s1

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Move trait implies for s2 = s1 :

s2

MathGrade = ?

EnglishGrade = ?

Name → <none> or <null>

What does Move operation means

s1

MathGrade = ?

EnglishGrade = 10

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Move trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = ?

Name → <none> or <null>

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade

1

What does Move operation means

s1

MathGrade = ?

EnglishGrade = ?

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Move trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = 10

Name → <none> or <null>

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade , and clear the value of s1.EnglishGrade

2

What does Move operation means

s1

MathGrade = ?

EnglishGrade = ?

Name → a pointer to address 100.000

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Move trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade , and clear the value of s1.EnglishGrade
3. Assign s2.Name pointer to the offset 100.000

3

What does Move operation means

s1

MathGrade = ?

EnglishGrade = ?

Name → None / null

Offset +0 +1 +2 +3

100.000 J o h n

Let’s see what Move trait implies for s2 = s1 :

s2

MathGrade = 9

EnglishGrade = 10

Name → a pointer to address 100.000

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade , and clear the value of s1.EnglishGrade
3. Assign s2.Name pointer to the offset 100.000
4. Clear the value of pointer s1.Name so that only one object points to the offset 100.000

4

• So, what can we do to make this code safe ?

Ownership

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C (undefined behabior)

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = s1; s1 = nullptr;
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C (MOVE)

void main() {
 char* s1 = new char[4]{"abc"};
 char* s2 = strdup(s1);
 delete []s1; s1 = nullptr;
 printf("%s\n",s2);
}

C (COPY)

• By default, Rust uses MOVE operation for all of its object (except for
the case where COPY trait is set up for on object)

• Basic types (u8..u128, i8..i128, bool, isize, usize, char) have the COPY
trait.

Advantages:

1. No dangling pointers

2. No data races

Ownership

When ownership rules applies:

1. Whenever there is an assignment
x = y

2. Whenever a parameter is passed to a function
my_function(x)

3. Whenever a value is returned from a function
y = my_function(x)

Ownership

Let’s see some examples:

Ownership

fn main() {
 let s: String = String::from("AAA");
 let s2 = s;
 println!("{s}");
}

Rust

Compiles ok

Output

AAA

fn main() {
 let s: String = String::from("AAA");
 let s2 = s;
 println!("{s2}");
}

Rust

Compile error
error[E0382]: borrow of moved value: `s`

Let’s see some examples:

Ownership

fn main() {
 let s: String = String::from("AAA");
 let s2 = s;
 println!("{s}");
}

Rust

fn main() {
 let s: String = String::from("AAA");
 let s2 = s;
 println!("{s2}");
}

Rust

error[E0382]: borrow of moved value: `s`
 --> src\main.rs:5:16
 |
3 | let s:String = String::from("AAA");
 | - move occurs because `s` has type `String`, which does not implement the `Copy` trait
4 | let s2 = s;
 | - value moved here
5 | println!("{s}");
 | ^ value borrowed here after move

Error

Let’s see some examples:

Ownership

fn print_s(s: String) {
 println!("{s}");

}
fn main() {
 let s: String = String::from("AAA");
 print_s(s);
 println!("{s}");

}

Rust

error[E0382]: borrow of moved value: `s`
 --> src\main.rs:9:16
 |
7 | let s:String = String::from("AAA");
 | - move occurs because `s` has type `String`, which does not implement the `Copy` trait
8 | print_s(s);
 | - value moved here
9 | println!("{s}");
 | ^ value borrowed here after move

Error

In this particular case, calling print_s will
transfer the ownership from the variable “s”
from function main, to parameter “s” from

function print_s. Once function print_s is over,
parameter “s” lifetime is over as well, and its

content is destroyed.

Let’s see some examples:

• One solution to the above problem is to return the value of
parameter “s” from function print_s and assigned it back to the
variable “s” from function main (its original owner).

Ownership

fn print_s(s: String) -> String {
 println!("{s}");
 return s;

}
fn main() {
 let mut s: String = String::from("AAA");
 s = print_s(s);
 println!("{s}");

}

Rust

Output

AAA
AAA

Borrowing

• Even if ownership rules are clear, there are cases where coding under
this rules is difficult. Let’s look at the following case:

• Is this code correct ?

Borrowing

fn compute_len(s: String) -> usize {
 return s.len();
}
fn main() {
 let s = String::from("123");
 let l = compute_len(s);
 println!("The length of `{s}` is {l}");
}

Rust

• Even if ownership rules are clear, there are cases where coding under
this rules is difficult. Let’s look at the following case:

 The answer is NO !

Borrowing

fn compute_len(s: String) -> usize {
 return s.len();
}
fn main() {
 let s = String::from("123");
 let l = compute_len(s);
 println!("The length of `{s}` is {l}");
}

Rust

error[E0382]: borrow of moved value: `s`
 --> src\main.rs:8:31
 |
6 | let s = String::from("123");
 | - move occurs because `s` has type `String`, which does not implement the `Copy` trait
7 | let l = compute_len(s);
 | - value moved here
8 | println!("The length of `{s}` is {l}");
 | ^ value borrowed here after move

Error

• So how can we solve this kind of cases ?

• Most programming languages have a concept (called reference) that
represent a valid pointer to an object of a specific type.

• In Rust, we call this form borrowing (the reason is that the reference
does not imply change of ownership → thus we can consider that an
object has been borrowed, and it will be returned to its owner).

• Just like in C or C++, a reference in Rust is denoted by the symbol & .
Similarly, a dereference process can be performed with the symbol *
.

