Rust programming
Course — 2

Gavrilut Dragos

Y= w b =

Prerequisite: String type
Ownership management
Borrowing & References
Reborrowing
Optimizations

Agenda for today

Prerequisite: String type

Prerequisite: String type

* For the purpose of this course, we need to quickly understand some
things about strings in Rust

* So....
* Rust type: String
* Format: Dynamic (can increase its size)
* Encoding: UTF-8
* Operations: addition, substring, find, ...

We will cover strings in more detail on another course, for the moment we will
learn a couple of things about object String that will be useful for the next
chapters.

Prerequisite: String type

* Let’s see some examples:

1. How to create a string (keep in mind that there are several ways to

create a string that we will cover in a different course).

Rust
fn main() {

let mut s: String = String::from("a string");

println!("s = {s}");

2. How to get the length of a string (via method [len())

Rust
fn main() {

let mut s: String = String::from("a string");

println!("len = {}", s.len());

Prerequisite: String type

* Let’s see some examples:

3. Concatenate strings (via operator #= or method .push_str(...))
Rust
fn main() {
let mut s: String = String::from("123");
s += "456";

123456789

s.push_str("789");
println! ("{s}");

4. How to obtain a substring (a slice) of a string via range op [..])

Rust
fn main() {

let s: String = String::from("ABCDEFG");

println! ("{}", &s[1..3]);

Prerequisite: String type

* Finally, keep in mind that strings in Rust are far more complex and
require a more in-depth analysis.

* However, for the current being, this explanation should be enough.

Ownership management

Ownership

* In Rust, every memory zone has ONE and ONLY ONE owner at a time.
* Every owner has a lifetime (it exists within a scope).

 When an owner goes out of scope (its lifetime is over) the memory
zone is freed (“freed” in this context has a different meaning — based
on where that memory zone lies on : stack , heap or global).

Ownership

* As a rule, every variable (local / global) or a parameter can be
considered the owner for the memory zone it represent.

* Let’s analyze the following case:

Rust Stack of function main
Offset Content (4 bytes alignment)
100.000 ? ? ? ?
99.996 ? ? ? ?
99.992 ? ? ? ?

99.988 ? ? ? ?

Ownership

* As a general consent, every variable (local / global) or a parameter
can be considered the owner for the memory zone they represent.

* Let’s analyze the following case:

Rust Stack of function main
Offset Content (4 bytes alignment)
100.000 ? ? ? ?
395:596 10 0 0 0
99.992 ? ? ? ?

99.988 ? ? ? ?

Ownership

* As a general consent, every variable (local / global) or a parameter
can be considered the owner for the memory zone they represent.

* Let’s analyze the following case:

Rust Stack of function main
Offset Content (4 bytes alignment)
100.000 ? ? ? ?
10 0 0 0
99.992 ? ? ? ?
99.988 ? ? ? ?

* We can say that:
* The memory from offset 99.996 to 100.000 is owned by variable sum

Ownership

* Let’s analyze another case:

Rust m Memory Type

fn main() {
let mut sz: u32

{

let mut s = String::from("abc");
s.push_str("456");

sz += s.len() as u32;
println! ("{s}");

}

println!("{sz}");

Ownership

* Let’s analyze another case:

Rust m Memory Type

fn main() { 52 Stack (4 bytes)
let mut sz: u32

{

let mut s = String::from("abc");
s.push_str("456");

sz += s.len() as u32;
println! ("{s}");

}

println!("{sz}");

Ownership

* Let’s analyze another case:

Rust m Memory Type

fn main() { Sz Stack (4 bytes)
let mut sz: u32
{ S Stack (12 or 24 bytes) and Heap (3 bytes)
let mut s = String::from("abc");
s.push_str("456");
sz += s.len() as u32;
println! ("{s}"); —o chars Ptr to heap where the the UTF-8 text lies
¥ len usize (4 or 8 bytes)

println!("{sz}");

capacity usize (4 or 8 bytes)

1abc

* String internal structure is subject to change (this is an academic representation to
better explain how ownership works).

Ownership

* Let’s analyze another case:

Rust m Memory Type

fn main() { Sz Stack (4 bytes)
let mut sz: u32
{ S Stack (12 or 24 bytes) and Heap|(6 bytes)l
let mut s = String::from("abc");
s.push str("456");
sz += s.len() as u32;
println! ("{s}"); —o chars Ptr to heap where the the UTF-8 text lies
¥ len usize (4 or 8 bytes)

println!("{sz}");

capacity usize (4 or 8 bytes)

* A new space of 6 characters is allocated on the heap “

The original text (“abc”) is copied in the new location BEIE

The new string (“456”) is added after “abc”

==abc456|

The old (3 bytes) space from the heap is freed

Lifetime of “s”

* Let’s analyze another case:

Rust
fn main() {
let mut sz: u32

{

let mut s = String::from("abc");
s.push_str("456");

sz += s.len() as u32;
println!("{s}");

}
println!("{sz}");

Ownership

m Memory Type

Sz Stack (4 bytes)

S Stack (12 or 24 bytes) and Heap|(6 bytes)l

—o chars Ptr to heap where the the UTF-8 text lies
len usize (4 or 8 bytes)

capacity usize (4 or 8 bytes)
2?07

==at)c 4556|

* Let’s analyze another case:

Ownership

Rust m Memory Type

fn main() { <7
let mut sz: u32
{ S
let mut s = String::from("abc");
s.push_str("456");
sz += s.len() as u32;
println! ("{s}");

}
println!("{sz}");

o_n”

* Freeing “s” means:

* Free all heap memory associated if it

e Clear stack memory where len, capacity and chars pointer
were stored.

Stack (4 bytes)
Stack (12 or 24 bytes) and Heapl(O bytes)l

chars Null-pointer (data is deallocated)
len usize (4 or 8 bytes)

capacity usize (4 or 8 bytes)

2?7

?PPP?PPR?

Ownership

* Let’s analyze another case:

Rust m Memory Type

fn main() { Vi Stack (4 bytes)
let mut sz: u32
{ S Stack{12-or 24 -bytes}-and Heap{0-bytes)
let mut s = String::from("abc");
s.push_str("456");

sz += s.len() as u32;
println! ("{s}");

}

println!("{sz}");

* At this point 8" is no longer valid. This means that the memory it owns is no
longer available, nor is the access of variable s”. In fact, any usage of [s” variable
in this point will be considered a compiler error.

Ownership

* Let’s analyze another case:

Rust m Memory Type

fn main() { oz Stack(4-bytes]
let mut sz: u32 ;

{ = Stack{12-or 24 -bytes}-and Heap{0-bytes)
let mut s = String::from("abc");
s.push_str("456");

sz += s.len() as u32;
println! ("{s}");

Lifetime of “sz”

¥

println! ("{sz}");

At this point, the scope of “sz” has ended and as such it is freed (all stack space is
cleared).

Ownership

* Let’s analyze another case:

Rust C representation

fn main() { void main() {
let mut sz: u32 unsigned int sz

{ {

let mut s = String::from("abc");
s.push_str("456");

char* s = new char[4] {"abc"});

delete []s;
s = NULL;

sz += s.len() as u32;
println! ("{s}");

}

println!("{sz}");

* Asimilar “C” code implies freeing the heap manually. If this action would have

not been performed, the memory allocated by “s” remains allocated (a bug often
RN <rmemory leaic->)

Ownership

* Let’s analyze another case:

Rust C++ representation (from C++11)
fn main() {
let mut sz: u32

{

void main() {
unsigned int sz

{

let mut s = String::from("abc");
s.push_str("456");

unique ptr<char[]> s (new
sz += s.len() as u32;
println! ("{s}");

char[4] {"abc"});

}
println!("{sz}");

* Modern C++ has a type of allocation similar to what Rust has (called unigue_ptr)
that behaves in a similar manner.

Ownership

* What is the problem with the following C/C++ code ?
C

void main() {
char* s1 = new char[4]{"abc"};
char* s2 = sl;

delete []sl; sl = nullptr;
printf("%s\n",s2);

Ownership

* What is the problem with the following C/C++ code ?

c Stack [e

void main() {
char* s1 new char[4]{"abc"};
char* s2 sl;

delete []sl; sl = nullptr;
printf("%s\n",s2);

* Let’s run this code step by step ...

