
Course – 3
Gavrilut Dragos

Rust programming

rev 14

Agenda for today

1. Enums

2. Error management
1. Panic

2. Option

3. Result

3. if let / let else / while let

4. Question mark operator

Enums

Enums in Rust are quite different that a classical concept of enums
from C/C++.

The format (in terms of keywords) is however similar:

Similarly, to access a value from the enumeration use
<enum_name>::value

Enums

enum <name> {
 value_1,
 value_2
 ...
 value_n
}

Rust

Let’s see some examples:

The code won’t compile
because unlike C/C++ an enum is not implicitly associated with an int
value, and as such can not be compared with another type !

Enums

enum Color {
 Red,Green,Blue,White,Black,
}
fn main() {
 let mut c = Color::Red;
 if c == Color::Red {
 println!("Color is red");
 }
}

Rust
error[E0369]: binary operation `==` cannot be applied to type `Color`
 --> src\main.rs:7:10
 |
7 | if c == Color::Red {
 | - ^^ ---------- Color
 | |
 | Color
 |
note: an implementation of `PartialEq<_>` might be missing for `Color`
 --> src\main.rs:2:1
 |
2 | enum Color {
 | ^^^^^^^^^^ must implement `PartialEq<_>`
help: consider annotating `Color` with `#[derive(PartialEq)]`
 |
2 | #[derive(PartialEq)]
 |

Error

While initially the tendency is to consider these two pieces of code as
equivalents, in reality, their behavior is quite different.

Enums

enum Color {
 Red,Green,Blue,White,Black,
}
fn main() {
 let mut c = Color::Red;
 if c == Color::Red {
 println!("Color is red");
 }
}

Rust

enum class Color {
 Red, Green, Blue, White, Black
};
void main() {
 auto c = Color::Red;
 if (c == Color::Red)
 printf("Color is Red");
}

C/C++

Compile error
binary operation `==` cannot be

applied to type `Color`

Compiles ok Output

Color is Red

This is because in Rust, an enum is more similar to a C++ class than to
C/C++ enum type.

This is a better approximation of
how Rust enums work.

Enums

enum Color {
 Red,Green,Blue,White,Black,
}

Rust

class Color
{
 int value;
public:
 constexpr static int Red = 0;
 constexpr static int Green = 1;
 constexpr static int Blue = 2;
 constexpr static int White = 3;
 constexpr static int Black = 4;
 Color(int v) : value(v) {}
};

C/C++

Let’s see how the new example in C/C++ compiles.

 So … what happened ?

Enums

class Color {
 int value;
public:
 constexpr static int Red = 0;
 constexpr static int Green = 1;
 constexpr static int Blue = 2;
 constexpr static int White = 3;
 constexpr static int Black = 4;
 Color(int v) : value(v) {}
};
void main() {
 Color c = Color::Red;
 if (c == Color::Red)
 printf("Color is Red");
}

C/C++
Test.cpp(130,8): error C2676: binary '==': 'Color'
does not define this operator or a conversion to a
type acceptable to the predefined operator

Error (MS compiler for C/C++)

Let’s see how the new example in C/C++ compiles.

 So … what happened ?

Enums

class Color {
 int value;
public:
 constexpr static int Red = 0;
 constexpr static int Green = 1;
 constexpr static int Blue = 2;
 constexpr static int White = 3;
 constexpr static int Black = 4;
 Color(int v) : value(v) {}
};
void main() {
 Color c = Color::Red;
 if (c == Color::Red)
 printf("Color is Red");
}

C/C++
Test.cpp(130,8): error C2676: binary '==': 'Color'
does not define this operator or a conversion to a
type acceptable to the predefined operator

Error (MS compiler for C/C++)

This works because of Color ctor that receives an int as a
parameter. Since Color::Red = 0 (is defined as an int), the

expression is equivalent to Color c(Color::Red);

Let’s see how the new example in C/C++ compiles.

 So … what happened ?

Enums

class Color {
 int value;
public:
 constexpr static int Red = 0;
 constexpr static int Green = 1;
 constexpr static int Blue = 2;
 constexpr static int White = 3;
 constexpr static int Black = 4;
 Color(int v) : value(v) {}
};
void main() {
 Color c = Color::Red;
 if (c == Color::Red)
 printf("Color is Red");
}

C/C++
Test.cpp(130,8): error C2676: binary '==': 'Color'
does not define this operator or a conversion to a
type acceptable to the predefined operator

Error (MS compiler for C/C++)

This, however, will not compile. “c” is of type Color, Color::Red is of
type int, and there is no defined cast to convert from a Color to int,

nor any operator to evaluate == between a Color and an int !

Let’s see how the new example in C/C++ compiles.

 Now the code
 compiles and
 produces the
 expected output.

Enums

class Color {
 int value;
public:
 constexpr static int Red = 0;
 constexpr static int Green = 1;
 constexpr static int Blue = 2;
 constexpr static int White = 3;
 constexpr static int Black = 4;
 Color(int v) : value(v) {}
 bool operator==(int v) { return value == v; }
};
void main() {
 Color c = Color::Red;
 if (c == Color::Red) printf("Color is Red");
}

C/C++

Output

Color is Red

So, what does the previous example means for our Rust code:

It means that we need to add a way to compare two Color objects, if
we want this program to compile and run as expected.

Enums

enum Color {
 Red,Green,Blue,White,Black,
}
fn main() {
 let mut c = Color::Red;
 if c == Color::Red {
 println!("Color is red");
 }
}

Rust

So, what does the previous example means for our Rust code:

Now the code runs and works as expected.
But what is that #[…] formula on top of the enum declaration ?

Enums

#[derive(PartialEq)]
enum Color {
 Red,Green,Blue,White,Black,
}
fn main() {
 let mut c = Color::Red;
 if c == Color::Red {
 println!("Color is red");
 }
}

Rust

Output

Color is Red

The pound sign (#) followed by […] is the way Rust adds attributes for:
• Various declarations (structures, enums, etc)

• Methods or functions

• The entire program

Attributes will be studied in another course, but … they can be used for
several things:

• To provide metadata about an object (version, name, docs, etc)

• To set up the configuration the compiler/linker should use when building an
object

• To automatically generate code

• ….

Enums

#[derive(<name>)] means automatically implementing a trait called
<name> into a structure / class / enum / etc. Automatically in this
context means different things based on the trait.

In particular for an enum, we have used #[derive(PartialEq)] →
meaning that we will implement the PartialEq trait for that enum.

For a type (let’s call it SomeType) a PartialEq implementation means
adding to functions (eq  equality) and (ne  not equal)

Enums

impl PartialEq for SomeType {
 fn eq(&self, other: &SomeType) -> bool { … }
 fn ne(&self, other: &SomeType) -> bool { … }
}

Rust

The C++ approximation is using operator overloading to do the exact
same thing:

Enums

impl PartialEq for SomeType {
 fn eq(&self, other: &SomeType) -> bool { … }
 fn ne(&self, other: &SomeType) -> bool { … }
}

Rust

class SomeType
{
public:
 bool operator == (const SomeType& other) {...}
 bool operator != (const SomeType& other) {...}
}

C++

So … why PartialEQ and not just EQ ?

Well -> lets start with what equality means (or more precisely equivalence).

We define a binary relation ʘ as an equivalence relation, if and only if it is:

a) Reflexive ➔ a ʘ a

b) Symmetric ➔ a ʘ b if and only if b ʘ a

c) Transitive ➔ if a ʘ b and b ʘ c then a ʘ c

In practice, not all binary relations reflect an equivalence relation (main due to the
reflexive characteristics).

Enums

For example, if we are to look on 32 bytes floating value, and in particular
to how NaN is represented on IEEE 754 format, then we can deduce the
followings:

• In reality, there are 224
 possibilities to write a NaN

• So … if you compare two NaN(s) via a bit check, they may be different, but they are
both NaN

• As such, a bit-by-bit comparison between two numbers will not be reflexive (for
floating values).

• While there are solutions (such as compare only some bits), adding this type of logic
for every float will highly impact the performance.

Enums

S E E E E E E E E c

? 1 1 1 1 1 1 1 1 ?

Let’s see how a simple enum looks like in memory ?

So … one difference from C/C++ is that outside any other specifications,
a simple/small enum looks more like an u8/i8 value than an int (the
way it is treated in C/C++).

Enums

#[derive(PartialEq)]
enum Color {
 Red, Green, Blue, White, Black
}
fn main() {
 println!("size of Color = {}",std::mem::size_of::<Color>());
}

Rust

Output

Size of Color = 1

Let’s see how a simple enum looks like in memory ?

• “c” object is in fact an u8 value (see the byte ptr from the assembly
code), where Color::Red is associated with value 0

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }
fn main() {
 let mut c = Color::Red;
 if c == Color::White {
 println!("Color is white");
 }
}

Rust sub rsp,68h
mov byte ptr [c],0
lea rcx,[c]
lea rdx,[offset to a Color::White object]
call PartialEq::eq
mov byte ptr [temp_value],al
mov al,byte ptr [temp_value]
test al,1
jne print_something
jmp end_program

Let’s see how a simple enum looks like in memory ?

• Next we need to call eq method from PartialEQ with two parameters
(self – denoted by RCX register that holds the address of “c”) and a
reference (offset of another object of type Color to compare against)

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }
fn main() {
 let mut c = Color::Red;
 if c == Color::White {
 println!("Color is white");
 }
}

Rust sub rsp,68h
mov byte ptr [c],0
lea rcx,[c]
lea rdx,[offset to a Color::White object]
call PartialEq::eq
mov byte ptr [temp_value],al
mov al,byte ptr [temp_value]
test al,1
jne print_something
jmp end_program

Let’s see how a simple enum looks like in memory ?

• This offset points to a static address where the value “3” (u8) is
located. Why 3? Well → Red = 0, Green = 1, Blue = 2, White = 3 … and
since we compare “c” with Color::White, the object has to be a “3”

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }
fn main() {
 let mut c = Color::Red;
 if c == Color::White {
 println!("Color is white");
 }
}

Rust sub rsp,68h
mov byte ptr [c],0
lea rcx,[c]
lea rdx,[offset to a Color::White object]
call PartialEq::eq
mov byte ptr [temp_value],al
mov al,byte ptr [temp_value]
test al,1
jne print_something
jmp end_program

Offset Value

Addr of Color::White 3

Let’s see how a simple enum looks like in memory ?

 As we can see all this function is
 doing is to compare the first byte
 from the two objects.