Borrowing

• Let’s see how the previous code changes if we are to use references:

Borrowing

fn compute_len(s: String) -> usize {
 return s.len();
}
fn main() {
 let s = String::from("123");
 let l = compute_len(s);
 println!("The length of `{s}` is {l}");
}

Rust

fn compute_len(s: &String) -> usize {
 return s.len();
}
fn main() {
 let s = String::from("123");
 let l = compute_len(&s);
 println!("The length of `{s}` is {l}");
}

Rust

Compile error
error[E0382]: borrow of moved value: `s`

Compiles ok

Output

The length of `123` is 3

• By default, a reference in Rust is immutable (meaning you can read its
value, but you can not modify it).

Borrowing

fn compute_len(s: &String) -> usize {
 return s.len();
}
fn main() {
 let s = String::from("123");
 let l = compute_len(&s);
 println!("The length of `{s}` is {l}");
}

Rust
#include <string>
size_t compute_len(const std::string& s) {
 return s.length();
}
void main() {
 const std::string s = "abc";
 auto l = compute_len(s);
 printf("The length of `%s` is %d",
 s.c_str(),(int)l);
}

C++

• A reference in Rust can be:
• Immutable → denoted by the usage of & (default)
fn compute_len(s: &String) -> usize {…}

• Mutable → denoted by the usage of &mut
fn compute_len(s: &mut String) -> usize {…}

However, the question that comes into everyone's mind is:

What is the purpose of ownership if we have references ?

Borrowing

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Put in “rdx” register the offset where the
constant string “123” lies in memory

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Put in “rcx” the stack offset where variable “s”
should be created.

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Make of copy (also in stack) for the “s” offset.
We need to do this because there is no

guarantee that RCX will not be modified when
the call to Strig::from occurs.

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Put in r8d the size of string “123” (3 bytes)

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Call “String::from” , allocate memory for “s”
string pointer and copy “123” into it.

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Restore the value of “RCX” to point to the
stack offset of variable “s”

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

• Let’s analyze the assembly listing …

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust
push rbp

 sub rsp,0E0h
 lea rbp,[rsp+80h]
let s:String = String::from("123");
 mov qword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
 lea rdx,[<address of "123" string>]
 lea rcx,[s]
 mov qword ptr [temp_ptr_to_s],rcx
 mov r8d,3
 call String::from
 mov rcx,qword ptr [temp_ptr_to_s]
let ref_to_s:&String = &s;
 mov qword ptr [ref_to_s],rcx

Rust

Copy “rcx” value to “ref_to_s” variable. Since
RCX is the offset in stack for variable “s”, this

actually makes “ref_to_s” to be a pointer to “s”.

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust Stack (8 bytes alignment)
 Offset Variable Value

100 ?

92 s.chars ?

84 s.len ?

76 s.capacity ?

68 ?

60 ref_to_s ?

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 ?

92 s.chars Ptr to heap:

84 s.len 3

76 s.capacity 3

68 ?

60 ref_to_s ?

Heap

1 2 3

• Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Borrowing

fn isEmpty(s: &String) -> bool {
 return s.is_empty();
}
fn main() {
 let s: String=String::from("123");
 let ref_to_s: &String = &s;
 if isEmpty(ref_to_s) {
 println!("Empty string");
 } else {
 println!("`{s}` is not empty");
 }
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 ?

92 s.chars Ptr to heap:

84 s.len 3

76 s.capacity 3

68 ?

60 ref_to_s 92

Heap

1 2 3

• In Rust, a reference (a borrow value) is a pointer to the original object
(similar to how C/C++ treat references)

• This means that as long as the original object is valid, a reference will be
valid as well

Because of this Rust has several rules related to references:

1. At one given moment of time, there can be only one mutable reference
to an object

2. At any given moment of time, there can be multiple immutable
references to an object

3. Case 1 and 2 are exclusive meaning that if you have a mutable
reference, you can not have another immutable one and vice-versa.

Borrowing

Let’s see some cases that reflect how these references work.

1. Multiple immutable references & immutable object

Borrowing

fn main() {
 let s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");

}

Rust

Compiles ok

Output

123,123,123,123

Let’s see some cases that reflect how these references work.

2. One mutable reference & immutable object

Borrowing

fn main() {
 let s: String = String::from("123");
 let mut_ref_to_s: &mut String = &mut s;
 println!("{s},{mut_ref_to_s}");

}

Rust

error[E0596]: cannot borrow `s` as mutable, as it is not declared as mutable
 --> src\main.rs:4:36
 |
3 | let s:String = String::from("123");
 | - help: consider changing this to be mutable: `mut s`
4 | let mut_ref_to_s:&mut String = &mut s;
 | ^^^^^^ cannot borrow as mutable

Error

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let mut_ref_to_s: &mut String = &mut s;
 println!("{s},{mut_ref_to_s}");

}

Rust

error[E0502]: cannot borrow `s` as immutable because it is also borrowed as mutable
 --> src\main.rs:5:16
 |
4 | let mut_ref_to_s:&mut String = &mut s;
 | ------ mutable borrow occurs here
5 | println!("{s},{mut_ref_to_s}");
 | ^ ------------ mutable borrow later used here
 | |
 | immutable borrow occurs here

Error

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let mut_ref_to_s:&mut String = &mut s;
 println!("{s},{mut_ref_to_s}");

}

Rust

error[E0502]: cannot borrow `s` as immutable because it is also borrowed as mutable
 --> src\main.rs:5:16
 |
4 | let mut_ref_to_s:&mut String = &mut s;
 | ------ mutable borrow occurs here
5 | println!("{s},{mut_ref_to_s}");
 | ^ ------------ mutable borrow later used here
 | |
 | immutable borrow occurs here

Error

Let’s explain what happens in this case:
1. When println! macro is trying to use the

object “s”, it tries to create an immutable
reference.