* What is the problem with the following C/C++ code ?

C B

.]]

void main() { 100 sl (pointer) |
char* s1 new char[4]{"abc"};
char* s2 sl;

96

delete []sl; sl = nullptr; 92
printf("%s\n",s2); 38

Ownership

Heap

* What is the problem with the following C/C++ code ?

C EXN

100 s1 (pointer)

void main() {

char* si new char[4]{"abc"};
char* s2 sl; I

s2 (pointer)

delete []sl; sl = nullptr;
printf("%s\n",s2);

 What is the problem at this point ?

Ownership

Ownership

* What is the problem with the following C/C++ code ?

main() { 100 sl (pointer) ——

* 51 new [4]{"abc"}; :
* g2 s1; 96 s2 (pointer) |— abc

delete []sl; s1 = nullptr; 92
printf("%s\n",s2); 38

 What is the problem at this point ?

Both “s1” and “s2” point to the same memory location. Or in other

words, for a specific memory address we have TWO OWNERS.

Ownership

* What is the problem with the following C/C++ code ?

c Stack N Heap

void main() { 100 s1 (null)
char* s1 new char[4]{"abc"};

char* s2 = si; 96 s2 (pointer) 2?7
delete []sl; sl = nullptr; 92
printf("%s\n",s2); 38

* “s1” pointer is deleted = and this translates that the memory zone
that was allocated in the Heap to store the content for “s1” is freed as
well.

Ownership

* What is the problem with the following C/C++ code ?

C Stack [Hean
void main() { 100 s1 (null)
char* sl1 = new char[4]{"abc"}; _
char* s2 = s1; 96 s2 (pointer) A
delete []sl; sl = nullptr; 92
printf("%s\n",s2); 38

At this point, printf will try to access the content of “s2” that now
points to a memory zone that was already freed from the previous
line.

* The behavior is undefined, and it is likely to produce a crash !!!

Ownership

* What is the problem with the following C/C++ code ?
C

void main() {
char* s1 new char[4]{"abc"};
char* s2 sl;

delete []sl; sl = nullptr;
printf("%s\n",s2);

* The main issue from this code is that the assignment ’”
creates two owners (both 81 and §2 point to the same memory
address)

Ownership

* So what can we do to make this code safe ?
C

void main() {
char* s1 new char[4]{"abc"};
char* s2 sl;

delete []sl; sl = nullptr;
printf("%s\n",s2);

* The main issue is how we understand the assignment (”’). The worst
thing we can do is to duplicate the pointer (make two owners).

» Rust has a concept (called trait) that for the moment can be considered as a
property list for each type that explain how certain operations can be performed.

* For this particular example, the traits that are important are Copy and Move

Ownership

Disclaimer:

 Move trait does not exist in Rust (it is considered by default as something to be
used if the trait Copy is not present).

* However, for the purpose of the next slides, we will consider that this trait
(Move) exists (this will allow us to easily explain how some decisions in Rust are
being made by the compiler).

Copy vs Move operations

Let’s consider that we have a type (called Student) and we write a statement like in the following way:

let mut s1:Student = ..; MathGrade = type u8
let mut s2:Student;

Rust
fn main() {

EnglishGrade = type u8
s2 = sl;

Name = heap buffer

What happens when s2 is assigned with the value s1 ?
It depends on some traits that the object of type Student has. A trait (at this point) can be considered a
property defined as a function with a specific purpose (in reality a trait is more similar to an interface).

If type Student has the trait Copy then Rust will compile the statement in a specific way, while if
the Student has the trait Move, Rust will compile things differently.

What does Copy operation means

Let’s see what - trait implies for ;

MathGrade =? MathGrade =9
EnglishGrade = ? EnglishGrade = 10
Name = <none> or <null> Name —> a pointer to address 100.000

m

100.000

What does Copy operation means

Let’s see what - trait implies for ;
2

MathGrade E < 0 MathGrade =9
EnglishGrade = ? EnglishGrade = 10
Name = <none> or <null> Name > a pointer to address 100.000
Mor lolilz s
100.000
Steps:

1. Bitwise copy the value of s1.MathGrade into s2.MathGrade

What does Copy operation means

Let’s see what - trait implies for ;
2

MathGrade =9 MathGrade =9

EnglishGrade = < a EnglishGrade = 10
Name = <none> or <null>

Name > a pointer to address 100.000

m

100.000

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade

What does Copy operation means

Let’s see what - trait implies for ;

EN
MathGrade =9 MathGrade =9
EnglishGrade = 10 EnglishGrade = 10

Name —>Ja pointer to address 200.000 | < e Name > a pointer to address 100.000

Rove s il
200 000 ? 100.000

Steps:

1. Bitwise copy the value of s1.MathGrade into s2.MathGrade

2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade

3. Allocated 4 bytes to a new location on the heap and assign s2.Name pointer to that location

What does Copy operation means

Let’s see what - trait implies for ;
2

MathGrade =9 MathGrade =9
EnglishGrade = 10 EnglishGrade = 10
Name = a pointer to address 200.000 Name > a pointer to address 100.000

m

o
Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade

2.
3.
4

Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade
Allocated 4 bytes to a new location on the heap and assign s2.Name pointer to that location
Bitwise copy 4 bytes from address 100.000 (s1.Name) to address 200.000 (s2.Name)

What does Move operation means

Let’s see what Move trait implies for ;

MathGrade = ? MathGrade =9
EnglishGrade = ? EnglishGrade = 10
Name = <none> or <null> Name —> a pointer to address 100.000

m

100.000

What does Move operation means

Let’s see what Move trait implies for ;

R "

MathGradeE < 0 MathGrade
EnglishGrade = ? EnglishGrade = 10
Name = <none> or <null> Name > a pointer to address 100.000
Mor lolilz s
100.000
Steps:

1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade

What does Move operation means

Let’s see what Move trait implies for ;

EN

MathGrade =9 MathGrade = ?
EnglishGrade = < a EnglishGrade
Name = <none> or <null> Name > a pointer to address 100.000
Mot Lolilals
100.000
Steps:

1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade
2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade , and clear the value of s1.EnglishGrade

What does Move operation means

Let’s see what Move trait implies for ;

EN

MathGrade =9 MathGrade =?
EnglishGrade = 10 EnglishGrade = ?
a pointer to address 100.000 | < 9 Name > a pointer to address 100.000
Lot Lol L
100.000

Steps:
1. Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade

2. Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade , and clear the value of s1.EnglishGrade
3. Assign s2.Name pointer to the offset 100.000

What does Move operation means

Let’s see what Move trait implies for ;

EN

MathGrade =9 MathGrade =?
EnglishGrade = 10 EnglishGrade = ?

Name = a pointer to address 100.000 o » Name 2{None / null

m

100.000

Steps:

1.

2.
3.
4

Bitwise copy the value of s1.MathGrade into s2.MathGrade, and clear the value of s1.MathGrade
Bitwise copy the value of s1.EnglishGrade into s2.EnglishGrade , and clear the value of s1.EnglishGrade
Assign s2.Name pointer to the offset 100.000

Clear the value of pointer s1.Name so that only one object points to the offset 100.000

Ownership

* So, what can we do to make this code safe ?
C (undefined behabior)

void main() {
char* s1 = new char[4]{"abc"};
char* s2 = sl;

delete []sl; sl = nullptr;
printf("%s\n",s2);

C (MOVE) C (COPY)

void main() { void main() {
char* sl1 = new char[4]{"abc"}; char* sl1 = new char[4]{"abc"};
char* s2 = sl1; sl = nullptr; char* s2 = strdup(sl);

delete []sl; s1 = nullptr; delete []sl; s1 = nullptr;
printf("%s\n",s2); printf("%s\n",s2);

Ownership

e By default, Rust uses MOVE operation for all of its object (except for
the case where COPY trait is set up for on object)

 Basic types (u8..u128, i8..i128, bool, isize, usize, char) have the COPY
trait.