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }
fn main() {
 let mut c = Color::Red;
 if c == Color::White {
 println!("Color is white");
 }
}

Rust sub rsp,68h
mov byte ptr [c],0
lea rcx,[c]
lea rdx,[offset to a Color::White object]
call PartialEq::eq
mov byte ptr [temp_value],al
mov al,byte ptr [temp_value]
test al,1
jne print_something
jmp end_program

sub rsp,28h
mov qword ptr [rsp+8],rcx // self
mov qword ptr [rsp+10h],rdx // other
movzx eax,byte ptr [rcx]
mov qword ptr [rsp+18h],rax
movzx ecx,byte ptr [rdx]
mov qword ptr [rsp+20h],rcx
cmp rax,rcx
je if_then_part
mov byte ptr [return_value],0 // false
jmp end_if_label

if_then_part:
mov byte ptr [return_value],1 // true

end_if_label:
mov al,byte ptr [return_value]
and al,1
movzx eax,al
add rsp,28h
ret

Let’s see how a simple enum looks like in memory ?

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }
fn main() {
 let mut c = Color::Red;
 if c == Color::White {
 println!("Color is white");
 }
}

Rust sub rsp,68h
mov byte ptr [c],0
lea rcx,[c]
lea rdx,[offset to a Color::White object]
call PartialEq::eq
mov byte ptr [temp_value],al
mov al,byte ptr [temp_value]
test al,1
jne print_something
jmp end_program

sub rsp,28h
mov qword ptr [rsp+8],rcx // self
mov qword ptr [rsp+10h],rdx // other
movzx eax,byte ptr [rcx]
mov qword ptr [rsp+18h],rax
movzx ecx,byte ptr [rdx]
mov qword ptr [rsp+20h],rcx
cmp rax,rcx
je if_then_part
mov byte ptr [return_value],0 // false
jmp end_if_label

if_then_part:
mov byte ptr [return_value],1 // true

end_if_label:
mov al,byte ptr [return_value]
and al,1
movzx eax,al
add rsp,28h
ret

Notice that “and al,1”. This instruction makes sure that the value
of al is either 1 or 0. This is a clear indicator that the result of this

function is a bool value (with 1=true and 0=false).

Let’s see how a simple enum looks like in memory ?

• Finally, we check the bool value returned from the previous step to
see if it is true (value 1) or not

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }
fn main() {
 let mut c = Color::Red;
 if c == Color::White {
 println!("Color is white");
 }
}

Rust sub rsp,68h
mov byte ptr [c],0
lea rcx,[c]
lea rdx,[offset to a Color::White object]
call PartialEq::eq
mov byte ptr [temp_value],al
mov al,byte ptr [temp_value]
test al,1
jne print_something
jmp end_program

This means that a proper C++ code that reflects this Rust code is:

Enums

class Color {
 uint8_t value;
 Color(uint8_t v) : value(v) {}

public:
 static const Color Red,Green,Blue,White,Black;
 bool operator==(const Color& v) { return value == v.value; }

};
const Color Color::Red (0);
const Color Color::Green(1);
const Color Color::Blue (2);
const Color Color::White(3);
const Color Color::Black(4);

void main() {
 Color c = Color::Red;
 if (c == Color::White) printf("Color is White");

}

C++ equivalent for Rust Color enum

So … why are Rust enums built like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

1. Enum with just some variants

Enums

#[derive(PartialEq)]
enum Color { Red, Green, Blue,
 White, Black }

Rust

enum class Color {
 Red,Green,Blue,White,Black
};

C++

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

2. Enum with just some variants with specific values

Enums

#[derive(PartialEq)]
enum Color {
 Red = 2,
 Green = 10,
 Blue,
 White, Black
}

Rust
enum class Color {
 Red = 2,
 Green = 10,
 Blue,
 White,
 Black
};

C++

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

3. Enum with a specific type (e.g. int)

Enums

#[derive(PartialEq)]
#[repr(i32)]
enum Color {
 Red = 2,
 Green = 10,
 Blue, White, Black
}

Rust
enum class Color : int {
 Red = 2,
 Green = 10,
 Blue,
 White,
 Black
};

C++

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

3. Enum with a specific type (e.g. int)

Enums

#[derive(PartialEq)]
#[repr(i32)]
enum Color {
 Red = 2,
 Green = 10,
 Blue, White, Black
}

Rust
enum class Color : int {
 Red = 2,
 Green = 10,
 Blue,
 White,
 Black
};

C++
To specify a certain type/representation behind the discriminant of an enum, use

the following format: #[repr(type)]
where type can be u8/i8, u16/i16, … u128/i128, usize/isize.

Currently, u128/i128 layout is unstable !

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

3. Enum with a specific type (e.g. int)

Enums

#[repr(bool)]
enum Color {
 Red,
 Green,
}

Rust
error[E0552]: unrecognized representation hint
 --> src\main.rs:1:8
 |
1 | #[repr(bool)]
 | ^^^^
= help: valid reprs are `C`, `align`, `packed`, `transparent`, `simd`, `i8`, `u8`,
`i16`, `u16`, `i32`, `u32`, `i64`, `u64`, `i128`, `u128`, `isize`, `usize`

Error

Not all representation are allowed ! Only
numerical (integer) representation can

be used for an enum discriminant.

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

3. Enum with a specific type (e.g. int)

Enums

#[repr(i32)]
enum Color {
 Red = 1,Green = 3,Blue = 15
}
fn main() {
 let c = Color::Green;
 let i = c as i32;
 println!("i={i}");
}

Rust

You can also use as to convert an enum that has a
numeric representation to its numerical value.

Output

i=3

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well … yes → but first, let’s see some examples (Rust/C++)

4. Bitflags
• Bitflags are NOT possible in Rust (with the standard library and functionality)

• There are however different crates (e.g EnumBitFlags , bitflags) that provides
this functionality through some Rust macros

• In C++ bitflags over enums are easily implemented via friend functions that
implement operators like ||, &&, !, etc.

Enums

So … why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

This is the main case why enums are build like this (flexibility).

5. Multiple data member types enums
• Since an enum in Rust is more like a class than a classical enum from C, there

is no reason to limit the variants to a specific type

• In C/C++, all variants from an enum have the same type (usually int if
something else is not provided). This limitation can be overcome if we use
classes with static const values instead of
enums.

• In Rust, however, we can create different
variants of different types ➔

Enums

enum <Name> {
 Variant1(type1),

Variant2(type2,…)
 …
 Variantn
}

Rust

Overview (Rust enums vs C/C++ enums)

* There are some crates such as EnumBitFlags, bitflags that solves this problem via macros
** Requires the usage of friend keyword do overwrite operators such as || , && , etc
*** Can not be done with classical enums, but fully supported through std::variant

Enums

Rust C++

Simple enums Yes Yes

Simple enums mapped to a specific type Yes Yes

Simple enums with different values (of the same
type) associated to each variant

Yes Yes

Enums that work as a bitflag No* Yes**

Enums with value of different types Yes No***

Let’s see some example of enums with variant of multiple types.

The reason for the Debug derivation is to provide println! macro some
sort of reflection that can be used to print enum values.

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Float(f32),
 Character(char)
}
fn main() {
 let i = Values::Integer(10);
 let f = Values::Float(1.2);
 let c = Values::Character('a');
 println!("{:?},{:?},{:?}",i,f,c);
}

Rust

Output

Integer(10),Float(1.2),Character('a')

Let’s see some example of enums with variant of multiple types.

So … if this is not possible:
How can we tell if “i” is a Values::Integer, Values::Float or
Values::Character ?

Enums

enum Values {
 Integer(i32),
 Float(f32),
 Character(char),
}
fn main() {
 let i = Values::Integer(10);
 println!("i is {}", i as i32);
}

Rust

error[E0605]: non-primitive cast: `Values` as `i32`
 --> src\main.rs:15:25
 |
15 | println!("i is {}", i as i32);
 | ^^^^^^^^ an `as` expression can only
be used to convert between primitive types or to coerce to a
specific trait object

Error

Let’s see some example of enums with variant of multiple types.

When we are trying to find the underlying type of one of the variants
from an enum, we often use the term discriminant. The discriminant is
often a numerical value that specifies the type (for example in this
example the discriminant could be 0 for Integer, 1 for Float and 2 for
Character).

Enums

enum Values {
 Integer(i32),
 Float(f32),
 Character(char),
}

Rust

The solution is to use match to validate the type of an object from Values:

Enums

enum Values {
 Integer(i32),
 Float(f32),
 Character(char),
}
fn extract_integer(v: &Values) -> i32 {
 match v {
 Values::Integer(ivalue) => return *ivalue,
 _ => return -1,
 }
}
fn main() {
 let i = Values::Integer(10);
 println!("i is {}", extract_integer(&i));
}

Rust

Output

i is 10

The same can be obtained by implementing a method into an enum:

Enums

enum Values {
 Integer(i32),
 Float(f32),
 Character(char),
}
impl Values {
 fn get_int(&self) -> i32 {
 match self {
 Values::Integer(ivalue) => return *ivalue,
 _ => return -1,
 }
 }
}
fn main() {
 let i = Values::Integer(10);
 println!("i is {}", i.get_int());
}

Rust

Output

i is 10

Alternatively, we can use std::mem::discriminant(…) to check if two values
from the same enum have the same discriminant.

Enums

use std::mem;
enum Values {
 Integer(i32),
 Real(f64),
}
fn main() {
 let a = Values::Integer(10);
 let b = Values::Integer(20);
 let c = Values::Real(1.2);
 if mem::discriminant(&a) == mem::discriminant(&b) {
 println!("'a' and 'b' are of the same variant type !");
 }
 if mem::discriminant(&a) != mem::discriminant(&c) {
 println!("'a' and 'c' are not the same variant type !");
 }
}

Rust
Output

'a' and 'b' are of the same variant type !
'a' and 'c' are not the same variant type !

The previous example can be adjusted to find out if a value of an enum is
of a specific type. Keep in mind that this method, while it works implies
creating a temporary object to be used for comparison !

Enums

enum Values {
 Integer(i32),
 Float(f32),
 Character(char),
}
impl Values {
 fn is_int(&self) -> bool {
 std::mem::discriminant(self) == std::mem::discriminant(&Values::Integer(0))
 }
}
fn main() {
 let i = Values::Integer(10);
 println!("i is int: {}", i.is_int());
}

Rust
Output

i is int: true

A variant from an enum can also be a set of values. The next example
creates two version of an IpAddress (v4 and v6).

Enums

#[derive(Debug)]
enum IpAddress {
 v4(u8, u8, u8, u8),
 v6(u16, u16, u16, u16, u16, u16),
}
fn main() {
 let ip_1 = IpAddress::v4(192, 168, 0, 1);
 let ip_2 = IpAddress::v6(0x2010, 0x1234, 0x00FF, 0x0000, 0x0000, 0xFF12);
 println!("{:?}, {:?}", ip_1, ip_2);
}

Rust

Output

v4(192, 168, 0, 1), v6(8208, 4660, 255, 0, 0, 65298)

Let’s see some example of enums with variant of multiple types.

When comparing two enum variants, Rust will compare both their
types and their value (if present).

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Float(f32),
}
fn main() {
 let i1 = Values::Integer(10);
 let i2 = Values::Integer(20);
 if i1 == i2 {
 println!("Equal integers")
 } else {
 println!("Different integers");
 }
}

Rust

Output

Different integers

Let’s see some example of enums with variant of multiple types.