2. However, at this moment of the execution
there already is an mutable reference
available (namely “mut_ref_to_s”)

3. As such, another one can not exists, and an
error will be thrown.

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let mut_ref_to_s: &mut String = &mut s;
 println!("{mut_ref_to_s}");
 println!("{s}");

}

Rust

Compiles ok

Output

123
123

Why is this example
working and using both

variables in a single
println doesn’t ?

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Let’s analyze this example:
• Variable “mut_ref_to_s” is created at line 3 and after line 4 it is no longer needed (used). As such it is

destroy after line 4. We can say that its lifetime consists in 2 lines (3 and 4).

• When line 4 gets executed, there is only one mutable reference to object “s” – thus the rules are not
broken, and no error is thrown

Borrowing

1 fn main() {
2 let mut s: String = String::from("123");
3 let mut_ref_to_s: &mut String = &mut s;
4 println!("{mut_ref_to_s}");
5 println!("{s}");
6 }

Rust

Lifetime of
mut_ref_to_s

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Let’s analyze this example:
• Variable “mut_ref_to_s” is created at line 3 and after line 4 it is no longer needed (used). As such it is

destroy after line 4. We can say that its lifetime consists in 2 lines (3 and 4).

• When line 4 gets executed, there is only one mutable reference to object “s” – thus the rules are not
broken, and no error is thrown

• Variable “s” has a lifetime that starts on line 2 and ends on line 5. However, when line 5 gets
executed, and a new immutable reference is created, variable “mut_ref_to_s” has already been
discarded and as such we would only have one reference and program compiles.

Borrowing

1 fn main() {
2 let mut s: String = String::from("123");
3 let mut_ref_to_s: &mut String = &mut s;
4 println!("{mut_ref_to_s}");
5 println!("{s}");
6 }

Rust

Lifetime of
s

Lifetime of
mut_ref_to_s

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let mut_ref_to_s: &mut String = &mut s;
 println!("{s}");
 println!("{mut_ref_to_s}");

}

Rust

error[E0502]: cannot borrow `s` as immutable because it is also borrowed as mutable
 --> src\main.rs:5:16
 |
4 | let mut_ref_to_s:&mut String = &mut s;
 | ------ mutable borrow occurs here
5 | println!("{s}");
 | ^ immutable borrow occurs here
6 | println!("{mut_ref_to_s}");
 | ------------ mutable borrow later used here

Error

Following the previous logic, if we reverse the order of
the println! macro, we change the lifetime of variable “s”

and “mut_ref_to_s” and an error will be triggered !

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
}

Rust

Compiles ok

Output

123,123,123,123

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
 s += "A larger string";
 println!("{s}");
}

Rust

Compiles ok

Output

123,123,123,123
123A larger string

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

 What will happen in this case ?

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
}

Rust

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
}

Rust

error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
 --> src\main.rs:8:5
 |
4 | let ref_to_s_1:&String = &s;
 | -- immutable borrow occurs here
...
8 | s += "A larger string";
 | ^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
9 | println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
 | ---------- immutable borrow later used here

Error

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

When reaching line 6, a mutable reference is needed to perform that
assignment (that changes the content of object “s”). Since at line 6
there already are 3 immutable references, the compiler will fail.

Borrowing

fn main() {
 1 let mut s:String = String::from("123");
 2 let ref_to_s_1:&String = &s;
 3 let ref_to_s_2:&String = &s;
 4 let ref_to_s_3:&String = &s;
 5 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
 6 s += "A larger string";
 7 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
}

Rust

Li
fe

ti
m

e
o

f
re

f_
to

_
s_

3

Li
fe

ti
m

e
o

f
re

f_
to

_
s_

2

Li
fe

ti
m

e
o

f
re

f_
to

_
s_

1

Li
fe

ti
m

e
o

f
s

When analyzing the previous examples, there are some questions that
need to be answered:

s += "A larger string";

1. Why the previous assignment implies creating a mutable reference
?

2. Immutable references can not change the value of an object. If the
value of the object changes, why can’t we have immutable
references at that time ?

Borrowing

1. Why s += "A larger string"; implies creating a mutable
reference ?

To answer this question, let’s look on how “+=“ operator is defined !

Borrowing

/// Implements the `+=` operator for appending to a `String`.
/// This has the same behavior as the [`push_str`][String::push_str] method.
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "stringaddassign", since = "1.12.0")]
impl AddAssign<&str> for String {
 #[inline]
 fn add_assign(&mut self, other: &str) {
 self.push_str(other);
 }
}

Rust (source String.rs)

1. Why s += "A larger string"; implies creating a mutable
reference ?

To answer this question, let’s look on how “+=“ operator is defined !

* Implementation of operator += for String class may vary in time (from version to version)

Borrowing

/// Implements the `+=` operator for appending to a `String`.
/// This has the same behavior as the [`push_str`][String::push_str] method.
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "stringaddassign", since = "1.12.0")]
impl AddAssign<&str> for String {
 #[inline]
 fn add_assign(&mut self, other: &str) {
 self.push_str(other);
 }
}

Rust (source String.rs*)

For the moment let’s ignore the attributes (lines
that start with # (pound sign) character) and the
whole impl structure as we will discuss this later.