Advantages:

1. No dangling pointers
2. No data races

Ownership

When ownership rules applies:

1. Whenever there is an assighment
X =YV

2. Whenever a Earameter is passed to a function

3. Whenever a value is returned from a function
v = my_function(x)

Ownership

Let’s see some examples:
Rust Rust

fn main() { fn main() {
let s: String = String::from("AAA"); let s: String = String::from("AAA");
let s2 = s; let s2 = s;
println! ("{s2}"); println! ("{s}");

Compiles ok Compile error

m error[E0382]: borrow of moved value: s

Ownership

Let’s see some examples:
Rust Rust

fn main() { fn main() {
let s: String = String::from("AAA"); let s: String = String::from("AAA");
let s2 = s; let s2 = s;
println! ("{s2}"); println! ("{s}");

error[E@382]: borrow of moved value: "s°
--> src\main.rs:5:16

|
3

| let s:String = String::from("AAA");

| - move occurs because s has type "String , which does not implement the “Copy trait
| let s2 = s;

| - value moved here

|

|

5

println! ("{s}");
N value borrowed here after move

Ownership

Let’s see some examples:

Rust
fn print_s(s:) {

. In this particular case, calling print_s will
println! ("{s}");

transfer the ownership from the variable “s”
in main() { from function main, to parameter “s” from
let s: : :From("AAA"); function|print_s: Once function print_sfis over,
print_s(s); parameter “s” lifetime is over as well, and its
println!("{s}"); content is destroyed.

error[E@382]: borrow of moved value: "s°
--> src\main.rs:9:16

| let s:String = String::from("AAA");

| - move occurs because "s has type "String , which does not implement the "Copy trait
| print_s(s);

| - value moved here

| println! ("{s}");

| ~ value borrowed here after

Ownership

Let’s see some examples:

Rust

fn print_s(s: String) -> String {
println!("{s}");
return s;

}
fn main() {

let mut s: String = String::from("AAA");
= print_s(s);
println! ("{s}");

* One solution to the above problem is to return the value of
parameter “s” from function print_s and assigned it back to the

variable “s” from function main (its original owner).

Borrowing

Borrowing

* Even if ownership rules are clear, there are cases where coding under

this rules is difficult. Let’s look at the following case:

Rust

fn compute len(s: String) -> usize {
return s.len();

}
fn main() {

let s = String::from("123");
let 1 = compute_len(s);
println! ("The length of " {s}°

* |s this code correct ?

Borrowing

* Even if ownership rules are clear, there are cases where coding under

this rules is difficult. Let’s look at the following case:
Rust

fn compute len(s: String) -> usize {

return s.len();

}

fn main() { The answer is NO !
let s = String::from("123");
let 1 = compute len(s);

printIn! ("TlEmer

error[E@382]: borrow of moved value: "s
--> src\main.rs:8:31

|
6 | let s = String::from("123");
| - move occurs because s has type "String , which does not implement the "Copy trait
| let 1 = compute_len(s);
| - value moved here
|
|

8

println!("The length of “{s} is {1}");
A value borrowed here after move

Borrowing

* So how can we solve this kind of cases ?

* Most programming languages have a concept (called reference) that
represent a valid pointer to an object of a specific type.

* In Rust, we call t
does not imply c
object has been

nis form borrowing (the reason is that the reference
hange of ownership = thus we can consider that an

oorrowed, and it will be returned to its owner).

* Just like in C or C++, a reference in Rust is denoted by the symbol [&.
Similarly, a dereference process can be performed with the symbol | *

Borrowing

* Let’s see how the previous code changes if we are to use references:
Rust Rust

fn compute len(s: String) -> usize { fn compute len(s:|&String) -> usize {
return s.len(); return s.len();
} }
fn main() fn main() {
let s = String::from("123"); let s = String::from("123");
let 1 = compute_len(s); let 1 = compute_len(&5);
println! ("The length of “{s} is {1}"); println!("The length of "{s} is {1}");

Compile error Compiles ok

error[E@382]: borrow of moved value: s

The length of 123 is 3

Borrowing

* By default, a reference in Rust is immutable (meaning you can read its

value, but you can not modify it).
Rust

fn compute len(s: &String) -> usize {
return s.len();

}
fn main() {

let s = String::from("123");
let 1 = compute _len(&s);
println! ("The length of "{s} is {1}");

C++
#include <string>
size t compute len(const std::string& s) {
return s.length();
}
void main() {
const std::string s = "abc";
auto 1 = compute len(s);
printf("The length of "%s is %d",
s.c_str(),(int)l);

Borrowing

* A reference in Rust can be:

* Immutable =2 denoted by the usage of & (default
fn compute_len(s: &String) -> usize {..}

 Mutable = denoted by the usage of &mut

fn compute_len(s: String) -> usize {..}

However, the question that comes into everyone's mind is:
What is the purpose of ownership if we have references ?

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool { push

return s.is_empty(); iUb
ea

} let s:String = String::
fn main() { mov
let s: String=String::from("123"); 163
. ea
let ref_to_s: &String = &s;

mov

if isEmpty(ref_to_s) { mov
println! ("Empty string");

mov
} else { let ref_to_s:&String =
println! (" {s} 1is not empty"); mov
}

* Let’s analyze the assembly listing ...

rbp

rsp,0EOh

rbp, [rsp+80h]

from("123");

gword ptr [rbp+58h],OFFFFFFFFFFFFFFFEN
rdx, []

rcx, [s]

gword ptr [temp ptr_to s],rcx

r8d,3

rcx,qword ptr [temp ptr to s]
&s;
gword ptr [ref_to_s],rcx

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool {
return s.is _empty();

} let s:String = String::
TUOmET T putin “rdx” register the offset where the oy
constant string “123” lies in memory Tea

lLL I =1 -\ - e At W -I-Ilb e u.’, mov

if isEtheref_to_s) { mov
println! ("Empty string");
} else { let ref_to_s:&String =

mov

println! (" {s} is not empty"); mov
}

* Let’s analyze the assembly listing ...

from("123");

agword ptr [rbp+58h],0FFFFFFFFFFFFFFFEh
rdx, []

rcx, [s]

gword ptr [],rcx

r8d,3

rcx,qword ptr []
&s;
gword ptr [

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool {
return s.is _empty();

} let s:String = String::

fn main() {
1 Putin “rcx” the stack offset where variable

1 should be created.

“_n
S

if isEmpty(ref_to_s) {
println! ("Empty string");
} else { let ref_to_s:&String = &s;

println! (" {s} 1is not empty");
}

* Let’s analyze the assembly listing ...

mov
lea
lea
mov
mov

mov

mov

from("123");

gword ptr [rbp+58h],0FFFFFFFFFFFFFFFER
rdx. [1

rcx, [s]

gword ptr [],rcx

r8d,3

rcx,qword ptr []

gword ptr [

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool {
s.is_empty();

} let s:String = String::from("123");

N Maistlned] mov
- Make of copy (also in stack) for the “s” offset. lea

1 We need to do this because there is no Lea

mov

guarantee that RCX will not be modified when mov

the call to Strig::from occurs.
1 let ref_to s:&String = &s;

mov

println! (" {s} is not empty"); mov

* Let’s analyze the assembly listing ...

gword ptr [rbp+58h],0FFFFFFFFFFFFFFFEN
rdx, []
rcx,[s]

gword ptr [],rcx

rsd, 3

rcx,qword ptr []

gword ptr [

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool {
return s.is _empty();

} let s:String = String::

fn main() {
let s: String=String::from("123");
let ref to s: &String = &s;

it 15 Putin r8dithe size of string “123((3 bytes)
println!("Empty string”);
} else { let ref_to_s:&String = &s;

println! (" {s} 1is not empty");
}

* Let’s analyze the assembly listing ...

mov
lea
lea
mov
mov

mov

mov

from("123");

gword ptr [rbp+58h],O0FFFFFFFFFFFFFFFEh
rdx, []

rcx, [s]

aword ptr [temp ptr to sl.rcx

r8d,3

rcx,qword ptr [temp ptr to s]

gword ptr [ref_to_s],rcx

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:
Rust Rust

fn isEmpty(s: &String) -> bool {
return s.is _empty();

} let s:String = String::from("123");

fn main() {
let s: String=String::from("123");
let ref to s: &String = &s;
- Call “String::from” , allocate memory for
} string pointer and copy “123” into it.