When comparing two enum variants, Rust will compare both their
types and their value (if present).

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Float(f32),
}
fn main() {
 let i1 = Values::Integer(10);
 let i2 = Values::Integer(10);
 if i1 == i2 {
 println!("Equal integers")
 } else {
 println!("Different integers");
 }
}

Rust

Output

Equal integers

Let’s see some example of enums with variant of multiple types.

When comparing two enum variants, Rust will compare both their
types and their value (if present).

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Float(f32),
}
fn main() {
 let i1 = Values::Integer(10);
 let i2 = Values::Float(2.0);
 if i1 == i2 {
 println!("Equal integers")
 } else {
 println!("Different integers");
 }
}

Rust

Output

Different integers

Let’s see some example of enums with variant of multiple types.

Even if the value is the same (10) since there are different types
(Integer and Float) they will not be equal.

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Float(f32),
}
fn main() {
 let i1 = Values::Integer(10);
 let i2 = Values::Float(10.0);
 if i1 == i2 {
 println!("Equal integers")
 } else {
 println!("Different integers");
 }
}

Rust

Output

Different integers

Let’s see some example of enums with variant of multiple types.

So … why is the size of Values 16 bytes ?
- an Integer is 4 bytes
- a bool is one bytes
- a float64 is 8 bytes

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Bool(bool),
 Real(f64),
}
fn main() {
 println!("Size of Values = {}", std::mem::size_of::<Values>());
}

Rust

Output

Size of Values = 16

Let’s see some example of enums with variant of multiple types.

Let’s see how i, b, or r look in memory.

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Bool(bool),
 Real(f64),
}
fn main() {
 let i = Values::Integer(10);
 let b = Values::Bool(true);
 let r = Values::Real(1.234);
}

Rust

Let’s see some example of enums with variant of multiple types.

Let’s see how i, b, or r look in memory.

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Bool(bool),
 Real(f64),
}
fn main() {
 let i = Values::Integer(10);
 let b = Values::Bool(true);
 let r = Values::Real(1.234);
}

Rust

Idx Integer
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

0 ? ? ? 10 0 0 0 ? ? ? ? ? ? ? ?

Let’s see some example of enums with variant of multiple types.

Let’s see how i, b, or r look in memory.

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Bool(bool),
 Real(f64),
}
fn main() {
 let i = Values::Integer(10);
 let b = Values::Bool(true);
 let r = Values::Real(1.234);
}

Rust

Idx B
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Let’s see some example of enums with variant of multiple types.

Let’s see how i, b, or r look in memory.

Enums

#[derive(PartialEq, Debug)]
enum Values {
 Integer(i32),
 Bool(bool),
 Real(f64),
}
fn main() {
 let i = Values::Integer(10);
 let b = Values::Bool(true);
 let r = Values::Real(1.234);
}

Rust

Idx Real
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

2 ? ? ? ? ? ? ? 58 39 B4 C8 76 BE F3 3F

This means that in reality, this is more like a union than multiple data
members within the same class..

Enums

union Values
{
 uint8_t index;
 union {
 struct Integer {
 uint8_t index;
 int32_t value;
 };
 struct Bool {
 uint8_t index;
 bool value;
 };
 struct Real {
 uint8_t index;
 double value;
 };
 };
}

C++ aproximation

std::variant<int32_t,bool,double>

C++ (2017 and beyond)

Where Values::index is:
0 → if the underline type from the union is Integer
1 → if the underline type from the union is Bool
2 → if the underline type from the union is Real

Error management

For every program (regardless of the language it is written in) there are
three situations that require error management:

Error management

Type Description What to do

Compile Error Usually when some semantics of the language are
incorrect.

Repair the error and compile again

Run-time Error
(manageable)

An error that can be managed by the program (e.g. we
are trying to connect to a database but the internet
connection is unavailable)

In this case, we need to have a logic
within the program that treats this
error (e.g. pops up a message and
then wait for the internet
connection to be available)

Run-time Error
(critical)

An error that by its nature stops the execution of the
program (e.g. a game can not start if the graphical
driver is not working)

Nothing. These are the cases where
the program just stops.

In reality, run-time errors can be:

1. Treated ➔ meaning that there is a specific code that treats an error
(a specific execution flow that takes into consideration various cases
where errors might occur)

2. Un-treated ➔ these are dangerous situation that might lead to
program crashing or undefined behavior

A well written program falls into category 1 (meaning that the
programmers of that program were very careful about various situation
that might occur and can produce an error).

Error management

Let’s see a C/C++ example and discuss how an error might be treated:

We will focus on div function, and not on the problems from the main
function (e.g. not enough parameters).

Error management

int div(const char * n1, const char* n2) {
 return atoi(n1)/atoi(n2);
}
void main(char** argv, int argc) {
 printf("Result is: %d",div(argv[1],argv[2]));
}

C

What potential problems can we spot on div function ?

1. “n1” or “n2” can be null pointers (e.g. for example if the command
line arguments are less than 2)

2. “n1” or “n2” can be invalid numbers (we are working with string, so
there is no guarantee that either n1 or n2 respect a valid numerical
format;

3. “n2” could be a valid number, but it is 0 and division by 0 will
produce an error.

Error management

int div(const char * n1, const char* n2) {
 return atoi(n1)/atoi(n2);
}

C

So how can we change function “div” to treat errors ?

1. Change the signature of function “div” to return either true (if the
division was successful) or false otherwise and put the actual result
in a reference or pointer.

It is recommended to use a reference as we don’t need to add an extra
validation to check if the result pointer is valid.

Error management

bool div(const char * n1, const char* n2, int* result) { … }

C

bool div(const char * n1, const char* n2, int& result) { … }

C

So how can we change function “div” to treat errors ?

1. Change the signature of function “div” to return either true (if the
division was successful) or false otherwise and put the actual result
in a reference or pointer.
The usage of such a function will be as follows:

Error management

void main(char** argv, int argc) {
 int result;
 if (div(argv[1],argv[2],result)==true) {
 printf("Result is: %d",result);
 } else {
 // error case
 }
}

C

So how can we change function “div” to treat errors ?

1. Change the signature of function “div” to return either true (if the
division was successful) or false otherwise and put the actual result
in a reference or pointer.

Error management

PRO CONS

• Easy to write (regardless of the language) • We need references (this means that every
function call should be preceded by a
variable definition where the result will be
put)

• Bool type is not necessarily associated with
errors and as such some results might be
misleading.

• We don’t know the actual error (just that
there is one).

So how can we change function “div” to treat errors ?

2. Change the signature of function “div” to return an error code (an
int value that if set to 0 (or other constant) means no error, and
otherwise means an error code). Similar to precedent case, the
actual result should be put in a reference or pointer.

Error management

int div(const char * n1, const char* n2, int* result) { … }

C

int div(const char * n1, const char* n2, int& result) { … }

C

So how can we change function “div” to treat errors ?

2. Change the signature of function “div” to return an error code (an
int value that if set to 0 (or other constant) means no error, and
otherwise means an error code). One possible usage:

Error management

void main(char** argv, int argc) {
 int result;
 int error = div(argv[1],argv[2],result);
 if (error == 0) {
 printf("Result is: %d",result);
 } else {
 switch (error) {
 case 1: printf("First parameter is null !"); break;
 case 2: printf("Second parameter is null !"); break;
 ….
 }
 }
}

C

So how can we change function “div” to treat errors ?

2. Change the signature of function “div” to return an error code (an
int value that if set to 0 (or other constant) means no error, and
otherwise means an error code). One possible usage:

Error management

PRO CONS

• Easy to write (regardless of the language)
• We know the error and we can act on it

• We need references (this means that every
function call should be preceded by a
variable definition where the result will be
put)

• Int (or numerical) types are not necessary
associated with errors and as such some
results might be misleading.

So how can we change function “div” to treat errors ?

3. Use exception (meaning that div function signature will not be
changed). Instead, whenever an error occurs, an exception will be
thrown.

This is a different approach that starts from the assumption that a
function signature should reflect its purpose and not its error
handling mechanisms.

Error management

int div(const char * n1, const char* n2) { … }

C

So how can we change function “div” to treat errors ?

3. Use exception (meaning that div function signature will not be
changed). Instead, whenever an error occurs, an exception will be
thrown. Possible usage:

Error management

void main(char** argv, int argc) {
 try {
 printf("Result is: %d",div(argv[1],argv[2]));
 }
 catch (DivisionBy0Error)
 {
 printf("Division by 0");
 }
 catch (...)
 {
 printf("other error")
 }
}

C

So how can we change function “div” to treat errors ?

3. Use exception (meaning that div function signature will not be
changed). Instead, whenever an error occurs, an exception will be
thrown.

Error management

PRO CONS

• Easy to write (regardless of the language)
• We know the error and we can act on it

• Not really linear in terms of code execution
• Memory allocation might not be cleared
• Can’t really be enforced (someone can

decide not to use it, because a try...catch
block is not necessary to read the result of a
function.

So how can we change function “div” to treat errors ?

4. Use an error specific type that holds both the value and the
error/error code. This is a more modern approach of the error
management problem. A definition (for C++ language) looks like
this:

This type was introduced in C++ with the 2017 standard.

Error management

std::optional<int> div(const char * n1, const char* n2) { … }

C++17 and beyond

So how can we change function “div” to treat errors ?

4. Use an error specific type that holds both the value and the
error/error code. This is a more modern approach of the error
management problem. A possible usage:

Notice that the code is quite small and the res variable incapsulates
both the value and the error.

Error management

void main(char** argv, int argc) {
 auto res = div(argv[1],argv[2]);
 if (res.has_value()){
 printf("Result is: %d",res.value());
 } else {
 // process error
 }
}

C++ (2017+ standard)

So how can we change function “div” to treat errors ?

4. Use an error specific type that holds both the value and the
error/error code. This is a more modern approach of the error
management problem.

Error management

PRO CONS

• Easy to write (regardless of the language)
• We know the error and we can act on it
• Linear programming
• Enforceable (you can not get the result

without knowing the error as well)
• This is a type designed for error

management so it has no double
interpretation

• Might require some adjustments in how
someone programs if he/she are used with
an error management similar to cases 1,2 or
3

A general observation on these four cases:

- Older languages (e.g. C) usually use cases 1 or 2 (e.g. Windows API
(case 1), Linux API (case 2))

- Newer languages (C++, Java, C#, Python, etc) usually support cases 1
to 3. The potential risk here is that none of these cases are
enforceable (meaning that someone might write a program and use
all 3 techniques to propagate errors)

- Modern languages (e.g. C++17/C++20/C++23, Rust) support the 4th
method as well.