Let’s focus on the add_assign method instead !

1. Why s += "A larger string"; implies creating a mutable
reference ?

To answer this question, let’s look on how “+=“ operator is defined !

* Implementation of operator += for String class may vary in time (from version to version)

Borrowing

/// Implements the `+=` operator for appending to a `String`.
/// This has the same behavior as the [`push_str`][String::push_str] method.
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "stringaddassign", since = "1.12.0")]
impl AddAssign<&str> for String {
 #[inline]
 fn add_assign(&mut self, other: &str) {
 self.push_str(other);
 }
}

Rust (source String.rs*)

Notice that the first parameter of this function is a
mutable reference (denoted with the name self).
To simply put it, self is the equivalent of C++ this
and must be provided to every non-static method
calls. And self is a reference (either mutable or
immutable) !

1. Why s += "A larger string"; implies creating a mutable
reference ?

This means that the following line:

s += "A larger string";

is equivalent to the next one:

add_assign(&mut s , "A larger string");

Borrowing

1. Why s += "A larger string"; implies creating a mutable
reference ?

Consider that any class non-static method implies creating a reference

- A mutable reference if that method changes something in the class

- An immutable reference if that method only reads information from
the class

These references will respect references rules (either only one mutable
or multiple immutable).

Borrowing

1. Why s += "A larger string"; implies creating a mutable
reference ?

Let’s consider the following example:

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let l = s.len();
 println!("{s},{ref_to_s_1},{ref_to_s_2}, {l}");
}

Rust

Compiles ok

Output

123,123,123, 3

1. Why s += "A larger string"; implies creating a mutable
reference ?

Let’s consider the following example:

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let l = s.len();
 println!("{s},{ref_to_s_1},{ref_to_s_2}, {l}");
}

Rust

Compiles ok

Output

123,123,123, 3

What happens when we call s.len() ?

1. Why s += "A larger string"; implies creating a mutable
reference ?

Let’s consider the following example:

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let l = s.len();
 println!("{s},{ref_to_s_1},{ref_to_s_2}, {l}");
}

Rust

Compiles ok

Output

123,123,123, 3

What happens when we call s.len() ?
pub fn len(&self) -> usize {
 self.vec.len()
}

Rust (String.rs)

len method requires an immutable reference.
Since at that point we only have two other

immutable reference, the code is safe and will
be allowed to compile.

1. Why s += "A larger string"; implies creating a mutable
reference ?

Let’s consider the following example:

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let mut_ref_to_s: &mut String = &mut s;
 let l = s.len();
 println!("{s},{mut_ref_to_s},{l}");
}

Rust

error[E0502]: cannot borrow `s` as immutable because it is also borrowed as mutable
 --> src\main.rs:5:13
 |
4 | let mut_ref_to_s:&mut String = &mut s;
 | ------ mutable borrow occurs here
5 | let l = s.len();
 | ^^^^^^^ immutable borrow occurs here
6 | println!("{s},{mut_ref_to_s},{l}");
 | ------------ mutable borrow later used here

Error

len method requires an immutable reference.
However, when s.len() is compiled, an
immutable reference is required, but … there
already exists a mutable reference thru the
variable “mut_ref_to_s”.
Since there can not be a mutable and
immutable references at the same time, the
compiler will throw an error.

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Borrowing

fn main() {
 let mut s: String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2},{ref_to_s_3}");
}

Rust

Compile error
error[E0502]: cannot borrow
`s` as mutable because it is
also borrowed as immutable

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 ?

92 ?

84 ?

76 ?

68 ?

60 ?

52 ?

44 ?

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 3

84 s.capacity 3

76 ?

68 ?

60 ?

52 ?

44 ?

Heap

1 2 3

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 3

84 s.capacity 3

76 ref_to_s_1 100

68 ?

60 ?

52 ?

44 ?

Heap

1 2 3

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 3

84 s.capacity 3

76 ref_to_s_1 100

68 ref_to_s_2 100

60 ?

52 ?

44 ?

Heap

1 2 3

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 3

84 s.capacity 3

76 ref_to_s_1 100

68 ref_to_s_2 100

60 ref_to_s_3 100

52 ?

44 ?

Heap

1 2 3

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 18

84 s.capacity 18* (estimated)

76 ref_to_s_1 100

68 ref_to_s_2 100

60 ref_to_s_3 100

52 ?

44 ?

Heap

? ? ?

1 2 3 A l a r

g E r s t r i

n G

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the stack of the program, if
compilation would have been successful.

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 18

84 s.capacity 18* (estimated)

76 ref_to_s_1 100

68 ref_to_s_2 100

60 ref_to_s_3 100

52 ?

44 ?

Heap

? ? ?

1 2 3 A l a r

g E r s t r i

n G

Has anything changed for one of the immutable
references ?

The answer is NO. All 3 immutable references
point to the same object (and could access that

object just like they could before s.chars data
member was changed).

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Borrowing

fn main() {
 let mut s:String = String::from("123");
 let ref_to_s_1: &String = &s;
 let ref_to_s_2: &String = &s;
 let ref_to_s_3: &String = &s;
 println!("{s},{ref_to_s_1},{ref_to_s_2…
 s += "A larger string";
 println!("{s},{ref_to_s_1},{ref_to_s_2…
}

Rust

So … if this code is
safe, why does not

Rust allow it ?

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

To answer the last question, we need to look into another feature of
Rust, called slices !

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the following code:

Slices are very similar to std::string_view / std::u8string_view from C++
(in the sense that they hold a pointer and a size).