}

“_n
S

priﬁtln!("‘{s}‘ is not empty");

* Let’s analyze the assembly listing ...

mov gword ptr [rbp+58h],0FFFFFFFFFFFFFFFEN
lea rdx, []

lea rcx,[s]

mov gword ptr [],rcx

mov r8d, 3

mov rcx,gword ptr |

¢ ref _to s:&String = &s;

mov gword ptr [

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool {
return s.is _empty();

} let s:String = String::from("123");

fn main() {
let s: String=String::from("123");
let ref _to_s: &String = &s;
1f icFmntv(reaf +tn c) S
Restore the value of “RCX” to point to the

} stack offset of variable “s”

[L I ECEA _) v o “hipCy VAS)

* Let’s analyze the assembly listing ...

mov
lea
lea
mov
mov

mov

qword ptr [rbp+58h],@FFFFFFFFFFFFFFFEh
rdx, []

rcx, [s]

gword ptr [],rcx

r8d, 3

rcx,qword ptr []

re? to s:&String = &s;

mov

gword ptr [

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Rust

fn isEmpty(s: &String) -> bool {
return s.is _empty();

} let s:String = String::
fn main() { mov
let s: String=String::from("123"); 1ea
ea

let ref _to_s: &String = &s; mov

if isEmpty(ref_to_s) { mov
nrintlnl ("EFmntv ctrinc").

0 9 mov
Copy “rcx“ value to “ref to_s®wvariable. Since reE to S:85tring =

RCX is the offset in stack for variable “s”, this mov
actually makes “ref to_s” to be a pointer to “s”.

* Let’s analyze the assembly listing ...

from("123"

gword ptr
rdx, [
rcx, [s]
gword ptr
r8d, 3

rcx, qword
&s;
gword ptr

);
[rbp+58h],0FFFFFFFFFFFFFFFEN
]

],rcx

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Stack (8 bytes alignment)
fn isEmpty(s: &String) -> bool {

return s.is _empty();

Offset Variable Value

} 100 ?
fn main() { 92 s.chars ?
let s: String=String::from("123");
let ref _to_s: &String = &s; 84 s.len ?
if iskmpty(ref_to_s) { 76 s.capacity ?
println! ("Empty string");
} else { 68 :
println! (" {s}* is not empty"); 60 ref tos ?

}

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Stack (8 bytes alignhament)
Offset Variable Value
100 ? 123
92 s.chars Ptr to heap: I
let s: String=String::from("123");
84 s.len 3
76 s.capacity 3

68 ?
60 ref to_s ?

Borrowing

* Let’s discuss a couple of scenarios to better understand the
relationship between references and ownership:

Rust Stack (8 bytes alignament)
Offset Variable Value

100 ? 123
E s.chars Ptr to heap:
let ref to s: &String = &s; 84 s.len 3
76 s.capacity 3
68 ?

60 ref to_s 92

Borrowing

* In Rust, a reference (a borrow value) is a pointer to the original object
(similar to how C/C++ treat references)

* This means that as long as the original object is valid, a reference will be
valid as well

Because of this Rust has several rules related to references:

1. At one given moment of time, there can be only one mutable reference
to an object

2. At any given moment of time, there can be multiple immutable
references to an object

3. Case 1 and 2 are exclusive meaning that if you have a mutable
reference, you can not have another immutable one and vice-versa.

Borrowing

Let’s see some cases that reflect how these references work.

1. Multiple immutable references & immutable object

Rust
fn main() {
let s: String = String::from("123"); 123,123,123,123
let ref to s 1: &String = &s;
let ref to s 2: &String = &s;
let ref to_ s 3: &String = &s;
println! ("{s},{ref_to s 1},{ref to s 2},{ref _to s 3}");

Compiles ok

Borrowing

Let’s see some cases that reflect how these references work.

2. One mutable reference & immutable object
Rust

fn main() {
let s: String = String::from("123");
let mut_ref_to_s: &mut String = &mut s;
println!("{s},{mut_ref to s}");

error[EG596]: cannot borrow "s° as mutable, as it is not declared as mutable
--> src\main.rs:4:36

|
3 | let s:String = String::from("123");

| - help: consider changing this to be mutable: "mut s’
| let mut_ref_to_s:&mut String = &mut s;

I

cannot borrow as mutable

4

Borrowing

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object
Rust

fn main() {
let mut s: String = String::from("123");
let mut_ref_to_s: &mut String = &mut s;
println!("{s},{mut_ref to s}");

error[E@502]: cannot borrow s as immutable because it is also borrowed as mutable
--> src\main.rs:5:16

4 let mut_ref to s:&mut String = &mut s;

mutable borrow occurs here

mutable borrow later used here

immutable borrow occurs here

|
|
|
5 | println! ("{s},{mut_ref to s}");
| A
|
|

Borrowing

Let’s see some cases that reflect how these references work.
3. One mutable reference & mutable object

main() {

s:String = String::from("123"); Let’s explain what happens in this case:
mut ref to s:&mut String = &mut s; 1. When printin! macro is trying to use the
("{s}, {mut_ref_to_s}"); object “s”, it tries to create an immutable
reference.

Error . However, at this moment of the execution
error[E@502]: cannot borrow "s° as immutable because it is als there already is an mutable reference
--> src\main.rs:5:16 available (hamely “mut_ref to_s”)
| let mut_ref to s:&mut String = &mut s; . As such, another one can not exists, and an
mutable borrow o error will be thrown.

4

mutable borrow later used here

immutable borrow occurs here

|
|
5 | println! ("{s},{mut_ref to s}");
| A
|
|

Borrowing

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object
Rust

fn main() {
let mut s: String = String::from("123");
let mut_ref to_s: &mut String = &mut s;

println! ("{mut_ref _to s}");
Compiles ok

println!("{s}");

Why is this example
working and using both

variables in a single
println doesn’t ?

123
123

Borrowing

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Rust

1 fn main() {
let mut s: String = String::from("123");

let mut_ref to_s: &mut String = &mut s;]_ Lifetime of
println! ("{mut_ref to s}"); mut_ref_to_s
println! ("{s}");

6 }
Let’s analyze this example:

* Variable “mut_ref to s” is created at line 3 and after line 4 it is no longer needed (used). As such it is
destroy after line 4. We can say that its lifetime consists in 2 lines (3 and 4).

* When line 4 gets executed, there is only one mutable reference to object “s” — thus the rules are not
broken, and no error is thrown

Borrowing

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Rust

1 fn main() {
let mut s: String = String::from("123");

let mut_ref to_s: &mut String = &mut s;]_ Lifetime of Lifetime of
println! ("{mut_ref to s}"); mut_ref to_s S
println! ("{s}");

6 }
Let’s analyze this example:

* Variable “mut_ref _to_s” is created at line 3 and after line 4 it is no longer needed (used). As such it is
destroy after line 4. We can say that its lifetime consists in 2 lines (3 and 4).

* When line 4 gets executed, there is only one mutable reference to object “s”
broken, and no error is thrown

e Variable “s” has a lifetime that starts on line 2 and ends on line 5. However, when line 5 gets
executed, and a new immutable reference is created, variable “mut_ref to_s” has already been
discarded and as such we would only have one reference and program compiles.

— thus the rules are not

Borrowing

Let’s see some cases that reflect how these references work.

3. One mutable reference & mutable object

Rust

fn main() {

let mut s: String = String::from("123");

let mut_ref_to_s: &mut String = &mut s; . _ -
println! ("{s}"); Following the previous logic, if we reverse the order of

println! ("{mut_ref to s}"); the println! macro, we change the lifetime of variable “s”
and “mut_ref to_s” and an error will be triggered !

error[E@502]: cannot borrow s as immutable because it is also borrowed as mutable
--> src\main.rs:5:16

4

)

6

let mut_ref_to_s:&mut String = &mut s;
mutable borrow occurs here
println!("{s}");
A immutable borrow occurs here
println! ("{mut_ref to s}");
mutable borrow later used here

Borrowing

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Rust
fn main() {
let mut s: String = String::from("123"); 123,123,123,123
let ref_to_s 1: &String = &s;
let ref_to_s 2: &String = &s;
let ref_to_s 3: &String = &s;

println! ("{s},{ref_to s 1},{ref to s 2},{ref _to s 3}");

Compiles ok

Borrowing

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Rust
fn main() {
let mut s: String = String::from("123"); 123,123,123,123
let ref to s 1: &String = &s; 123A larger string
let ref _to_ s 2: &String = &s;
let ref _to_s 3: &String = &s;
println! ("{s},{ref_to s 1},{ref to s 2},{ref _to s 3}");
s += "A larger string";
println! ("{s}");

Compiles ok

Borrowing

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Rust

fn main() {
let mut s: String = String::from("123");
let ref to s 1: &String = &s;
let ref _to_ s 2: &String = &s;

let ref _to_s 3: &String = &s;

println! ("{s},{ref_to s 1},{ref to s 2},{ref _to s 3}");
s += "A larger string";

println! ("{s},{ref_to s 1},{ref to s 2},{ref _to s 3}");

What will happen in this case ?