Error management

Type C C++ Rust

Case 1 (return True/False) Yes Yes Yes

Case 2 (return error code) Yes Yes Yes

Case 3 (exceptions) - Yes -

Case 4 (return True+value for success, False otherwise) - std::optional Option

Case 4 (return value for success, error information
otherwise)

- std:expected
std::variant

Result

Error management

• What differentiate Rust from the rest of the languages that
implement the 4th method is that Rust does not implement
exceptions.

• This means that a programmer can decide to use either case 1,2 or 4
in Rust if he/she wants to return an error.

Error management

Error management in Rust is done via:

1. panic macro (if we want to immediately exit a program)

2. Option template/generic type (if we want to return a value or
nothing – the latter meaning that an error has occurred)

3. Result template/generic type (if we want to return a value or an
error that explains what happened).

Error management

Error management (panic)

A “panic” is a critical runtime-error that you can not recover from.

In Rust, these situation can be encountered in two scenarios:

1. The execution flow reach a point where the outcome cannot be
computed in a deterministic way (e.g. a possible undefined
behavior). Stopping the execution at this point will provide more
information for a developer to fix the actual issue (e.g. a heap
overflow). In Rust this is done at thread level (meaning it will stop
the current thread, not the entire process).

2. The logic of the problem / its purpose can not be served anymore,
and the programmer decides to stop the problem at the current
point of the execution.

Error management (panic)

Rust provides a macro (called panic!) that can be used to abord a
program immediately. panic! macro has two forms:

• panic! ();

• panic! (message);

Error management (panic)

fn main() {
 let r1 = 20;
 let r2 = 10;
 if r1 > r2 {
 panic!("Expecting r1={r1} to be smaller than r2={r2}");
 }
}

Rust

thread 'main' panicked at 'Expecting r1=20 to be smaller than r2=10', src\main.rs:7:9
stack backtrace:
 0: std::panicking::begin_panic_handler
 at /rustc/fe5b13d681f25ee6474be29d748c65adcd91f69e\/library\std\src\panicking.rs:584
 1: core::panicking::panic_fmt
 at /rustc/fe5b13d681f25ee6474be29d748c65adcd91f69e\/library\core\src\panicking.rs:143
 2: first::main
 at .\src\main.rs:7
 …

Panic (runtime – v 1.61.0)

Panic errors can also be triggered if the programmer is trying to
perform an operation with an undefined result:

In this case, there is an attempt to read a value from a vector outside
its bounds. While it is possible that the memory from the offset “10”
(the value of v[0]) is accessible (e.g. a value on the stack) the outcome
is undetermined and it is better to cause an abord at this point that try
to understand an error thrown by an incorrect value of “x” later.

Error management (panic)

fn main() {
 let v = [10,20,30];
 let x = v[v[0]];
 println!("x={x}");
}

Rust
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 10', src\main.rs:3:13
stack backtrace:
 0: std::panicking::begin_panic_handler
 at /rustc/fe5b13d681f25ee6474be29d748c65adcd91f69e\/library\std\src\panicking.rs:584
 1: core::panicking::panic_fmt
 at /rustc/fe5b13d681f25ee6474be29d748c65adcd91f69e\/library\core\src\panicking.rs:143
 2: core::panicking::panic_bounds_check
 ………………………

Panic (runtime) – for Rust 1.61.0

Its also important to notice that Rust tries to identify this kind of error
from the compile phase. Let's compare the next three cases:

Error management (panic)

fn main() {
 let v = [10,20,30];
 let x = v[10];
 println!("x={x}");
}

Rust

error: this operation will panic
at runtime
 --> src\main.rs:3:13
 |
3 | let x = v[10];
 | ^^^^^ index out
of bounds: the length is 3 but
the index is 10

Error

That’s obvious (v[10] is clearly out of bounds for an
array of 3 elements).

Its also important to notice that Rust tries to identify this kind of error
from the compile phase. Let's compare the next three cases:

Error management (panic)

fn main() {
 let v = [10,20,30];
 let x = v[10];
 println!("x={x}");
}

Rust

error: this operation will panic
at runtime
 --> src\main.rs:3:13
 |
3 | let x = v[10];
 | ^^^^^ index out
of bounds: the length is 3 but
the index is 10

Error

fn main() {
 let v = [10,20,30];
 let x = v[v[0]];
 println!("x={x}");
}

Rust (1.61.0)

thread 'main' panicked at 'index
out of bounds: the len is 3 but
the index is 10',
src\main.rs:3:13

Panic (runtime – 1.61.0)

In this case, Rust 1.61.0 crashes at runtime
(it is unable to identify that v[v[0]] = v[10]

that is clearly out of bounds)

Its also important to notice that Rust tries to identify this kind of error
from the compile phase. Let's compare the next three cases:

Error management (panic)

fn main() {
 let v = [10,20,30];
 let x = v[10];
 println!("x={x}");
}

Rust

error: this operation will panic
at runtime
 --> src\main.rs:3:13
 |
3 | let x = v[10];
 | ^^^^^ index out
of bounds: the length is 3 but
the index is 10

Error

fn main() {
 let v = [10,20,30];
 let x = v[v[0]];
 println!("x={x}");
}

Rust (1.61.0)

thread 'main' panicked at 'index
out of bounds: the len is 3 but
the index is 10',
src\main.rs:3:13

Panic (runtime – 1.61.0)

fn main() {
 let v = [10,20,30];
 let x = v[v[0]];
 println!("x={x}");
}

Rust (1.71.0)

error: this operation will panic
at runtime
 --> src\main.rs:3:13
 |
3 | let x = v[v[0]];
 | ^^^^^^^ index out
of bounds: the length is 3 but
the index is 10

Panic (1.71.0)
Notice that this is the exact same code but tested with a

different (newer) version of Rust. As it turns out, Rust constantly
improves its detection for out of boundery cases. This is why

the same case that will trigger a runtime panic for version
1.61.0 will be identified as a compile error for version 1.71.0

Rust 1.71.0 seems to be able to identify even more complicated cases
(for example when we use more complex equations)

Error management (panic)

fn main() {
 let v = [10, 20, 30];
 let x = v[v[0]*v[0]/v[1]];
 println!("x={x}");
}

Rust (1.71.0)

error: this operation will panic at runtime
 --> src\main.rs:3:13
 |
3 | let x = v[v[0]*v[0]/v[1]];
 | ^^^^^^^^^^^^^^^^^ index out of
bounds: the length is 3 but the index is 5

Error

The compile makes the correct inference (v[0] = 10,
v[1] = 20, v[0] * v[0] / v[1] = 10*10/20 = 100/20 = 5

A solution to “trick” rust compiler and make it not detect an out of
boundary case is the following:

Error management (panic)

use std::{time::{SystemTime, Duration}, thread::sleep};
fn main() {
 let start = SystemTime::now();
 sleep(Duration::from_secs(5));
 let dif = start.elapsed().unwrap().as_secs();
 let v = [10, 20, 30];
 let x = v[dif as usize];
 println!("x={x}");
}

Rust (1.71.0)

thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 5',
src\main.rs:7:13
stack backtrace:
 0: std::panicking::begin_panic_handler
 at
/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library\std\src\panicking.rs:593
 1: core::panicking::panic_fmt
 at
/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library\core\src\panicking.rs:67

Error

A solution to “trick” rust compiler and make it not detect an out of
boundary case is the following:

Keep in mind that this solution was tested with Rust 1.71.0/1.80.0

It is possible that future version of Rust might detect this behavior from
the compile time and trigger a compile error instead of runtime panic.

Error management (panic)

use std::{time::{SystemTime, Duration}, thread::sleep};
fn main() {
 let start = SystemTime::now();
 sleep(Duration::from_secs(5));
 let dif = start.elapsed().unwrap().as_secs();
 let v = [10, 20, 30];
 let x = v[dif as usize];
 println!("x={x}");
}

Rust (1.71.0)

Notice that we did the following steps:
1. Get the current time
2. Wait (sleep) for 5 seconds
3. Compute the elapsed time

It is obvious that the elapsed time should be 5
and if we use it as index access on a 3 elements
array it will produce a panic.

Rust also has a method (catch_unwind) that can be used to capture a
panic (similar to what try…catch mechanism is doing).

However, it is not recommended and if used with C++ exceptions from
an exported function, the behavior is undefined.

Error management (panic)

Rust also has a method (catch_unwind) that can be used to capture a
panic (similar to what try…catch mechanism is doing).

Error management (panic)

use std::{
 thread::sleep,
 time::{Duration, SystemTime},

};
fn some_function() -> i32 {
 let start = SystemTime::now();
 sleep(Duration::from_secs(5));
 let dif = start.elapsed().unwrap().as_secs();
 let v = [10, 20, 30];
 let x = v[dif as usize];
 println!("x={x}");
 return x as i32;

}
fn main() {
 let r = std::panic::catch_unwind(some_function);
 if r.is_ok() {
 println!("Function was successful -> return value is: {}", r.unwrap());
 } else {
 println!("Function failed with panic");
 }

}

Rust

thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 5',
src\main.rs:4:13
stack backtrace:
....
Function failed with panic

Error

Rust also has a method (catch_unwind) that can be used to capture a
panic (similar to what try…catch mechanism is doing).

Error management (panic)

fn some_function() -> i32 {
 let v = [1, 2, 3];
 let x = v[v[0]];
 println!("x={x}");
 return x as i32;
}
fn main() {
 let r = std::panic::catch_unwind(some_function);
 if r.is_ok() {
 println!("Function was successful -> return value is: {}", r.unwrap());
 } else {
 println!("Function failed with panic");
 }

}

Rust

Output

x=2
Function was successful -> return value is: 2

Error management (Option type)

Rust Option type allows a function to return two scenarios:

• A false case (something is not OK) → and no value associated

• A true case → the requested value is returned.

Error management (Option type)

pub enum Option<T> {
 #[lang = "None"]
 #[stable(feature = "rust1", since = "1.0.0")]
 None,

 #[lang = "Some"]
 #[stable(feature = "rust1", since = "1.0.0")]
 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
}

Rust (Source: option.rs from core library)

pub enum Option <T>
{
 None,
 Some(T),
}

Simplified view

Let’s consider the following problem → we would like to write a
function that returns a number only if the parameter is odd, or no
number if the parameters is even.

 or

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32>
{
 if n % 2 == 1 {
 return Some(n);
 } else {
 return None;
 }
}

Rust

fn validate_odd(n: i32) -> Option<i32>
{
 if n % 2 == 1 {
 Some(n)
 } else {
 None
 }
}

Rust

Option type has the following methods:

Error management (Option type)

Method Usage

fn unwrap(self) -> T Returns the value if no error is present or panics
otherwise

fn expect(self, msg: &str) -> T Returns the value if no error is present or panics
with a specific message otherwise

fn is_some(&self) -> bool True if no error is present, false otherwise

fn is_none(&self) -> bool True if error is present, false otherwise

fn unwrap_or(self, default: T) -> T Returns the value if no error is present or a default
value in case of error

fn unwrap_or_else<F>(self, f: F) -> T Returns the value if no error is present or the
result of a function in case of error

Let’s see some possible usage of validate_odd(…) function:

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { ... }
fn main() {
 let r = validate_odd(5);
 if r.is_some() {
 println!("Number is odd: {}", r.unwrap());
 } else {
 println!("Error");
 }
}

Rust

Output

Number is odd: 5

The same example can be written using the match keyword in the
following way (this is actual recommended way to check the value of an
Option).