Borrowing

fn main() {
 let s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 println!("{s},{slice_of_s}");
}

Rust

Output

AABBBCC,BBB

Let’s see how the stack looks like in this case:

Borrowing

fn main() {
 let s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 println!("{s},{slice_of_s}");
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 ?

92 ?

84 ?

76 ?

68 ?

60 ?

52 ?

44 ?

Heap

Let’s see how the stack looks like in this case:

Borrowing

fn main() {
 let s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 println!("{s},{slice_of_s}");
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 7

84 s.capacity 7

76 ?

68 ?

60 ?

52 ?

44 ?

Heap

A A B B B C C

Let’s see how the stack looks like in this case:

This part is in particular important:
Notice that “slice_of_s” maintains
a pointer within a memory that “s”
owns.

Borrowing

fn main() {
 let s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 println!("{s},{slice_of_s}");
}

Rust Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr to heap:

92 s.len 7

84 s.capacity 7

76 slice_of_s.ptr Ptr to heap

68 slice_of_s.size 3

60 ?

52 ?

44 ?

Heap

A A B B B C C

So … what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate
what execution will do to the stack):

Borrowing

fn main() {
 let mut s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 s.push_str("DDDDD");
 println!("{s},{slice_of_s}");
}

Rust

Stack (8 bytes alignament)
 Offset Variable Value

100 ?

92 ?

84 ?

76 ?

68 ?

60 ?

52 ?

44 ?

Heap

So … what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate
what execution will do to the stack):

Borrowing

fn main() {
 let mut s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 s.push_str("DDDDD");
 println!("{s},{slice_of_s}");
}

Rust

Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr:

92 s.len 7

84 s.capacity 7

76 ?

68 ?

60 ?

52 ?

44 ?

Heap

A A B B B C C

So … what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate
what execution will do to the stack):

Borrowing

fn main() {
 let mut s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 s.push_str("DDDDD");
 println!("{s},{slice_of_s}");
}

Rust

Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr:

92 s.len 7

84 s.capacity 7

76 slice_of_s.ptr Ptr

68 slice_of_s.size 3

60 ?

52 ?

44 ?

Heap

A A B B B C C

So … what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate
what execution will do to the stack):

When the execution reaches this line, a new
memory will be allocated for “s” and the
previous one will be deallocated. The result is
that we get a dangling pointer from “slice_of_s”
that points to the original memory allocated from “s” that is currently invalid.

Borrowing

fn main() {
 let mut s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 s.push_str("DDDDD");
 println!("{s},{slice_of_s}");
}

Rust

Stack (8 bytes alignament)
 Offset Variable Value

100 s.chars Ptr:

92 s.len 12

84 s.capacity 12

76 slice_of_s.ptr Ptr

68 slice_of_s.size 3

60 ?

52 ?

44 ?

Heap

? ? ? ? ? ? ?

A A B B B C C D

D D D D

In reality, Rust will not compile the next code and will throw the
following error:

Borrowing

fn main() {
 let mut s: String = String::from("AABBBCC");
 let slice_of_s = &s[2..5];
 s.push_str("DDDDD");
 println!("{s},{slice_of_s}");
}

Rust

error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
 --> src\main.rs:6:5
 |
5 | let slice_of_s = &s[2..5];
 | - immutable borrow occurs here
6 | s.push_str("DDDDD");
 | ^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
7 | println!("{s},{slice_of_s}");
 | ---------- immutable borrow later used here

Error

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

So … returning to the original question, we can not have immutable
references and a mutable one at the same time, because there are
scenarios (like using a slice) that could lead to a dangling pointer !

Remarks: Slices are considered references as well !

Borrowing

Reborrowing

Let’s evaluate the following scenario:

Reborrowing

fn goo(y: &mut String) {
 y.push('G');
}
fn foo(x: &mut String) {
 x.push('-');
 goo(x);
 x.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = &mut s;
 foo(mut_ref_to_s);
 mut_ref_to_s.push('!');
 println!("{s}");
}

Rust
Output

ABC-G-!

Let’s evaluate the following scenario:

Reborrowing

fn goo(y: &mut String) {
 y.push('G');
}
fn foo(x: &mut String) {
 x.push('-');
 goo(x);
 x.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = &mut s;
 foo(mut_ref_to_s);
 mut_ref_to_s.push('!');
 println!("{s}");
}

Rust

The ownership rules clearly state that if we pass an
object to a function, we lose the ownership and as

such we can not use that object anymore after that.

So … why is this code WORKING ?

The previous code works because Rust uses a different mechanism when
passing references to a function than when it passes an object.

While an immutable reference is COPY and a mutable one is MOVE,
when passing a mutable reference to a method, Rust uses another
concept called REBORROWING.

Reborrowing allows you to temporarily transfer access to a mutable
reference while keeping the original reference valid for later use.

Reborrowing

Let’s analyze the previous code from this new perspective:

Reborrowing

fn goo(y: &mut String) {
 y.push('G');
}
fn foo(x: &mut String) {
 x.push('-');
 goo(x);
 x.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = &mut s;
 foo(mut_ref_to_s);
 mut_ref_to_s.push('!');
 println!("{s}");
}

Rust

Let’s analyze the previous code from this new perspective:

Reborrowing

fn goo(y: &mut String) {
 y.push('G');
}
fn foo(x: &mut String) {
 x.push('-');
 goo(x);
 x.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = &mut s;
 foo(mut_ref_to_s);
 mut_ref_to_s.push('!');
 println!("{s}");
}

Rust

We create mut_ref_to_s (only ONE mutable
reference towards variable s)

Let’s analyze the previous code from this new perspective:

Reborrowing

fn goo(y: &mut String) {
 y.push('G');
}
fn foo(x: &mut String) {
 x.push('-');
 goo(x);
 x.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = &mut s;
 foo(mut_ref_to_s);
 mut_ref_to_s.push('!');
 println!("{s}");
}

Rust

We reborrow mut_ref_to_s to function foo where it
will be used as “x” (we can look at this as we

temporary create an alias for mut_ref_to_s that is
called x, that can only be used within the function foo).