Borrowing

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Rust

fn main() {
let mut s: String = String::from("123");
let ref to s 1: &String = &s;
let ref _to_ s 2: &String = &s;
let ref _to_s 3: &String = &s;
println! ("{s},{ref_to s 1},{ref to s 2
s += "A larger string";

pr‘1nt1n!({S}J{Pef_tO_S_l}J{P' error[E@502]: cannot borrow "s°
--> src\main.rs:8:5

as mutable because it is also borrowed as immutable

let ref_to_s_1:&String = &s;

s += "A larger string";

-- immutable borrow occurs here

ANNNNNNNNNNNNNNNNNNNNN mutable borrow occurs here
println! ("{s},{ref_to_s 1},{ref_to_s 2},{ref_to s 3}");

immutable borrow later used here

Borrowing

Let’s see some cases that reflect how these references work.

4. Multiple immutable reference & mutable object

Rust

fn main() {

let mut s:String = String::from("123");

let ref_to s 1:&String = &s;

let ref_to s 2:&String = &s;

let ref_to s 3:&String = &s;
println!("{s},{ref_to s 1},{ref to s 2},{ref to s 3}");
s += "A larger string";
println!("{s},{ref_to s 1},{ref to s 2},{ref to s 3}");

(@]

) o

E ()
[:m [

[)

= (O]

ref to s 1

Elletlme 0|

ref to s 2
ref_to_s 3

Elletlme 0|

When reaching line 6, a mutable reference is needed to perform that
assignment (that changes the content of object “s”). Since at line 6
there already are 3 immutable references, the compiler will fail.

Borrowing

When analyzing the previous examples, there are some questions that
need to be answered:

1. Why the previous assignment implies _

?

2. Immutable references can not change the value of an object. If the
—value of the object changes, _
?

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

To answer this question, let’s look on how “+=“ operator is defined !
Rust (source String.rs)

[push_str J[String::push str]
)
= "stringaddassign", = "1.12.0")
impl AddAssign<&str> for String {

fn add_assign(&mut self, other: &str) {
self.push_str(other);

}

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

To answer this question, let’s look on how “+="“ operator is defined !
Rust (source String.rs*)

For the moment let’s ignore the attributes (lines
fn add_assign(&mut self, other: &str) { that start with # (pound sign) character) and the

self.push_str(other); whole impl structure as we will discuss this later.

}

Let’s focus on the add_assign method instead !

* Implementation of operator += for String class may vary in time (from version to version)

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

To answer this question, let’s look on how “+="“ operator is defined !
Rust (source String.rs*)

Notice that the first parameter of this function is a
mutable reference (denoted with the name self).
To simply put it, self is the equivalent of C++ this
and must be provided to every non-static method
calls. And self is a reference (either mutable or
immutable) !

add_assign|&)
.push_str(other);

* Implementation of operator += for String class may vary in time (from version to version)

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

This means that the following line:

s += "A larger string";
is equivalent to the next one:

add _assign(&mut s , "A larger string");

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

Consider that any class non-static method implies creating a reference
- A mutable reference if that method changes something in the class

- An immutable reference if that method only reads information from
the class

These references will respect references rules (either only one mutable
or multiple immutable).

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

Let’s consider the following example:
Rust
fn main() {

let mut s: String = String::from("123");

let ref to s 1: &String = &s;

let ref to s 2: &String = &s;

let 1 = s.len();

println! ("{s},{ref_to s 1},{ref to s 2}, {1}");

Compiles ok

123,123,123, 3

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

Let’s consider the following example:
Rust

let 1 =[s.len(); What happens when we call s.len() ?

Compiles ok

123,123,123, 3

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

Let’s consider the following example:
Rust

Rust (String.
_)| >

1 = s.len(); What happens when we call s.len() ? .vec.len()

Compiles ok len method requires an immutable reference.

Since at that point we only have two other
immutable reference, the code is safe and will

123,123,123, 3

be allowed to compile.

Borrowing

1. Why SRS -{-IeaEd ek Nef-2ld implies creating a mutable
reference ?

) . . .
LReuEtS consider the fO”OWIng example' len method requires an immutable reference.

However, when s.len() is compiled, an
fn main() { immutable reference is required, but ... there

let mut s: = tifrom("123%); already exists a mutable reference thru the
let mut ref to s: &mut = &mut s; variable “mut_ref to_s”

leJ.c 1 = S.’.len()3 N Since there can not be a mutable and
println!("{s},{mut_ref to s},{1}");] _
immutable references at the same time, the

compiler will throw an error.

error[E@502]: cannot borrow “s° as immutable because it is also borrowed as mutable
--> src\main.rs:5:13

4 let mut_ref_to_s:&mut String = &mut s;
------ mutable borrow occurs here
let 1 = s.len();
ANAAAAAN immutable borrow occurs here
println! ("{s},{mut_ref _to s},{1}");
____________ mutable borrow later used here

6

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust
fn main() {
let mut s: String = String::from("123");
let ref_to_s 1: &String = &s;
let ref_to_s 2: &String = &s;
let ref_to_s_3: &String = &s;
println! ("{s},{ref _to s 1},{ref to s 2},{ref _to s 3}");
s/ +=|"A larger string";

In!("{s},{ref_to s 1},{ref_to s 2},{ref to s 3}");

Compile error
error[E@502]: cannot borrow
s’ as mutable because it is
also borrowed as immutable

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust

Stack (8 bytes alighament)

fn main() { Offset Variable Value
let mut s:String = String::from("123");
let ref_to_s 1: &String = &s; 100 4
let ref_to_s 2: &String = &s; 92 2
let ref_to_s_3: &String = &s;
println! ("{s},{ref_to s 1},{ref to s 2. 34 ?
s += "A larger string"; 76 2
println! ("{s},{ref_to s 1},{ref to s 2..
68 ?
Let’s analyze the stack of the program, if 60 ?
compilation would have been successful. 52 ?

44 ?

Borrowing

2. Now let's tackle the second question: Immutable references can not

change the value of an object. If the value of the object changes, why

can’t we have immutable references at that time ?

Rust

let mut s:String = String::from("123");

Let’s analyze the stack of the program, if
compilation would have been successful.

Stack (8 bytes alighament)

Offset Variable Value
92 s.len 3
84 s.capacity 3
76 ?
68 ?
60 ?
52 ?

44 ?

Heap

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust

let ref_to s 1: &String = &s;

Let’s analyze the stack of the program, if
compilation would have been successful.

Offset Variable

Heap

Value

Stack (8 bytes alighament)

s.chars Ptr to heap:
92 s.len 3
84 s.capacity 3
76 ref to_s 1 100
68 ?
60 ?
52 ?

44

?

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust

Offset

Variable

Heap

Value

Stack (8 bytes alighament)

s.chars Ptr to heap:
let ref to s 2: &String = &s; 92 s.len 3
84 s.capacity 3
76 ref to s 1 100
68 ref to s 2 100
Let’s analyze the stack of the program, if 60 ?
compilation would have been successful. 52 ?

44

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust

let ref_to s 3: &String = &s;

Let’s analyze the stack of the program, if
compilation would have been successful.

Heap

Value

Stack (8 bytes alighament)
Offset Variable

44

s.chars Ptr to heap:
92 s.len 3
84 s.capacity 3
76 ref to s 1 100
68 ref to s 2 100
60 ref to s 3 100
52 ?