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { … }
fn main() {
 let r = validate_odd(5);
 match r {
 Some(value) => println!("Odd value: {value}"),
 None => println!("Not an odd number"),
 }
}

Rust

Output

Odd value: 5

Let’s see some possible usage of validate_odd(…) function:

In this case we expect validate_odd function to work correctly.

Variable “r” is of type i32.

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { … }
fn main() {
 let r = validate_odd(5).unwrap();
 println!("Number is odd: {}",r);
}

Rust

Output

Number is odd: 5

Let’s see some possible usage of validate_odd(…) function:

In this case, since 4 is not odd, a panic (runtime) error will be triggered.

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { … }
fn main() {
 let r = validate_odd(4).unwrap();
 println!("Number is odd: {}",r);
}

Rust

thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', src\main.rs:11:28

Panic (runtime)

Let’s see some possible usage of validate_odd(…) function:

In this case, since 4 is not odd, a panic (runtime) error will be triggered.

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { … }
fn main() {
 let r = validate_odd(4).expect("Expecting a valid odd number");
 println!("Number is odd: {}",r);
}

Rust

thread 'main' panicked at 'Expecting a valid odd number', src\main.rs:11:28

Panic (runtime)

Let’s see some possible usage of validate_odd(…) function:

In this case since we have used unwrap_or method, the Option<i32>
value is evaluated. Since, 4 is not an odd number, the error case will be
triggered and the default value will be returned (in this case, it is -1)

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { … }
fn main() {
 let r = validate_odd(4).unwrap_or(-1);
 println!("Number is odd: {}",r);
}

Rust

Output

Number is odd: -1

Let’s see some possible usage of validate_odd(…) function:

Similarly, a function that returns the value in case of error can be used
via .unwrap_or_else method.

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> { … }
fn response_function() -> i32 {
 println!("There is an error !");
 return -1;
}
fn main() {
 let r = validate_odd(4).unwrap_or_else(response_function);
 println!("Number is odd: {}",r);
}

Rust

Output

There is an error !
Number is odd: -1

Let’s consider the following code:

What is the issue with this piece of code ?

Error management (Option type)

fn main() {
 let mut x: Option<String> = Some(String::from("my string"));
 let mut y: Option<String> = None;
 println!("x={:?}, y={:?}",x,y);
 y = x;
 println!("x={:?}, y={:?}",x,y);
}

Rust

Let’s consider the following code:

Error management (Option type)

fn main() {
 let mut x: Option<String> = Some(String::from("my string"));
 let mut y: Option<String> = None;
 println!("x={:?}, y={:?}",x,y);
 y = x;
 println!("x={:?}, y={:?}",x,y);
}

Rust

error[E0382]: borrow of moved value: `x`
 --> src\main.rs:7:31
 |
3 | let mut x: Option<String> = Some(String::from("my string"));
 | ----- move occurs because `x` has type `Option<String>`, which does not implement the `Copy` trait
...
6 | y = x;
 | - value moved here
7 | println!("x={:?}, y={:?}",x,y);

Compile Error

Assignments between enums follow the same rules as for other data types. In
particular for Option, since String does not implement the Copy trait the ownership
of that string is transferred entirely to variable “y” making variable “x” useful.

But what if want to transfer just the String (not the entire variable) and keep the
variable “x” but with the variant “None” ? This feature is in particular useful is an
Option<T> is part of a structure from where its more complicated to remove it ?

The solution is to use the method .take(&mut self) defined as following: lets assume
variable “s” is of type Option<T>; then let s2 = s.take() will have the following effect:

• If s is of type Some(T), then make s2 of type Some(T) and move the T value from s to s2. Then s
becomes None

• If s is of type None, then make s2 of type None and do nothing to s

Error management (Option type)

Let’s consider the following code:

Notice that after the call y = x.take(), x becomes None, and the String
from x is transferred to y.

Error management (Option type)

fn main() {
 let mut x: Option<String> = Some(String::from("my string"));
 let mut y: Option<String> = None;
 println!("x={:?}, y={:?}",x,y);
 y = x.take();
 println!("x={:?}, y={:?}",x,y);
}

Rust

Output

x=Some("my string"), y=None
x=None, y=Some("my string")

Let’s consider the following code:

In this case:
• First y = x.take(); moves “my string” from “x” to “y” and makes “x” None

• Second y = x.take(); has nothing to move from “x” (as it is already None) and as such y
becomes None as well.

Error management (Option type)

fn main() {
 let mut x: Option<String> = Some(String::from("my string"));
 let mut y: Option<String> = None;
 println!("x={:?}, y={:?}",x,y);
 y = x.take();
 println!("x={:?}, y={:?}",x,y);
 y = x.take();
 println!("x={:?}, y={:?}",x,y);
}

Rust

Output

x=Some("my string"), y=None
x=None, y=Some("my string")
x=None, y=None

How does an Option<T> looks in memory ?

The simplest way is to consider it as a structure with two fields (a bool
one and one of type T):

However, for some cases this template only contains the value. Since a
reference is never null, an Option<reference> in Rust does not need the
ok field, and as such it is guaranteed to be of the same size as the size
of a reference !

Error management (Option type)

Field Type Usage

ok bool (or an aligned number) If this field is 1 (true) than the field value is
correct and available, otherwise it is not

value T (the type from the template/generics) The actual value (only if field ok is 1 (true))

Let’s see the sizes of an Option in memory. For that we will use the following
standard command (std::mem::size_of) , that is an equivalent of sizeof keyword
from C/C++.

Error management (Option type)

fn main() {
 println!("Size of Option<usize> = {}", std::mem::size_of::<usize>());
 println!("Size of Option<i32> = {}", std::mem::size_of::<Option<i32>>());
 println!("Size of Option<i64> = {}", std::mem::size_of::<Option<i64>>());
 println!("Size of Option<&str> = {}", std::mem::size_of::<Option<&str>>());
 println!("Size of Option<Box<i32>> = {}", std::mem::size_of::<Box<i32>>());
}

Rust

Output

Size of Option<usize> = 8
Size of Option<i32> = 8
Size of Option<i64> = 16
Size of Option<&str> = 16
Size of Option<Box<i32>> = 8

Let’s discuss the previous results.

Error management (Option type)

Type Size Explanation

usize 8 It can be either 2,4 or 8 (depending on the architecture). In this case it is a x64
architecture (meaning the size of 8).

Option<i32> 8 Two field member (first field → 4 bytes (with alignment) is the ok part, second
field is an actual i32 value)

Option<i64> 16 Two field member (first field → 8 bytes (with alignment) is the ok part, second
field is an actual i64 value)

Option<&str> 16 One field (the actual str value). If null than None value is considered.
Keep in mind that size_of(str) = 16 (pointer+size), both 8 bytes

Option<Box<i32>> 8 One field (the pointer to an i32 value). If null, than None value is considered.

Now let’s see how Option handles memory for an enumeration:

Notice that Option<Color> and Color have the same memory size.

Let’s see why this happens.

Error management (Option type)

enum Color {
 Red, Green, Blue
}
fn main() {
 println!("Size of Color = {}", std::mem::size_of::<Color>());
 println!("Size of Option<Color> = {}", std::mem::size_of::<Option<Color>>());
}

Rust
Output

Size of Color = 1
Size of Option<Color> = 1

Let’s evaluate how memory looks like in the following cases:

Error management (Option type)

enum Color {
 Red = 2, Green = 4, Blue = 10
}
fn main() {
 let c = Color::Red;
 let o1 = Some(Color::Green);
 let mut o2: Option<Color> = None;
 o2 = Some(Color::Blue);
}

Rust Variable Type Value Memory
(Hex)

Let’s evaluate how memory looks like in the following cases:

enum Color {
 Red = 2, Green = 4, Blue = 10
}
fn main() {
 let c = Color::Red;
 let o1 = Some(Color::Green);
 let mut o2: Option<Color> = None;
 o2 = Some(Color::Blue);
}

Rust

Error management (Option type)

Variable Type Value Memory
(Hex)

c Color Color::Red 02

As Color is an enum, its size is considered one byte and
values Red, Green and Blue are mapped in this byte.

Let’s evaluate how memory looks like in the following cases:

enum Color {
 Red = 2, Green = 4, Blue = 10
}
fn main() {
 let c = Color::Red;
 let o1 = Some(Color::Green);
 let mut o2: Option<Color> = None;
 o2 = Some(Color::Blue);
}

Rust

Error management (Option type)

Variable Type Value Memory
(Hex)

c Color Color::Red 02

o1 Option<Color> Some(Color::Green) 04

Notice that “o1” has the same memory representation as
with what Color type has (meaning that Color::Green looks

identical in memory with Some(Color::Green)).
In this case, the question is how do we differentiate

between None and Some (in case of Color) ?

Let’s evaluate how memory looks like in the following cases:

enum Color {
 Red = 2, Green = 4, Blue = 10
}
fn main() {
 let c = Color::Red;
 let o1 = Some(Color::Green);
 let mut o2: Option<Color> = None;
 o2 = Some(Color::Blue);
}

Rust

Error management (Option type)

Variable Type Value Memory
(Hex)

c Color Color::Red 02

o1 Option<Color> Some(Color::Green) 04

o2 Option<Color> None 01

As it turns out, Rust searches an invalid value that can be
store on a byte (the same size as what Color has) and uses
that value to represent None. Since Color is using 2, 4 and
10, then value 1 (Hex: 01) is unused and as such Rust can
use this invalid value to represent None. As such, the size
of an enum and of an Option<enum> will be the same.

The same logic applies for enums with multiple types:

Error management (Option type)

#[derive(Debug)]
enum Values {
 Integer(i32),
 Float(f32),
 Bool(bool),
 Double(f64)
}
fn main() {
 let i = Values::Integer(10);
 let d = Values::Double(1.5);
 let n: Option<Values> = None;
 println!("{:?},{:?},{:?}",i,d,n);
}

Rust
Output

Integer(10),Double(1.5),None

In this case:
• Values::Integer → will use the discriminant 0
• Values::Float → will use the discriminant 1
• Values::Bool → will use the discriminant 2
• Values::Double → will use the discriminant 3
As such, the first free (invalid) value is 4. As a
result, “n” will have the same size as Values, but its
discriminant will be 4 (an invalid value to represent
None).

There are some exception cases to this type of optimization:

In this case, MultiValueEnum has 254 values. As such it is still possible for Rust to
find an invalid value (255) to be used for None cases. As such the size of the
enum and Option<…> are the same (one byte).