The rules of ownership are still valid, as we know for
sure that mut_ref_to_s can only be used after function

foo ends

Let’s analyze the previous code from this new perspective:

Reborrowing

fn goo(y: &mut String) {
 y.push('G');
}
fn foo(x: &mut String) {
 x.push('-');
 goo(x);
 x.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = &mut s;
 foo(mut_ref_to_s);
 mut_ref_to_s.push('!');
 println!("{s}");
}

Rust

A similar logic applies in this case as well, we know that “x” from foo
will only be available after function goo ends and as such the

ownership rules are not broken.

What should be noticed in this example is that at any
given time, there is only ONE available to use mutable

reference towards object “s”

However, placing a reference in a structure follows the ownership rules:

Reborrowing

struct MutRef<'a> { value: &'a mut String }

fn goo(x: MutRef) {
 x.value.push('G');
}
fn foo(x: MutRef) {
 x.value.push('-');
 goo(x);
 x.value.push('-');
}
fn main() {
 let mut s = String::from("ABC");
 let mut_ref_to_s = MutRef { value: &mut s };
 foo(mut_ref_to_s);
 mut_ref_to_s.value.push('!');
 println!("{s}");
}

Rust
error[E0382]: borrow of moved value: `x`
 --> src/main.rs:10:5
 |
7 | fn foo(x: MutRef) {
 | - move occurs because `x` has type
 | `MutRef<'_>`, which does not implement the
 | `Copy` trait
...
 --> src/main.rs:4:11
 |
4 | fn goo(x: MutRef) {
 | --- ^^^^^^ this parameter takes ownership of
 | the value

error[E0382]: borrow of moved value: `mut_ref_to_s`
 --> src/main.rs:16:5
 |
16 | mut_ref_to_s.value.push('!');
 | ^^^^^^^^^^^^^^^^^^ value borrowed here after
 | move
 |

Error

As previously explained, we can not create more than one mutable
reference towards am object (in this example, mut_ref_2 can not exist
as there is already a mutable reference (mut_ref_1) that was created).

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let mut_ref_2 = &mut x;
 *mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

error[E0499]: cannot borrow `x` as mutable more than once at a time
 --> src/main.rs:6:21
 |
5 | let mut_ref_1 = &mut x;
 | ------ first mutable borrow occurs here
6 | let mut_ref_2 = &mut x;
 | ^^^^^^ second mutable borrow occurs here
7 | *mut_ref_2 += 1;
8 | *mut_ref_1 += 1;
 | --------------- first borrow later used here

Error

As previously explained, we can not create more than one mutable
reference towards am object (in this example, mut_ref_2 can not exist
as there is already a mutable reference (mut_ref_1) that was created).

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let mut_ref_2 = &mut x;
 *mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

In this example, Rust will notice that we want to create another
mutable reference towards “x” (besides the first one – mut_ref_1)

and will trigger a compiler error.

However, we can reborrow the initial mutable reference and then use it.
To do this, we have to start from the original mutable reference (and
NOT from the object itself) and dereference it to reborrow it.

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref = &mut *mut_ref_1;
 *reborrowed_mut_ref += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust
Output

2

However, we can borrow the initial mutable reference and then use it.
To do this, we have to start from the original mutable reference (and
NOT from the object itself) and dereference it to reborrow it.

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref = &mut *mut_ref_1;
 *reborrowed_mut_ref += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust
Output

2

Notice that while reborrowed_mut_ref is being use
we don’t use mut_ref_1 as well (this way we don’t

break any ownership rules).

However, changing the order of how we use mut_ref_1 and
reborrowed_mut_ref will produce a compiler error if ownership rules
are being broken:

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref = &mut *mut_ref_1;
 *mut_ref_1 += 1;
 *reborrowed_mut_ref += 1;
 println!("{}", x);
}

Rust

error[E0503]: cannot use `*mut_ref_1` because it was mutably
borrowed
 --> src/main.rs:7:5
 |
6 | let reborrowed_mut_ref = &mut *mut_ref_1;
 | ---------------
 | `*mut_ref_1` is borrowed
 | here
7 | *mut_ref_1 += 1;
 | ^^^^^^^^^^^^^^^ use of borrowed `*mut_ref_1`
8 | *reborrowed_mut_ref += 1;
 | ------------------------ borrow later used here

Error

One way of looking into the logic related to reborrowing mutable
reference is to image that Rust sees them as a stack:

Reborrowing

Object

Mutable Ref-1

Mutable Ref-2

Mutable Ref-3

Mutable Ref-n

Borrow

Reborrow

Reborrow

Reborrow

1. We are allowed to use only the last mutable
reference from the stack

2. When an assignment operation is performed (eg:
let x = <last mutable ref>), the last mutable
reference is pop out of the stack, and “x” is pushed
in

3. Whenever the scope of the last mutable reference
from the stack ends, it would be removed from the
stack and the next reference can be used.