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust Stack (8 bytes alignament) T
Offset Variable Value RN
100 s.chars Ptr to heap: e
92 s.len 18 SEEESEN
: n G
84 s.capacity 18* (estimated)
s += "A larger string"; 76 ref to s 1 100
68 ref to s 2 100
Let’s analyze the stack of the program, if 60 ref to_s_.3 100
compilation would have been successful. 52 ?

44

?

Borrowing

2. Now let's tackle the second question: Immutable references can not
hange the value of an object. If the value of the object changes, -

can't we have immutable references at that time

Rust

Has anything changed for one of the immutable
references ?

The answer is NO. All 3 immutable references
point to the same object (and could access that
object just like they could before s.chars data
member was changed).

Offset
100

92

84

76

68

60

52

44

Variable
s.chars
s.len
s.capacity
ref to s 1
ref to s 2

ref to s 3

Stack (8 bytes alighament)

Value

?

??

Ptr to heap: -I-P

18

123A
gEr
nG

| ar

stri

18%* (estimated)
100

100

100

?

?

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Rust
main() {
S: = ::from("123");
ref to s 1: & &s;
ref to s 2: & &s;
ref to s 3: & &s;

So ... if this code is

safe, why does not
Rust allow it ?

println!("{s},{ref to s 1},{ref to s 2
s += "A larger string";
println! ("{s},{ref_to s 1},{ref to s 2..

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, -
—?

To answer the last question, we need to look into another feature of
Rust, called slices |

Borrowing

2. Now let's tackle the second question: Immutable references can not
change the value of an object. If the value of the object changes, why
can’t we have immutable references at that time ?

Let’s analyze the following code:

Rust
fn main() {

let s: String = String::from("AABBBCC"); m

println!("{s},{slice of s}"); AABBBCC,BBB

Slices are very similar to std::string_view / std::u8string view from C++
(in the sense that they hold a pointer and a size).

Borrowing

Let’s see how the stack looks like in this case:
Rust

Stack (8 bytes alighament)

fn main() { Offset Variable Value

let s: = : :from("AABBBCC");
let slice_of_s = &s[2..5]; 100 ?
println! ("{s},{slice of s}"); 92 ?

84 ?

76 ?

68 ?

60 ?

52 ?

44 ?

Let’s see how the stack looks like in this case:

Rust

: :from("AABBBCC") |

Borrowing

Stack (8 bytes alighament)

Offset Variable
100 s.chars
92 s.len
84 s.capacity

Value

Ptr to heap:
7

7

AABBBCC|

76
68
60
52
44

?

Borrowing

Let’s see how the stack looks like in this case:
Rust

Stack (8 bytes alighament)

Offset Variable Value

let slice of s = &s[2..5]; 100 s.chars Ptr to heap: m
92 s.len 7
84 s.capacity 7 A A CC
76 slice_of s.ptr Ptrto heap
This part is in particular important: 68 _slice_of s.size 3
Notice that “slice_of_s” maintains 60 ?
a pointer within a memory that “s” 52 :

OWNnSs. 44 ?

Borrowing

So ... what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate

what execution will do to the stack): Stack (8 bytes alignament)
Rust Offset Variable Value m
fn main() { 100 ?
let mut s: String = String::from("AABBBCC"); 92 5
let slice of s = &s[2..5]; '
s.push_str("DDDDD"); 84 ?
println! ("{s},{slice of s}"); 76 5
68 ?
60 ?
52 ?

44 ?

Borrowing

So ... what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate

what execution will do to the stack): T —
Rust Offset Variable Value m
100 s.chars Ptr: AABBBCC|
let mut s: String = String::from("AABBBCC"); 92 slen 7
84 s.capacity 7
76 ?
68 ?
60 ?
52 ?

44 ?

Borrowing

So ... what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate

what execution will do to the stack): Sl (B e el e e
Rust Offset Variable Value m
100 s.chars Ptr: A A B BBICC
let slice of s = &s[2..5]; 26 | SlE /
84 s.capacity 7
76 slice_of s.ptr Ptr I
68 slice_of s.size 3 ‘
60 ?
52 ?

44

Borrowing

So ... what will happen if we change the previous code in the following
way (let’s assume that this code will compile under Rust and evaluate

what execution will do to the stack): L r——
Rust Offset Variable Value m
100 s.chars Ptr: PP
92 s.len 12
s.push_str("DDDDD"); 84 s.capacity 12 FA BBELHLCCD
76 slice_of s.ptr Ptr LDLDD
68 slice_of s.size 3
When the execution reaches this line, a new 60 ?
memory will be allocated for “s” and the 59 ?
previous one will be deallocated. The resultis ,, 5

that we get a dangling pointer from “slice_of s
that points to the original memory allocated from

o_n”
S

that is currently invalid.

Borrowing

In reality, Rust will not compile the next code and will throw the

following error:

Rust
fn main() {

let mut s: String = String::from("AABBBCC");
let slice of s = &s[2..5];

s.push_str("DDDDD");

println!("{s},{slice of s}");

error[E@502]: cannot borrow "s° as mutable because it is also borrowed as immutable
--> src\main.rs:6:5

let slice of s = &s[2..5];
- immutable borrow occurs here
s.push_str("DDDDD");
ANNNNNNNNNNNNNNNNAN mutable borrow occurs here
println!("{s},{slice_of_s}");
immutable borrow later used here

Borrowing

2. Now let's tackle the second question: Immutable references can not

change the value of an object. If the value of the object changes, -
—?

So ... returning to the original question, we can not have immutable
references and a mutable one at the same time, because there are
scenarios (like using a slice) that could lead to a dangling pointer !

Remarks: Slices are considered references as well !

Reborrowing

Reborrowing

Let’s evaluate the following scenario:
Rust
fn goo(y: &mut String) {

y.push('G");

}
fn foo(x: &mut String) {

x.push('-");
goo(x);
x.push('-");

}

fn main() {
let mut s = String::from("ABC");
let mut _ref _to s = &mut s;
foo(mut_ref to s);
mut_ref to s.push('!");
println! ("{s}");

Reborrowing

Let’s evaluate the following scenario:
Rust

The ownership rules clearly state that if we pass an
object to a function, we lose the ownership and as
such we can not use that object anymore after that.

foo(mut_ref to s);

mut_ref_to_s.push('!"); So ... why is this code WORKING ?

Reborrowing

The previous code works because Rust uses a different mechanism when
passing references to a function than when it passes an object.

While an immutable reference is COPY and a mutable one is MOVE,
when passing a mutable reference to a method, Rust uses another
concept called REBORROWING.

Reborrowing allows you to temporarily transfer access to a mutable
reference while keeping the original reference valid for later use.

Reborrowing

Let’s analyze the previous code from this new perspective:
Rust
fn goo(y: &mut String) {

y.push('G");

}
fn foo(x: &mut String) {

x.push('-");

goo(x);
x.push('-");

}
fn main() {

let mut s = String::from("ABC");
let mut _ref _to s = &mut s;
foo(mut_ref to s);
mut_ref to s.push('!");

println! ("{s}");

Reborrowing

Let’s analyze the previous code from this new perspective:
Rust

\We create mut_ref_to_s/{only ONE mutable
reference towards variable s)

let mut _ref _to s = &mut s;

Reborrowing

Let’s analyze the previous code from this new perspective:

foo(mut_ref to s);

We reborrow mut_ref to_s to function foo where it
will be used as “x” (we can look at this as we
temporary create an alias for mut_ref to_s|that is
called x, that can only be used within the function foo).

The rules of ownership are still valid, as we know for
sure that mut_ref to_s can only be used after function
foo ends

Reborrowing

Let’s analyze the previous code from this new perspective:

A similar logic applies in this case as well, we know that “x” from foo
will only be available after function goo ends and as such the
ownership rules are not broken.