Error management (Option type)

#[derive(Debug)]
enum MultiValueEnum {
 Value_0,
 //Value_1 … Value_252
 Value_253,
 Value_254,
}
fn main() {
 println!("Size of MultiValueEnum = {}", std::mem::size_of::<MultiValueEnum>());
 println!("Size of Option<MultiValueEnum> = {}", std::mem::size_of::<Option<MultiValueEnum>>());
}

Rust
Output

Size of MultiValueEnum = 1
Size of Option<MultiValueEnum> = 1

There are some exception cases to this type of optimization:

However, if an enum fills up the entire space of possible value, this will force the
Option to use an additional byte to represent the discriminant. As such, the size of
the Option<…> will be higher.

Error management (Option type)

#[derive(Debug)]
enum MultiValueEnum {
 Value_0,
 //Value_1 … Value_252
 Value_253,
 Value_254,
 Value_255,
}
fn main() {
 println!("Size of MultiValueEnum = {}", std::mem::size_of::<MultiValueEnum>());
 println!("Size of Option<MultiValueEnum> = {}", std::mem::size_of::<Option<MultiValueEnum>>());
}

Rust
Output

Size of MultiValueEnum = 1
Size of Option<MultiValueEnum> = 2

It is also worth mention that Rust has several types that have similar optimization if
used with an Option:

• NonNull (a raw pointer that can not be Null). In this case, the value Null (since it
is an impossible value) will be used to describe the None case from an Option

• NonZero{numeric type} (an integer that can not be 0). The following types are
allowed: NonZeroI8, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI128,
NonZeroIsize, NonZeroU8, NonZeroU16, NonZeroU32, NonZeroU64,
NonZeroU128, NonZeroUsize. These types are in fact wrappers around the basic
integer types that make sure that the value is not 0. As such, they can be used
within an Option and keep the same size in memory.

Error management (Option type)

Now … let’s see how a C++ representation of a Rust Option looks like.
We will try to represent an Option<i32> in Rust.

Error management (Option type)

class OptionalInt {
 bool ok;
 int value;
public:
 OptionalInt(): ok(false), value(0) {}
 OptionalInt(int v): ok(true), value(v) {}
 inline bool has_value() const { return ok; }
 inline int value() const { if (!ok) throw "error"; return value; }
}

C++ (possible representation for Option<i32>)

And the usage within our function for odd numbers will look like this:

Error management (Option type)

class OptionalInt {
 bool ok;
 int value;
public:
 ………………………………
}

OptionalInt validate_odd(int value) {
 if (value % 2 == 1)
 return OptionalInt(value);
 else
 return OptionalInt();
}

C++

Similarly, for the case of a reference (denoted by a non-null pointer in
C++), consider the following possible implementation:

Error management (Option type)

class OptionalReferenceToInt
{
 int *value;
public:
 OptionalReferenceToInt() : value(nullptr) {}
 OptionalReferenceToInt(int *v) : value(v) {}
 inline bool has_value() const { return value != nullptr; }
 inline int& value() const
 {
 if (value == nullptr) throw "error";
 return *value;
 }
};

C++

C++ comparison:

Obs: .is_none() method is the opposite of .is_some() (so it is not necessary).

C++ also supports a lot of operators on top of std::optional. For example (.has_value() method is also
called via a cast operator to bool).

Error management (Option type)

Rust (Option) C++ (std::optional)

fn unwrap(self) -> T T& value();

fn expect(self, msg: &str) -> T N/A

fn is_some(&self) -> bool bool has_value()

fn is_none(&self) -> bool N/A

fn unwrap_or(self, default: T) -> T T value_or(T&& default)

fn unwrap_or_else<F>(self, f: F) -> T T or_else(F&& function) [from C++23]

fn and_then<F>(self, f: F) -> Option<T> T and_then(F&& function) [from C++23]

None std::nullopt

C++ comparison:

Error management (Option type)

fn validate_odd(n: i32) -> Option<i32> {
 if n % 2 == 1 {
 return Some(n);
 } else {
 return None;
 }
}
fn main() {
 let r = validate_odd(5);
 if r.is_some() {
 println!("Number is odd: {}",
r.unwrap());
 } else {
 println!("Error");
 }
}

Rust
std::optional<int> validate_odd(int value) {
 if (value % 2 == 1)
 return value;
 else
 return std::nullopt;
}
void main() {
 auto r = validate_odd(5);
 if (r.has_value())
 printf("Number is odd %d", r.value());
 else
 printf("Error");

}

C++17 and beyond

As a general overview, use Option in the following cases:

1. You have a function that might or might not return a value of some type (one
good example will be something like a String to Number function that might be
able to convert a parameter into a valid number or it might be not).
Option<i32> StringToNumber(s: &str)

 instead of
bool StringToNumber(s: &str, result: &mut i32)

2. You need to return an error code from a function (e.g., use the Option<T> to
include the error code, or None for no error code). This a less utilized case, but
it is still possible.

Error management (Option type)

Error management (Result type)

Rust has a special generics/template type (declared as an enum)
named Result that is used for these cases:

Error management (Result type)

pub enum Result<T, E> {
 #[lang = "Ok"]
 #[stable(feature = "rust1", since = "1.0.0")]
 Ok(#[stable(feature = "rust1", since = "1.0.0")] T),

 #[lang = "Err"]
 #[stable(feature = "rust1", since = "1.0.0")]
 Err(#[stable(feature = "rust1", since = "1.0.0")] E),
}

Rust (Source: result.rs from core library)

pub enum Result<T, E>
{
 Ok(T),
 Err(E),
}

Simplified view

Let’s see some examples:

Error management (Result type)

fn division(n1: i32, n2: i32) -> Result<i32, &'static str> {
 if n2 == 0 {
 return Err("Division by zero");
 } else {
 return Ok(n1 / n2);
 }
}
fn main() {
 let r1 = division(5, 0);
 let r2 = division(5, 1);
 print!("{:?},{:?}", r1, r2);
}

Rust

Output

Err("Division by zero"),Ok(5)

Note that division function can be simplified by removing the return
keyword and the final semicolon:

To provide even more
clarity, Err and Ok can
be preceded by the
enum name:

Error management (Result type)

fn division(n1: i32, n2: i32) -> Result<i32, &'static str> {
 if n2 == 0 {
 Err("Division by zero")
 } else {
 Ok(n1 / n2)
 }
}

Rust

fn division(n1: i32, n2: i32) -> Result<i32, &'static str> {
 if n2 == 0 {
 Result::Err("Division by zero")
 } else {
 Result::Ok(n1 / n2)
 }
}

Rust

To check if a Result contains an error or an ok value, use the methods:
.is_err() / .err() / .is_ok() / . ok()

Error management (Result type)

fn division(n1: i32, n2: i32) -> Result<i32, &'static str> { ... }
fn main() {
 let r = division(5, 0);
 if r.is_err() {
 println!("Error found: {}", r.err().unwrap());
 } else {
 println!("Success, result is {}", r.ok().unwrap());
 }
}

Rust

Output

Error found: Division by zero

To check if a Result contains an error or an ok value, use the methods:
.is_err() / .err() / .is_ok() / . ok()

… and a success case (e.g. a division between 5 and 2)

Error management (Result type)

fn division(n1: i32, n2: i32) -> Result<i32, &'static str> { ... }
fn main() {
 let r = division(5, 0);
 if r.is_err() {
 println!("Error found: {}", r.err().unwrap());
 } else {
 println!("Success, result is {}", r.ok().unwrap());
 }
}

Rust

Output

Success, result is 2

Why do we need that .unwrap() to get the err or ok value ?

That’s because both .err() and .ok() methods return an Option and not the actual
value: pub const fn err(self) -> Option<E> and pub const fn ok(self) -> Option<T>

Where T and E are template/generics
types define in Result enum.

Error management (Result type)

fn division(n1: i32, n2: i32) -> Result<i32, &'static str> { ... }
fn main() {
 let r = division(5, 2);
 if r.is_err() {
 println!("Error found: {}", r.err().unwrap());
 } else {
 println!("Success, result is {}", r.ok().unwrap());
 }
}

Rust

pub enum Result<T, E> {
 Ok(T),
 Err(E)
}

Result type has the following methods:

Error management (Result type)

Method Usage

fn unwrap(self) -> T Returns the value if no error is present or panics otherwise

fn expect(self, msg: &str) -> T Returns the value if no error is present or panics with a specific
message otherwise

fn expect_err(self, msg: &str) -> E Returns the error if present, else panics with a specific message

fn is_ok(&self) -> bool True if no error is present, false otherwise

fn is_err(&self) -> bool True if error is present, false otherwise

fn unwrap_or(self, default: T) -> T Returns the value if no error is present or a default value in case of
error

fn unwrap_or_else<F>(self, f: F) -> T Returns the value if no error is present or the result of a function in
case of error

fn err(self) -> Option<E> Returns an Option over an error

fn ok(self) -> Option<T> Returns an Option over the value

Let’s see how Rust result type is stored in memory:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust

Let’s see how Rust result type is stored in memory:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust

Memory layout for variable “r”

+0 +1 +2 +3 +4 +5 +6 +7

01 0A 00 00 00 00 00 00

01 = ERROR (we are on the error case)

0A (hex) = 10 => the i8 value

Possible structure (C representation)
struct ErrorCase {
 unsigned char index; // always 1 (Err case)
 signed char value;
}

Let’s see how Rust result type is stored in memory:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust

Memory layout for variable “r”

+0 +1 +2 +3 +4 +5 +6 +7

00 0A 00 00 E8 03 00 00

00 = OK (we are on the ok case)

E8 03 00 00 (hex) = 1000 (0xE8+0x03*256)

Possible structure (C representation)
struct OkCase {
 unsigned char index; // always 0 (Ok case)
 unsigned int value;
}

3 bytes
alignment

Let’s see how Rust result type is stored in memory:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust Possible structure (C representation)

union Result_i32_i8 {
 unsigned char index;

 struct {
 unsigned char index; // always 0
 unsigned int value;
 } Ok;

 struct {
 unsigned char index; // always 1
 signed char value;
 } Err;
}

Let’s see how Rust result type is stored in memory:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust Caller:
lea rcx,[r]
call Result::is_ok

Notice that RCX holds the address of “r” !!!

Let’s see how Rust result type is stored in memory:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust Result::is_ok:
 sub rsp,10h
 mov qword ptr [rsp+8],rcx
 mov al,byte ptr [rcx]
 and al,1
 movzx eax,al
 cmp rax,0
 jne index_is_0
 mov byte ptr [rsp+7],1
 jmp end_if
index_is_0:
 mov byte ptr [rsp+7],0
end_if:
 mov al,byte ptr [rsp+7]
 and al,1
 movzx eax,al
 add rsp,10h
 ret

Indeed, the first byte from
the address of “r” is being
checked to see if it is 1 or 0

Rust Result type has two similarities in C++:

1. std::variant (available from C++17) → more generic, and can be
adjusted to reflect a Result

2. std::expected (available from C++23) → this is the closest template
that mimics the way Rust Result works.