4. If the scope of the original object ends, the compiler
will destroy it.

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust
Output

4

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

When the compiler reaches this
point, it creates a stack for

variable “X”

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

We borrow a “x” by creating a
mutable reference.

mut_ref_1

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

Now we reborrow mut_ref_1 as
reborrowed_mut_ref_2

mut_ref_1

reborrowed_mut_ref_2

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

Now we reborrow
reborrowed_mut_ref_2 as

reborrowed_mut_ref_3

mut_ref_1

reborrowed_mut_ref_2

reborrowed_mut_ref_3

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

It is OK to use “reborrowed_mut_ref_3” to access
“x” because it is the last from the stack.

mut_ref_1

reborrowed_mut_ref_2

reborrowed_mut_ref_3

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

1. Remove ”reborrowed_mut_ref_3“ from the stack.
2. Copy the reference of ”reborrowed_mut_ref_3“ into a
3. Push “a” into stack

mut_ref_1

reborrowed_mut_ref_2

reborrowed_mut_ref_3

a

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

It is OK to use “a” to access “x”
because it is the last from the stack.

mut_ref_1

reborrowed_mut_ref_2

a

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

Notice that after this step, “a” is no longer used in the
program. This means that its scope has ended, and we can

remove it from the stack.

mut_ref_1

reborrowed_mut_ref_2

a

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

It is OK to use “reborrowed_mut_ref_2” to access
“x” because it is the last from the stack.

mut_ref_1

reborrowed_mut_ref_2

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

mut_ref_1

reborrowed_mut_ref_2

Notice that after this step, “reborrowed_mut_ref_2” is no
longer used in the program. This means that its scope has

ended, and we can remove it from the stack.

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

It is OK to use “mut_ref_1” to access “x”
because it is the last from the stack.

mut_ref_1

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

mut_ref_1

Notice that after this step, “mut_ref_1” is no longer used in the
program. This means that its scope has ended, and we can

remove it from the stack.

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

Since there are no mutable references towards variable “x” it is
safe now to create an immutable one that can be used in the

println! Macro.

Let’s evaluate the following case:

Reborrowing

fn main() {
 let mut x = 0;
 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref_2 = &mut *mut_ref_1;
 let reborrowed_mut_ref_3 = &mut *reborrowed_mut_ref_2;
 *reborrowed_mut_ref_3 += 1;
 let a = reborrowed_mut_ref_3;
 *a += 1;
 *reborrowed_mut_ref_2 += 1;
 *mut_ref_1 += 1;
 println!("{}", x);
}

Rust

x

Now we can destroy varianle
“x” as its scope has ended.

On the other hand, lets re-analyze the previous example:

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref = &mut *mut_ref_1;
 *mut_ref_1 += 1;
 *reborrowed_mut_ref += 1;
 println!("{}", x);
}

Rust

error[E0503]: cannot use `*mut_ref_1` because it was mutably
borrowed
 --> src/main.rs:7:5
 |
6 | let reborrowed_mut_ref = &mut *mut_ref_1;
 | ---------------
 | `*mut_ref_1` is borrowed
 | here
7 | *mut_ref_1 += 1;
 | ^^^^^^^^^^^^^^^ use of borrowed `*mut_ref_1`
8 | *reborrowed_mut_ref += 1;
 | ------------------------ borrow later used here

Error

On the other hand, lets re-analyze the previous example:

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref = &mut *mut_ref_1;
 *mut_ref_1 += 1;
 *reborrowed_mut_ref += 1;
 println!("{}", x);
}

Rust

x

mut_ref_1

reborrowed_mut_ref

Once the compiler reaches this line, the stack
with mutable references for variable “x” looks

like in the right image.

On the other hand, lets re-analyze the previous example:

Reborrowing

fn main() {
 let mut x = 0;

 let mut_ref_1 = &mut x;
 let reborrowed_mut_ref = &mut *mut_ref_1;
 *mut_ref_1 += 1;
 *reborrowed_mut_ref += 1;
 println!("{}", x);
}

Rust

x

mut_ref_1

reborrowed_mut_ref
However, this code will produce

an error since “mut_ref_1” is
not the last one from the stack.

Notice that the scope of
“reborrowed_mut_ref” ends after
the next line (and as such can not

be removed from the stack)

Reborrow mechanism is critical in several Rust programing cases:

1. Passing a reference to a function

2. Calling a method (associated with a trait or a structure/enum)

In particular, it is useful for mutable references where it can allow us to
reuse the original reference after it was borrowed.

Reborrowing

The following table presents how Rust applies the ownership and
borrowing rules over different kind of objects and scenarios:

Key takeaways

Object Type Assignment
(x = y)

Function call
f(x)

Object with COPY trait COPY COPY

Object without COPY trait MOVE MOVE

Immutable references (&T) COPY COPY

Mutable references (&mut T) MOVE REBORROW

Optimizations

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

Where:
• rdi = input
• rsi = output

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

Why do we have this difference ?

Notice that we have used the += operator. This means that the compiler first
needs to read the value from the pointer output, then add to that value the value
from pointer input, and finally write the new value into the output pointer.

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

Why do we have this difference ?

However, there is no guarantee that the output pointer can’t be access from a
different thread. As such, the compiler has to write the new value to output
pointer so that if another thread is trying to read it, it will read a correct value.
This also means that it has to perform a similar write for the second operation !

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

Optimizations

void foo(const unsigned int * input, unsigned int * output) {
 *output += *input;
 *output += *input;
}

C/C++

pub fn foo(input: &u32, output: &mut u32) {
 *output += *input;
 *output += *input;
}

Rust

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

On the other hand, Rust knows that since output is a mutable reference, there is
only one such reference and no other thread can access it. Because of this, it

does not have to write the value after the first call to += operator. Furthermore,
since there can not be mutable reference towards the input variable (as there is

already an immutable one), it can reuse its value for the second operation.

