Rust programming
Course — 3

Gavrilut Dragos

Enums

Error management

1. Panic
2. Option
3. Result

if let / let else / while let
Question mark operator

Agenda for today

Enums

Enums

Enums in Rust are quite different that a classical concept of enums
from C/C++.

The format (in terms of keywords) is however similar:
Rust
enum <name> {

value 1,
value 2

value n

Similarly, to access a value from the enumeration use
<enum_name>::value

Let’s see some examples:

Rust

enum Color {
Red, Green,Blue,White,Black,

error[E@369]: binary operation == cannot be applied to type "Color"
--> src\main.rs:7:10

7 if ¢ == Color::Red {

}
fn main() {

let mut ¢ = Color::Red;
if ¢ == Color::Red {
println! ("Color is red");

note: an implementation of “PartialEq< > might be missing for “Color’
--> src\main.rs:2:1

2 | enum Color {
| must implement ~PartialEg< >"
help: consider annotating ~Color™ with “#[derive(PartialEq)]"

2 | #[derive(PartialEq)]

The code won’t compile |
because unlike C/C++ an enum is not implicitly associated with an int
value, and as such can not be compared with another type !

¥

Enums

While initially the tendency is to consider these two pieces of code as
equivalents, in reality, their behavior is quite different.

Rust C/C++

enum Color {
Red, Green,Blue,White,Black,

} };
fn main() { s i
) N . void main() {
let mut c = Color::Red; auto ¢ = Color::Red;

if ¢ == Color::Red { . __ ..
println!("Color is red"); 1 (c . Co}or..Re@) .
printf("Color is Red");

Compile error Compiles ok m
Color is Red

enum class Color {
Red, Green, Blue, White, Black

}

binary operation == cannot be
applied to type "Color”

Enums

This is because in Rust, an enum is more similar to a C++ class than to

C/C++ enum type.

Rust

enum Color {
Red,Green,Blue,White,Black,

¥

This is a better approximation of
how Rust enums work.

C/C++

class Color

{

int value;
public:
constexpr
constexpr
constexpr
constexpr
constexpr
Color(int

static
static
static
static
static

int Red
int Green
int Blue
int White
int Black

v) : value(v) {}

Enums

Let’s see how the new example in C/C++ compiles.
Error (MS compiler for C/C++)

C/C++

class Color {
int value;

public:
constexpr static int Red
constexpr static int Green
constexpr static int Blue
constexpr static int White
constexpr static int Black
Color(int v) : value(v) {}

}s

void main() {

Color c Color: :Red;

if (c == Color::Red)
printf("Color is Red");

Test.cpp(130,8): error C2676: binary '==":

'Color'

does not define this operator or a conversion to a

type acceptable to the predefined operator

So ... what happened ?

Enums

Let’s see how the new example in C/C++ compiles.
C/C++ Error (MS compiler for C/C++)

class Color { Test.cpp(130,8): error C2676: binary '==": 'Color'

does not define this operator or a conversion to a

int value; type acceptable to the predefined operator

public:
constexpr static int Red ; So ... what happened ?
constexpr static int Green ;
constexpr static int Blue
constexpr static int White
constexpr static int Black
Color(int v)|: value(v) {}

s

void main() { This works because of Color ctor that receives an int as a
Color ¢ = Color::Red; parameter. Since Color::Red = 0O (is defined as an int), the

if (c == Color::Red) expression is equivalent to'Color c(Color::Red);
printf("Color is Red");

Enums

Let’s see how the new example in C/C++ compiles.
C/C++ Error (MS compiler for C/C++)

class Color { Test.cpp(130,8): error C2676: binary '==": 'Color'

does not define this operator or a conversion to a

int value; type acceptable to the predefined operator

public:
constexpr static int Red ; So ... what happened ?
constexpr static int Green ;
constexpr static int Blue
constexpr static int White
constexpr static int Black
Color(int v) : value(v) {}

s

void main() {
Color c = Color::Red; This, however, will not compile. “c” is of type Color, Color::Red is of
if (c == Color::Red) type int, and there is no defined cast to convert from a Color to int,
printf("Color is Red"); nor any operator to evaluate == between a Color and an int !

Let’s see how the new example in C/C++ compiles.

C/C++

class Color {
int value;
public:
constexpr static
constexpr static
constexpr static
constexpr static
constexpr static

int Red
int Green
int Blue
int White
int Black

Color(int v) : value(v) {}
bool operator==(int v) { return value == v; }

}s
void main() {
Color c =

Color::

Red;

Color is Red

if (¢ == Color::Red) printf("Color is Red");

Enums

Now the code
compiles and
produces the
expected output.