Note that std::variant is not designed for error management (but it can
be used for this purpose). std::variant can contain multiple different
types while Result only has two types.

Error management (Result type)

C++ comparison:

Obs: .is_ok() method is the opposite of .is_err() (so an equivalent is not necessary).

Error management (Result type)

Rust (Result) C++ (std::expected) C++ (std::variant)

fn unwrap(self) -> T T& value(); T& std::get<T> ();

fn expect(self, msg: &str) -> T N/A N/A

fn expect_err(self, msg: &str) -> E N/A N/A

fn is_ok(&self) -> bool bool has_value() bool std::holds_alternative<T> ();

fn is_err(&self) -> bool N/A bool std::holds_alternative<E> ();

fn unwrap_or(self, default: T) -> T N/A N/A

fn unwrap_or_else<F>(self, f: F) -> T N/A N/A

fn err(self) -> Option<E> E& error(); T& std::get<T> ();

fn ok(self) -> Option<T> T& value(); T& std::get<E> ();

C++ comparison:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust

std::variant<int32_t,int8_t> i32_or_i8(int value)
{
 if (value < 255)
 return (int8_t)value;
 else
 return (int32_t)value;
}
void main()
{
 auto r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if (std::holds_alternative<int32_t>(r))
 printf("Value = %d",std::get<int32_t>(r));
}

C++17

C++ comparison:

Error management (Result type)

fn i32_or_i8(value: i32) -> Result<i32, i8>
{
 if value < 255 {
 Err(value as i8)
 } else {
 Ok(value as i32)
 }
}
fn main() {
 let mut r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if r.is_ok()
 {
 println!("value = {}", r.unwrap());
 }
}

Rust

std::expected<int32_t,int8_t> i32_or_i8(int value)
{
 if (value < 255)
 return (int8_t)value;
 else
 return (int32_t)value;
}
void main()
{
 auto r = i32_or_i8(10);
 r = i32_or_i8(1000);
 if (r.has_value())
 printf("Value = %d", r.value());
}

C++23

It is worth mention that Result can be used as a returned type for main
function, Option however can not. In order to use a Result as a return
type for the main function, the Ok type has to implement a special trait
called Termination. For example, the following types implement this
trait:

• std::process::ExitCode

• Unit type “()” or void

• Never type “!”

Error management (Result type)

Let’s see some examples:

or with

Error management (Result type)

fn main() -> Result<(), i32> {
 let x = 10;
 println!("x = {:?}", x);
 Ok(())
}

Rust
Output

x = 10

use std::process::ExitCode;
fn main() -> Result<ExitCode, i32> {
 let x = 10;
 println!("x = {:?}", x);
 Ok(ExitCode::SUCCESS)
}

Rust
Output

x = 10

Let’s see some examples:

Since “i32” does not implement the trait Termination, it can not be
used as valid type for the Ok variant of an Result from main function.

Error management (Result type)

fn main() -> Result<i32, bool> {
 let x = 10;
 println!("x = {:?}", x);
 Ok(10)
}

Rust

error[E0277]: the trait bound `i32: Termination` is not satisfied
 --> src\main.rs:1:14
 |
1 | fn main() -> Result<i32, bool> {
 | ^^^^^^^^^^^^^^^^^ the trait `Termination` is not implemented for `i32`
 |
 = note: required for `Result<i32, bool>` to implement `Termination`

Compiler error

If let
let else
while let

When used with enums, if let and while let have a special syntax that
allows de-structuring the enum and copy the value associated with it
into a variable that will further be used in the next expression block.

Format:
• if let EnumVariant(variable) = Expression { … }
• while let EnumVariant(variable) = Expression { … }

Where:
- Expression returns an Enum object. One of the variants of that Enum has to

be of type EnumVariant
- If variable is of type EnumVariant, the variable is initialized and the if

condition is considered to be true
- This also mean that while in complex expression from if let or while let form,

that variable is initialized and can be used.

If let / let else / while let

Let’s see a simple example:

If let / let else / while let

enum Values {
 Bool(bool),
 Integer(i32),
 Float(f32),
}
fn main() {
 let i = Values::Integer(10);
 if let Values::Integer(v) = i {
 println!("i is Integer and has value: {v}");
 }
}

Rust

Output

i is Integer and has value: 10

Let’s see a simple example:

If let / let else / while let

enum Values {
 Bool(bool),
 Integer(i32),
 Float(f32),
}
fn main() {
 let i = Values::Integer(10);
 if let Values::Integer(v) = i {
 println!("i is Integer and has value: {v}");
 }
}

Rust

This translates in the following way:
- if “I” is of variant Integer, that copy the value of “I” (of

type i32) into a newly created variable (v) of type i32 and
run the THEN block of the if instruction.

Let’s see a simple example:

If let / let else / while let

enum Values {
 Bool(bool),
 Integer(i32),
 Float(f32),
}
use Values::*;
fn main() {
 let i = Values::Integer(10);
 if let Integer(v) = i {
 println!("i is Integer and has value: {v}");
 }
}

Rust

Notice that importing all values from values: use Values::*;
allows us to use the name of the variant directly in an if let /
while let structure.

Let’s see a simple example:

If let / let else / while let

enum Values {
 Bool(bool),
 Integer(i32),
 Float(f32),
}
use Values::*;
fn main() {
 let i = Values::Integer(10);
 let f = Values::Float(1.2);
 if let (Integer(v1),Float(v2)) = (i,f) {
 println!("i is Integer and has value: {v1}");
 println!("f is Float and has value : {v2}");
 }
}

Rust

Output

i is Integer and has value: 10
f is Float and has value : 1.2

Let’s see a simple example:

If let / let else / while let

enum Values {
 Bool(bool),
 Integer(i32),
 Float(f32),
}
use Values::*;
fn main() {
 let i = Values::Integer(10);
 let f = Values::Float(1.2);
 if let (Integer(v1),Float(v2)) = (i,f) {
 println!("i is Integer and has value: {v1}");
 println!("f is Float and has value : {v2}");
 }
}

Rust

This actually translates into:
If “I” is of type Integer and “f” is of type Float then

copy the value of “I” into “v1” and the value of “f” into “v2”

Let’s see a simple example:

If let / let else / while let

enum Values { Bool(bool), Integer(i32), Float(f32) }
use Values::*;
fn main() {
 let i = Values::Integer(10);
 let f = Values::Bool(true);
 if let (Integer(v1),Float(v2)) = (i,f) {
 println!("i is Integer and has value: {v1}");
 println!("f is Float and has value : {v2}");
 } else {
 println!("No match");
 }
}

Rust

Output

No match

Let’s see a simple example:

If let / let else / while let

enum Values { Bool(bool), Integer(i32), Float(f32) }
use Values::*;
fn main() {
 let i = Values::Integer(10);
 let f = Values::Bool(true);
 if let (Integer(v1),Float(v2)) = (i,f) {
 println!("i is Integer and has value: {v1}");
 println!("f is Float and has value : {v2}");
 } else {
 println!("No match");
 }
}

Rust

Notice that “f” is of type Bool. As such
the condition from if let statement is

false as “f” is not of type Float

This feature is in particular useful for usage with Option. For example:

If let / let else / while let

fn smaller_than_5(value: i32) -> Option<i32> {
 if value < 5 {
 Some(value)
 } else {
 None
 }
}
fn main()
{
 let mut x = 0;
 while let Some(i) = smaller_than_5(x) {
 println!("x = {i}");
 x += 1;
 }
}

Rust

Output

x = 0
x = 1
x = 2
x = 3
x = 4

The same logic with multiple variants can be used for while let as well:

If let / let else / while let

fn smaller_than(x: i32, value: i32) -> Option<i32> {
 if x < value {
 Some(x)
 } else {
 None
 }
}
fn main() {
 let mut x = 0;
 while let (Some(i), Some(j)) = (smaller_than(x, 5), smaller_than(x * 3, 8)) {
 println!("i = {i}, j = {j}");
 x += 1;
 }
}

Rust

Output

i = 0, j = 0
i = 1, j = 3
i = 2, j = 6

The same logic with multiple variants can be used for while let as well:

If let / let else / while let

fn smaller_than(x: i32, value: i32) -> Option<i32> {
 if x < value {
 Some(x)
 } else {
 None
 }
}
fn main() {
 let mut x = 0;
 while let (Some(i), Some(j)) = (smaller_than(x, 5), smaller_than(x * 3, 8)) {
 println!("i = {i}, j = {j}");
 x += 1;
 }
}

Rust

This translate as follows: while smaller_than(x, 5) returns a variant type of Some,
and smaller_than(x * 3, 8) also return a variant type of Some, copy the resulted

values into variable “i” and “j” and enter the while loop.

let else is also a special syntax that allows direct initialization of a
variable from an expression that results in an enum (for example an
Option)

Format:
• let EnumVariant(variable) = Expression else { <error code> }

The error code is usually a panic macro , or a return values (if this is
called from a function). It should be noticed that this is a sugar syntax
for the following:

• let x = if let EnumVariant(variable) { variable } else { <error code> }

If let / let else / while let

Example:

Notice that “x” is of type i32 ! (and not Option<i32>)

If let / let else / while let

fn smaller_than(x: i32, value: i32) -> Option<i32> {
 if x < value {
 Some(x)
 } else {
 None
 }
}
fn main() {
 let Some(x) = smaller_than(2, 3) else { panic!("Fail to initialize x"); };
 println!("x={x}");
}

Rust

Output

X=2

Example:

If let / let else / while let

fn smaller_than(x: i32, value: i32) -> Option<i32> {
 if x < value {
 Some(x)
 } else {
 None
 }
}
fn main() {
 let Some(x) = smaller_than(4, 3) else { panic!("Fail to initialize x"); };
 println!("x={x}");
}

Rust
thread 'main' panicked at 'Fail to initialize x', src\main.rs:9:44
stack backtrace:
 0: std::panicking::begin_panic_handler
 at
/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library\std\src\panicking.rs:593
 1: core::panicking::panic_fmt
 at
/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library\core\src\panicking.rs:67
 ...

Panic (runtime)

You can also use let…else syntax to return something from a function:

If let / let else / while let

fn smaller_than(x: i32, value: i32) -> Option<i32> {
 if x < value {
 Some(x)
 } else {
 None
 }
}
fn get_x(value: i32)->i32 {
 let Some(x) = smaller_than(value, 3) else { return -1; };
 x*2
}
fn main() {
 println!("get_x(2)={}",get_x(2));
 println!("get_x(4)={}",get_x(4));
}

Rust

Output

get_x(2)=4
get_x(4)=-1

Question mark operator (?)