What should be noticed in this example is that at any

given time, there is only ONE available to use mutable

au_n
)

reference towards object

Reborrowing

However, placing a reference in a structure follows the ownership rules:

struct MutRef<'a> { value: &'a mut String }

fn goo(x: MutRef) {
x.value.push('G");

}

fn foo(x: MutRef) {
x.value.push('-");
goo(X);
x.value.push('-");

}

fn main() {
let mut s = String::from("ABC");
let mut_ref _to s = MutRef { value:
foo(mut_ref _to s);
mut_ref to s.value.push('!");
println!("{s}");

Error

error[E@382]: borrow of moved value: “x°
--> src/main.rs:10:5

7 fn foo(x: MutRef) {

- move occurs because X has type

|

|

| “MutRef<' >, which does not implement the
| “Copy™ trait

--> src/main.rs:4:11
|
| fn goo(x: MutRef) {
| --- AANNAN this parameter takes ownership of
| the value

4

error[E@382]: borrow of moved value: "mut_ref to s’
--> src/main.rs:16:5

16 mut_ref to_s.value.push('!"');
AANNNANNANNNANNNNNN yyglue borrowed here after

[{{OAVAS

Reborrowing

As previously explained, we can not create more than one mutable
reference towards am object (in this example, mut_ref 2 can not exist

as there is already a mutable reference (mut_ref _1) that was created).

Rust

fn main() {
let mut x = 0;

1
et mut_ref_1 error[E@499]: cannot borrow “x° as mutable more than once at a time
let mut_ref_2 ’ --> src/main.rs:6:21

*mut_ref 2 +=
*mut_ref 1 +=

. let mut_ref_1 = &mut x;
println! ("{}", x),

first mutable borrow occurs here

second mutable borrow occurs here
*mut_ref 2 += 1;
*mut_ref 1 += 1;
first borrow later used here

Reborrowing

As previously explained, we can not create more than one mutable
reference towards am object (in this example, mut_ref 2 can not exist

as there is already a mutable reference (mut_ref 1) that was created).
Rust

let mut_ref 1 In this example, Rust will notice that we want to create another

let mut_ref 2 mutable reference towards “x” (besides the first one — mut_ref 1)
and will trigger a compiler error.

Reborrowing

However, we can reborrow the initial mutable reference and then use it.
To do this, we have to start from the original mutable reference (and

NOT from the object itself) and dereference it to reborrow it.
Rust

. I:I!E!IIIII
fn main() {
l!llllllll

let mut x = 0;

let mut_ref 1 = &mut x;
let reborrowed mut_ref = &mut *mut_ref 1;
*reborrowed mut_ref += 1;

*mut_ref 1 += 1;
println! ("{}", Xx);

Reborrowing

However, we can borrow the initial mutable reference and then use it.
To do this, we have to start from the original mutable reference (and

NOT from the object itself) and dereference it to reborrow it.
Rust

Notice that whilé reborrowed _mut_reflis being use
we don’t use mut_ref 1 as well (this way we don’t
break any ownership rules).

let reborrowed mut_ref = &mut *mut_ref 1;

*reborrowed mut_ref += 1;

Reborrowing

However, changing the order of how we use mut_ref 1 and
reborrowed_mut_ref will produce a compiler error if ownership rules

are being broken:

Rust

fn main() {
let mut x = 0;

let mut ref 1 = &mut x;

let reborrowed mut ref = &nut *mut ref 1: error[E@503]: cannot use " *mut_ref_ 1" because it was mutably
% - - - -’ borrowed

mut_ref 1 += 1;

--> src/main.rs:7:5
*reborrowed mut_ref += 1;
let reborrowed mut ref = &mut *mut_ref 1;

println! ("{}", X);

|
|
|
| “*mut_ref_1° is borrowed
| here

| *mut_ref 1 += 1;

| use of borrowed *mut_ref 1°

| *reborrowed_mut_ref += 1;

| borrow later used here

Reborrowing

One way of looking into the logic related to reborrowing mutable
reference is to image that Rust sees them as a stack:

}_ 1. We are allowed to use only the last mutable

‘ Object reference from the stack

Borrow

2. When an assignment operation is performed (eg:
let x = <last mutable ref>), the last mutable
reference is pop out of the stack, and “x” is pushed
in

Reborrow

Reborrow

3. Whenever the scope of the last mutable reference
from the stack ends, it would be removed from the
stack and the next reference can be used.

Reborrow

4. If the scope of the original object ends, the compiler
will destroy it.

Reborrowing

Let’s evaluate the following case:

Rust
fn main() {

let mut x = 0;
let mut_ref 1 = &mut x;

let reborrowed mut ref 2 = &mut *mut_ref 1;

let reborrowed mut _ref 3 = &nut *reborrowed mut ref 2;

*reborrowed mut_ref 3 += 1;

let a = reborrowed mut ref

*a += 1;

EH

*reborrowed mut_ref 2 += 1;
*mut_ref 1 += 1;
println! ("{}", x);

Reborrowing

Let’s evaluate the following case:
Rust

let mut x = 0;

When the compiler reaches this
point, it creates a stack for

variable “X”

Reborrowing

Let’s evaluate the following case:
Rust

let mut _ref 1 = &mut x;

We borrow a “x” by creating a
mutable reference.

Reborrowing

Let’s evaluate the following case:
Rust

let reborrowed mut _ref 2 = &mut *mut_ref 1;

Now we reborrow mut_ref 1 as
reborrowed _mut_ref 2

Reborrowing

Let’s evaluate the following case:
Rust

let reborrowed mut ref 3 = &mut *reborrowed mut_ref 2;

Now we reborrow
reborrowed _mut_ref 2 as
reborrowed _mut_ref 3

Reborrowing

Let’s evaluate the following case:
Rust

| X |

*reborrowed mut_ref 3 += 1;

It is OK to use “reborrowed_mut_ref 3" to access
“x” because it is the last from the stack.

Reborrowing

Let’s evaluate the following case:
Rust

reborrowed _mut_ref 3;

1. Remove “reborrowed_mut_ref 3 from the stack.
2. Copy the reference of “reborrowed _mut_ref 3€into a
3. Push “a@” into stack

Reborrowing

Let’s evaluate the following case:
Rust

| X |

u_n”n au.,”n

It is OK to use “a” to access “x
because it is the last from the stack.

Reborrowing

Let’s evaluate the following case:

*a += 1;

Notice that after this step, “a” is no longer used in the
program. This means that its scope has ended, and we can
remove it from the stack.

Reborrowing

Let’s evaluate the following case:
Rust

*reborrowed mut_ref 2 += 1;

It is OK to use “reborrowed_mut_ref 2 to access
“x” because it is the last from the stack.

Reborrowing

Let’s evaluate the following case:
Rust

*reborrowed mut_ref 2|+= 1;

Notice that after this step, “reborrowed_mut_ref 2% is no
longer used in the program. This means that its scope has
ended, and we can remove it from the stack.

Reborrowing

Let’s evaluate the following case:
Rust

*mut_ref 1 += 1;

ou.”n

Itis OK to use “mut_ref 1/ to access “x
because it is the last from the stack.

Reborrowing

Let’s evaluate the following case:
Rust

*mut ref 1 += 1;

Notice that after this step, “mut_ref 1”is no longer used in the
program. This means that its scope has ended, and we can
remove it from the stack.

Reborrowing

Let’s evaluate the following case:
Rust

println!("{}", X);

oa._n

Since there are no mutable references towards variable “x” it is
safe now to create an immutable one that can be used in the
printin! Macro.

Reborrowing

Let’s evaluate the following case:
Rust

println!("{}", X);

Now we can destroy varianle
“x” as its scope has ended.

Reborrowing

On the other hand, lets re-analyze the previous example:

Rust

fn main() {
let mut x = 0;

let mut ref 1 = &nut x;

let r‘ebor‘r‘owed_mut_r‘ef = &mut *mut_r‘ef_l; Er‘r‘or‘[ESS%]: cannot use " *mut_ref_1" because it was mutably
orrowe

k _— .
mut_ref_1 += 1; --> src/main.rs:7:5

*reborrowed mut_ref += 1; |
println! ("{}", x); 6

let reborrowed mut_ref = &mut *mut_ref 1;

|
|
| “*mut_ref_1° is borrowed
| here

| *mut_ref 1 += 1;

| AANNNANNANNNAAN yse of borrowed ™ *mut _ref 1°

| *reborrowed_mut_ref += 1;

| borrow later used here

Reborrowing

On the other hand, lets re-analyze the previous example:
Rust

reborrowed mut_ref = & *mut_ref_1;

Once the compiler reaches this line, the stack
with mutable references for variable “x” looks
like in the right image.