Q
A&

	Default Section
	Slide 1: Course – 2 Gavrilut Dragos
	Slide 2: Agenda for today

	Prerequisit: String type
	Slide 3: Prerequisite: String type
	Slide 4: Prerequisite: String type
	Slide 5: Prerequisite: String type
	Slide 6: Prerequisite: String type
	Slide 7: Prerequisite: String type

	Ownership
	Slide 8: Ownership management
	Slide 9: Ownership
	Slide 10: Ownership
	Slide 11: Ownership
	Slide 12: Ownership
	Slide 13: Ownership
	Slide 14: Ownership
	Slide 15: Ownership
	Slide 16: Ownership
	Slide 17: Ownership
	Slide 18: Ownership
	Slide 19: Ownership
	Slide 20: Ownership
	Slide 21: Ownership
	Slide 22: Ownership
	Slide 23: Ownership
	Slide 24: Ownership
	Slide 25: Ownership
	Slide 26: Ownership
	Slide 27: Ownership
	Slide 28: Ownership
	Slide 29: Ownership
	Slide 30: Ownership
	Slide 31: Ownership
	Slide 32: Ownership
	Slide 33: Copy vs Move operations
	Slide 34: What does Copy operation means
	Slide 35: What does Copy operation means
	Slide 36: What does Copy operation means
	Slide 37: What does Copy operation means
	Slide 38: What does Copy operation means
	Slide 39: What does Move operation means
	Slide 40: What does Move operation means
	Slide 41: What does Move operation means
	Slide 42: What does Move operation means
	Slide 43: What does Move operation means
	Slide 44: Ownership
	Slide 45: Ownership
	Slide 46: Ownership
	Slide 47: Ownership
	Slide 48: Ownership
	Slide 49: Ownership
	Slide 50: Ownership

	 Borrowing
	Slide 51: Borrowing
	Slide 52: Borrowing
	Slide 53: Borrowing
	Slide 54: Borrowing
	Slide 55: Borrowing
	Slide 56: Borrowing
	Slide 57: Borrowing
	Slide 58: Borrowing
	Slide 59: Borrowing
	Slide 60: Borrowing
	Slide 61: Borrowing
	Slide 62: Borrowing
	Slide 63: Borrowing
	Slide 64: Borrowing
	Slide 65: Borrowing
	Slide 66: Borrowing
	Slide 67: Borrowing
	Slide 68: Borrowing
	Slide 69: Borrowing
	Slide 70: Borrowing
	Slide 71: Borrowing
	Slide 72: Borrowing
	Slide 73: Borrowing
	Slide 74: Borrowing
	Slide 75: Borrowing
	Slide 76: Borrowing
	Slide 77: Borrowing
	Slide 78: Borrowing
	Slide 79: Borrowing
	Slide 80: Borrowing
	Slide 81: Borrowing
	Slide 82: Borrowing
	Slide 83: Borrowing
	Slide 84: Borrowing
	Slide 85: Borrowing
	Slide 86: Borrowing
	Slide 87: Borrowing
	Slide 88: Borrowing
	Slide 89: Borrowing
	Slide 90: Borrowing
	Slide 91: Borrowing
	Slide 92: Borrowing
	Slide 93: Borrowing
	Slide 94: Borrowing
	Slide 95: Borrowing
	Slide 96: Borrowing
	Slide 97: Borrowing
	Slide 98: Borrowing
	Slide 99: Borrowing
	Slide 100: Borrowing
	Slide 101: Borrowing
	Slide 102: Borrowing
	Slide 103: Borrowing
	Slide 104: Borrowing
	Slide 105: Borrowing
	Slide 106: Borrowing
	Slide 107: Borrowing
	Slide 108: Borrowing
	Slide 109: Borrowing
	Slide 110: Borrowing
	Slide 111: Borrowing
	Slide 112: Borrowing

	Reborrowing
	Slide 113: Reborrowing
	Slide 114: Reborrowing
	Slide 115: Reborrowing
	Slide 116: Reborrowing
	Slide 117: Reborrowing
	Slide 118: Reborrowing
	Slide 119: Reborrowing
	Slide 120: Reborrowing
	Slide 121: Reborrowing
	Slide 122: Reborrowing
	Slide 123: Reborrowing
	Slide 124: Reborrowing
	Slide 125: Reborrowing
	Slide 126: Reborrowing
	Slide 127: Reborrowing
	Slide 128: Reborrowing
	Slide 129: Reborrowing
	Slide 130: Reborrowing
	Slide 131: Reborrowing
	Slide 132: Reborrowing
	Slide 133: Reborrowing
	Slide 134: Reborrowing
	Slide 135: Reborrowing
	Slide 136: Reborrowing
	Slide 137: Reborrowing
	Slide 138: Reborrowing
	Slide 139: Reborrowing
	Slide 140: Reborrowing
	Slide 141: Reborrowing
	Slide 142: Reborrowing
	Slide 143: Reborrowing
	Slide 144: Reborrowing
	Slide 145: Reborrowing
	Slide 146: Reborrowing
	Slide 147: Key takeaways

	Optimizations
	Slide 148: Optimizations
	Slide 149: Optimizations
	Slide 150: Optimizations
	Slide 151: Optimizations
	Slide 152: Optimizations

	Q&A
	Slide 153