Rust has a special unary operator “?” that works with Option and
Result generics in the following way:

• Let’s consider these expression: “x = a?”, where “a” is of type
Option<…> or Result<…>

• The “?” performs the following actions:
1. If the value of “a” is Some (for Option) or Ok (for Result), then “a” gets

unwrapped and assigned it to “x”

2. If the value of “a” is None (for Option) or Err (for Result) and the function
where “x = a?” operation is located returns an Option or Result, then the
function returns immediately the value of “a” → a None or Err

OBS: “?” operator can only be used in a function that has a return
type of Option<…> or Result<…>

Question mark operator (“?”)

Let’s see some examples:

In this case since both Some(10) and Some(15) are valid, the result
returns the expected sum.

Question mark operator (“?”)

fn sum(v1: Option<i32>, v2: Option<i32>) -> Option<i32> {
 let x = v1?;
 let y = v2?;
 Some(x + y)
}
fn main() {
 let result = sum(Some(10), Some(15));
 println!("{:?}", result);
}

Rust

Output

Some(25)

If however, we change one of the parameters to None, the sum is not
possible anymore, but we don’t need to change the code as the
execution will stop when evaluating “y”.

Question mark operator (“?”)

fn sum(v1: Option<i32>, v2: Option<i32>) -> Option<i32> {
 let x = v1?;
 let y = v2?;
 Some(x + y)
}
fn main() {
 let result = sum(Some(10), None);
 println!("{:?}", result);
}

Rust

Output

None

In reality, sum function can be written in two ways:

A) Using question mark operator ?

B) Using if expressions

Question mark operator (“?”)

fn sum(v1: Option<i32>, v2: Option<i32>) -> Option<i32> {
 let x = v1?;
 let y = v2?;
 Some(x + y)
}

Rust

fn sum(v1: Option<i32>, v2:Option<i32>) -> Option<i32> {
 let mut x = 0;
 if v1.is_none() { return None; } else { x = v1.unwrap(); }
 let mut y = 0;
 if v2.is_none() { return None; } else { y = v2.unwrap(); }
 Some(x + y)
}

Rust

Equivalent
code

Its important to notice that the operator “?” does not require the same
type to be used (but rather the same type for the error case).

Question mark operator (“?”)

fn foo()->Option<i32> {
 return None
}
fn goo()->Option<f64> {
 let x = foo()?;
 Some(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust

Output

x = None

Its important to notice that the operator “?” does not require the same
type to be used (but rather the same type for the error case).

Question mark operator (“?”)

fn foo()->Option<i32> {
 return None
}
fn goo()->Option<f64> {
 let x = foo()?;
 Some(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust

Notice that foo() and goo() function have different result types
(one returns an Option<i32> and the other one an Option<f64>)

Its important to notice that the operator “?” does not require the same
type to be used (but rather the same type for the error case).

Question mark operator (“?”)

fn foo()->Option<i32> {
 return None
}
fn goo()->Option<f64> {
 let x = foo()?;
 Some(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust

However, what's important is that the error type should be similar (in our
case, the error type of an Option is None and as such is the same for both

Option<i32> and Option<f64>). Or to be more precisely,
Option<i32>::None can be converted into Option<f64>::None

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Question mark operator (“?”)

fn foo()->Result<String,i32> {
 return Err(10)
}
fn goo()->Result<f64,i32> {
 let x = foo()?;
 Ok(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust

Output

x = Err(10)

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Question mark operator (“?”)

fn foo()->Result<String,i32> {
 return Err(10)
}
fn goo()->Result<f64,i32> {
 let x = foo()?;
 Ok(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust
In this case, the error case of foo is of type Err(i32). Similarly, the

error case of goo is of type Err(i32). This means that even if the Ok
cases for this two cases are different, we can use the “?” operator as

there is obviously a conversion possible from Err(i32) to Err(i32)

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Question mark operator (“?”)

fn foo()->Result<String,i8> {
 return Err(10)
}
fn goo()->Result<f64,i32> {
 let x = foo()?;
 Ok(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust

Output

x = Err(10)

Notice that the Error types don’t have to
be identical. There just has to be a

conversion possible between them. In this
case there is one between i8 and i32

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

In this case, Err(f64) can not be converted to Err(i32) so this type of
error can not be propagated.

Question mark operator (“?”)

fn foo()->Result<String,f64> {
 return Err(10.2)
}
fn goo()->Result<f64,i32> {
 let x = foo()?;
 Ok(1.234)
}
fn main() {
 let x = goo();
 println!("x = {:?}",x);
}

Rust

error[E0277]: `?` couldn't convert the error to `i32`
 --> src\main.rs:5:18
 |
4 | fn goo()->Result<f64,i32> {
 | --------------- expected `i32` because of this
5 | let x = foo()?;
 | ^ the trait `From<f64>` is not implemented for `i32`
 |
 = note: the question mark operation (`?`) implicitly performs a conversion on
 the error value using the `From` trait
 = help: the following other types implement trait `From<T>`:

Error

Q
A&

	Default Section
	Slide 1: Course – 3 Gavrilut Dragos
	Slide 2: Agenda for today

	Enums
	Slide 3: Enums
	Slide 4: Enums
	Slide 5: Enums
	Slide 6: Enums
	Slide 7: Enums
	Slide 8: Enums
	Slide 9: Enums
	Slide 10: Enums
	Slide 11: Enums
	Slide 12: Enums
	Slide 13: Enums
	Slide 14: Enums
	Slide 15: Enums
	Slide 16: Enums
	Slide 17: Enums
	Slide 18: Enums
	Slide 19: Enums
	Slide 20: Enums
	Slide 21: Enums
	Slide 22: Enums
	Slide 23: Enums
	Slide 24: Enums
	Slide 25: Enums
	Slide 26: Enums
	Slide 27: Enums
	Slide 28: Enums
	Slide 29: Enums
	Slide 30: Enums
	Slide 31: Enums
	Slide 32: Enums
	Slide 33: Enums
	Slide 34: Enums
	Slide 35: Enums
	Slide 36: Enums
	Slide 37: Enums
	Slide 38: Enums
	Slide 39: Enums
	Slide 40: Enums
	Slide 41: Enums
	Slide 42: Enums
	Slide 43: Enums
	Slide 44: Enums
	Slide 45: Enums
	Slide 46: Enums
	Slide 47: Enums
	Slide 48: Enums
	Slide 49: Enums
	Slide 50: Enums
	Slide 51: Enums
	Slide 52: Enums
	Slide 53: Enums

	Error management
	Slide 54: Error management
	Slide 55: Error management
	Slide 56: Error management
	Slide 57: Error management
	Slide 58: Error management
	Slide 59: Error management
	Slide 60: Error management
	Slide 61: Error management
	Slide 62: Error management
	Slide 63: Error management
	Slide 64: Error management
	Slide 65: Error management
	Slide 66: Error management
	Slide 67: Error management
	Slide 68: Error management
	Slide 69: Error management
	Slide 70: Error management
	Slide 71: Error management
	Slide 72: Error management
	Slide 73: Error management
	Slide 74: Error management

	Panic
	Slide 75: Error management (panic)
	Slide 76: Error management (panic)
	Slide 77: Error management (panic)
	Slide 78: Error management (panic)
	Slide 79: Error management (panic)
	Slide 80: Error management (panic)
	Slide 81: Error management (panic)
	Slide 82: Error management (panic)
	Slide 83: Error management (panic)
	Slide 84: Error management (panic)
	Slide 85: Error management (panic)
	Slide 86: Error management (panic)
	Slide 87: Error management (panic)

	Option
	Slide 88: Error management (Option type)
	Slide 89: Error management (Option type)
	Slide 90: Error management (Option type)
	Slide 91: Error management (Option type)
	Slide 92: Error management (Option type)
	Slide 93: Error management (Option type)
	Slide 94: Error management (Option type)
	Slide 95: Error management (Option type)
	Slide 96: Error management (Option type)
	Slide 97: Error management (Option type)
	Slide 98: Error management (Option type)
	Slide 99: Error management (Option type)
	Slide 100: Error management (Option type)
	Slide 101: Error management (Option type)
	Slide 102: Error management (Option type)
	Slide 103: Error management (Option type)
	Slide 104: Error management (Option type)
	Slide 105: Error management (Option type)
	Slide 106: Error management (Option type)
	Slide 107: Error management (Option type)
	Slide 108: Error management (Option type)
	Slide 109: Error management (Option type)
	Slide 110: Error management (Option type)
	Slide 111: Error management (Option type)
	Slide 112: Error management (Option type)
	Slide 113: Error management (Option type)
	Slide 114: Error management (Option type)
	Slide 115: Error management (Option type)
	Slide 116: Error management (Option type)
	Slide 117: Error management (Option type)
	Slide 118: Error management (Option type)
	Slide 119: Error management (Option type)
	Slide 120: Error management (Option type)
	Slide 121: Error management (Option type)

	Result
	Slide 122: Error management (Result type)
	Slide 123: Error management (Result type)
	Slide 124: Error management (Result type)
	Slide 125: Error management (Result type)
	Slide 126: Error management (Result type)
	Slide 127: Error management (Result type)
	Slide 128: Error management (Result type)
	Slide 129: Error management (Result type)
	Slide 130: Error management (Result type)
	Slide 131: Error management (Result type)
	Slide 132: Error management (Result type)
	Slide 133: Error management (Result type)
	Slide 134: Error management (Result type)
	Slide 135: Error management (Result type)
	Slide 136: Error management (Result type)
	Slide 137: Error management (Result type)
	Slide 138: Error management (Result type)
	Slide 139: Error management (Result type)
	Slide 140: Error management (Result type)
	Slide 141: Error management (Result type)
	Slide 142: Error management (Result type)

	if/while let
	Slide 143: If let let else while let
	Slide 144: If let / let else / while let
	Slide 145: If let / let else / while let
	Slide 146: If let / let else / while let
	Slide 147: If let / let else / while let
	Slide 148: If let / let else / while let
	Slide 149: If let / let else / while let
	Slide 150: If let / let else / while let
	Slide 151: If let / let else / while let
	Slide 152: If let / let else / while let
	Slide 153: If let / let else / while let
	Slide 154: If let / let else / while let
	Slide 155: If let / let else / while let
	Slide 156: If let / let else / while let
	Slide 157: If let / let else / while let
	Slide 158: If let / let else / while let

	Question mark operator
	Slide 159: Question mark operator (?)
	Slide 160: Question mark operator (“?”)
	Slide 161: Question mark operator (“?”)
	Slide 162: Question mark operator (“?”)
	Slide 163: Question mark operator (“?”)
	Slide 164: Question mark operator (“?”)
	Slide 165: Question mark operator (“?”)
	Slide 166: Question mark operator (“?”)
	Slide 167: Question mark operator (“?”)
	Slide 168: Question mark operator (“?”)
	Slide 169: Question mark operator (“?”)
	Slide 170: Question mark operator (“?”)

	Q&A
	Slide 171