Reborrowing

On the other hand, lets re-analyze the previous example:

*mut_ref 1 += 1;

However, this code will produce
*reborrowed mut ref += 1;

an error since “mut_ref 1%is
not the last one from the stack.

Notice that the scope of
“reborrowed _mut_refff ends after
the next line (and as such can not

be removed from the stack)

Reborrowing

Reborrow mechanism is critical in several Rust programing cases:
1. Passing a reference to a function
2. Calling a method (associated with a trait or a structure/enum)

In particular, it is useful for mutable references where it can allow us to
reuse the original reference after it was borrowed.

Key takeaways

The following table presents how Rust applies the ownership and
borrowing rules over different kind of objects and scenarios:

Object Type Assignment
(x=y)

Object with COPY trait COPY COPY
Object without COPY trait MOVE MOVE
Immutable references (&T) COPY COPY

Mutable references (&mut T) MOVE REBORROW

Optimizations

Optimizations

Rust has several optimizations for mutable references since at one
moment of time there could be only one mutable reference.

Let’s consider the following C/C++ code and its Rust equivalent:

C/C++ Rust

void foo(const unsigned int * input, unsigned int * output) { J pub fn foo(input: &u32, output: &mut u32) {

*output += *input;
*output += *input;

g

*output += *input;
*output += *input;

. J

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi] mov eax, dword ptr [rdi]
mov dword ptr [rsi], eax add eax, eax
add eax, dword ptr [rdi] add dword ptr [rsi], eax
mov dword ptr [rsi], eax

: Where:

* rdi=input
* rsi=output

Optimizations

Why do we have this difference ?

inSIg Notice that we have used the += operator. This means that the compiler first

needs to read the value from the pointer output, then add to that value the value
l from pointer input, and finally write the new value into the output pointer.

mov eax, dword ptr [rsi]
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax
add eax, dword ptr [rdi]
mov dword ptr [rsi], eax

Optimizations

Why do we have this difference ?

unsigned int * However, there is no guarantee that the output pointer can’t be access from a

: different thread. As such, the compiler has to write the new value to output
pointer so that if another thread is trying to read it, it will read a correct value.
This also means that it has to perform a similar write for the second operation !

mov eax, dword ptr [rsi]

add eax, dword ptr [rdi] mov eax, dword ptr [rdi]
mov dword ptr [rsi], eax add eax, eax

add eax, dword ptr |[rdi]] add dword ptr [rsi], eax

C/(

On the other hand, Rust knows that since output is a mutable reference, there is

Optimizations

only one such reference and no other thread can access it. Because of this, it
does not have to write the value after the first call to += operator. Furthermore,

since there can not be mutable reference towards the input variable (as there is
already an immutable one), it can reuse its value for the second operation.

mov
add
mov
add
mov

eax, dword ptr [rsi]
eax, dword ptr [rdi]
dword ptr [rsi], eax
eax, dword ptr [rdi]
dword ptr [rsi], eax

mov eax, dword ptr [rdi]
add eax, eax
add dword ptr [rsi], eax

	Default Section
	Slide 1: Course – 2 Gavrilut Dragos
	Slide 2: Agenda for today

	Prerequisit: String type
	Slide 3: Prerequisite: String type
	Slide 4: Prerequisite: String type
	Slide 5: Prerequisite: String type
	Slide 6: Prerequisite: String type
	Slide 7: Prerequisite: String type

	Ownership
	Slide 8: Ownership management
	Slide 9: Ownership
	Slide 10: Ownership
	Slide 11: Ownership
	Slide 12: Ownership
	Slide 13: Ownership
	Slide 14: Ownership
	Slide 15: Ownership
	Slide 16: Ownership
	Slide 17: Ownership
	Slide 18: Ownership
	Slide 19: Ownership
	Slide 20: Ownership
	Slide 21: Ownership
	Slide 22: Ownership
	Slide 23: Ownership
	Slide 24: Ownership
	Slide 25: Ownership
	Slide 26: Ownership
	Slide 27: Ownership
	Slide 28: Ownership
	Slide 29: Ownership
	Slide 30: Ownership
	Slide 31: Ownership
	Slide 32: Ownership
	Slide 33: Copy vs Move operations
	Slide 34: What does Copy operation means
	Slide 35: What does Copy operation means
	Slide 36: What does Copy operation means
	Slide 37: What does Copy operation means
	Slide 38: What does Copy operation means
	Slide 39: What does Move operation means
	Slide 40: What does Move operation means
	Slide 41: What does Move operation means
	Slide 42: What does Move operation means
	Slide 43: What does Move operation means
	Slide 44: Ownership
	Slide 45: Ownership
	Slide 46: Ownership
	Slide 47: Ownership
	Slide 48: Ownership
	Slide 49: Ownership
	Slide 50: Ownership

	 Borrowing
	Slide 51: Borrowing
	Slide 52: Borrowing
	Slide 53: Borrowing
	Slide 54: Borrowing
	Slide 55: Borrowing
	Slide 56: Borrowing
	Slide 57: Borrowing
	Slide 58: Borrowing
	Slide 59: Borrowing
	Slide 60: Borrowing
	Slide 61: Borrowing
	Slide 62: Borrowing
	Slide 63: Borrowing
	Slide 64: Borrowing
	Slide 65: Borrowing
	Slide 66: Borrowing
	Slide 67: Borrowing
	Slide 68: Borrowing
	Slide 69: Borrowing
	Slide 70: Borrowing
	Slide 71: Borrowing
	Slide 72: Borrowing
	Slide 73: Borrowing
	Slide 74: Borrowing
	Slide 75: Borrowing
	Slide 76: Borrowing
	Slide 77: Borrowing
	Slide 78: Borrowing
	Slide 79: Borrowing
	Slide 80: Borrowing
	Slide 81: Borrowing
	Slide 82: Borrowing
	Slide 83: Borrowing
	Slide 84: Borrowing
	Slide 85: Borrowing
	Slide 86: Borrowing
	Slide 87: Borrowing
	Slide 88: Borrowing
	Slide 89: Borrowing
	Slide 90: Borrowing
	Slide 91: Borrowing
	Slide 92: Borrowing
	Slide 93: Borrowing
	Slide 94: Borrowing
	Slide 95: Borrowing
	Slide 96: Borrowing
	Slide 97: Borrowing
	Slide 98: Borrowing
	Slide 99: Borrowing
	Slide 100: Borrowing
	Slide 101: Borrowing
	Slide 102: Borrowing
	Slide 103: Borrowing
	Slide 104: Borrowing
	Slide 105: Borrowing
	Slide 106: Borrowing
	Slide 107: Borrowing
	Slide 108: Borrowing
	Slide 109: Borrowing
	Slide 110: Borrowing
	Slide 111: Borrowing
	Slide 112: Borrowing

	Reborrowing
	Slide 113: Reborrowing
	Slide 114: Reborrowing
	Slide 115: Reborrowing
	Slide 116: Reborrowing
	Slide 117: Reborrowing
	Slide 118: Reborrowing
	Slide 119: Reborrowing
	Slide 120: Reborrowing
	Slide 121: Reborrowing
	Slide 122: Reborrowing
	Slide 123: Reborrowing
	Slide 124: Reborrowing
	Slide 125: Reborrowing
	Slide 126: Reborrowing
	Slide 127: Reborrowing
	Slide 128: Reborrowing
	Slide 129: Reborrowing
	Slide 130: Reborrowing
	Slide 131: Reborrowing
	Slide 132: Reborrowing
	Slide 133: Reborrowing
	Slide 134: Reborrowing
	Slide 135: Reborrowing
	Slide 136: Reborrowing
	Slide 137: Reborrowing
	Slide 138: Reborrowing
	Slide 139: Reborrowing
	Slide 140: Reborrowing
	Slide 141: Reborrowing
	Slide 142: Reborrowing
	Slide 143: Reborrowing
	Slide 144: Reborrowing
	Slide 145: Reborrowing
	Slide 146: Reborrowing
	Slide 147: Key takeaways

	Optimizations
	Slide 148: Optimizations
	Slide 149: Optimizations
	Slide 150: Optimizations
	Slide 151: Optimizations
	Slide 152: Optimizations

	Q&A
	Slide 153