Enums

So, what does the previous example means for our Rust code:
Rust
enum Color {

Red, Green,Blue,White,Black,

}
fn main() {

let mut ¢ = Color::Red;

if ¢ == Color::Red {

println!("Color is red");

¥

It means that we need to add a way to compare two Color objects, if
we want this program to compile and run as expected.

Enums

So, what does the previous example means for our Rust code:
Rust

derive()

enum Color { m
Red, Green,Blue,White,Black, Color is Red
}

fn main() {

let mut ¢ = Color::Red;
if ¢ == Color::Red {
println! ("Color is red");

¥

Now the code runs and works as expected.
But what is that - formula on top of the enum declaration ?

Enums

The pound sign (#) followed by [...] is the way Rust adds attributes for:
e Various declarations (structures, enums, etc)
* Methods or functions
* The entire program

Attributes will be studied in another course, but ... they can be used for
several things:
* To provide metadata about an object (version, name, docs, etc)

* To set up the configuration the compiler/linker should use when building an
object

* To automatically generate code

Enums

#[derive(<name>)] means automatically implementing a trait called

<name> into a structure / class / enum / etc. Automatically in this
context means different things based on the trait.

In particular for an enum, we have used #|derive(PartialEq)] -
meaning that we will implement the PartialEq trait for that enum.

For a type (let’s call it SomeType) a PartialEq implementation means
adding to functions (eq < equality) and (ne < not equal)

Rust

impl PartialEq for SomeType {
fn eq(&self, other: &SomeType) -> bool { .. }

fn ne(&self, other: &SomeType) -> bool { .. }

Enums

The C++ approximation is using operator overloading to do the exact
same thing:

Rust

impl PartialEqg for SomeType {
fn eq(&self, other: &SomeType) -> bool { .. }
fn ne(&self, other: &SomeType) -> bool { .. }

class SomeType

{

public:
bool operator == (const SomeType& other) {...}
bool operator != (const SomeType& other) {...}

Enums

So ... why PartialEQ and not just EQ ?
Well -> lets start with what equality means (or more precisely equivalence).

We define a binary relation @ as an equivalence relation, if and only if it is:
a) Reflexive =2a@a

b) Symmetric=2»a @b ifandonly ifb© a

c) Transitive = ifa® b andb © cthenla @ c

In practice, not all binary relations reflect an equivalence relation (main due to the
reflexive characteristics).

Enums

For example, if we are to look on 32 bytes floating value, and in particular
to how NaN is represented on IEEE 754 format, then we can deduce the
followings:

2 11 111111222222 3?2727?27?27?222222227?27?27?27?27?

* In reality, there are 224 possibilities to write a NaN

* So ... if you compare two NaN(s) via a bit check, they may be different, but they are
both NaN

e As such, a bit-by-bit comparison between two numbers will not be reflexive (for
floating values).

* While there are solutions (such as compare only some bits), adding this type of logi
for every float will highly impact the performance.

Enums

Let’s see how a simple enum looks like in memory ?
Rust

i cotc) Output
enum Color { .
Red, Green, Blue, White, Black S'ZeOfC()'Or-l

}
fn main() {

println!("size of Color = {}",std::mem::size of::<Color>());

¥

So ... one difference from C/C++ is that outside any other specifications,
a simple/small enum looks more like an u8/i8 value than an int (the
way it is treated in C/C++).

Enums

Let’s see how a simple enum looks like in memory ?

Rust

derive()
enum Color { Red, Green, Blue,
White, Black }
fn main() {
let mut ¢ = Color::Red;

if ¢ == Color::White {
println!("Color is white");

¥

byte ptr [c],@l

rdx, [offset to a Color::White object]

byte ptr [temp value],al
al,byte ptr [temp value]

mov
lea rcx, [c]

lea

call PartialEq::eq
mov

mov

test al,1

jne print_something
jmp end_program

» “c” object is in fact an u8 value (see the byte ptr from the assembly
code), where Color::Red is associated with value O

Enums

Let’s see how a simple enum looks like in memory ?

Rust

derive()
enum Color { Red, Green, Blue,
White, Black }
fn main() {
let mut ¢ = Color::Red;
ifl ¢ == Color::White
println! ("Color is white");

¥

mov byte ptr [c],0

lea rcx, [c]

lea rdx, [offset to a Color::White object]
call PartialEq::eq

mov byte ptr [temp value],al

mov al,byte ptr [temp value]

test al,1

jne print_something

jmp end_program

* Next we need to call eq method from PartialEQ with two parameters
(self — denoted by RCX register that holds the address of “c”) and a
reference (offset of another object of type Color to compare against)

Enums

Offset Value

Let’s see how a simple enum looks like in memory ? | Addrof Color:White 3

Rust

derive()
enum Color { Red, Green, Blue,
White, Black }
fn main() {
let mut ¢ = Color::Red;

if ¢ == Color::White {
println!("Color is white");

¥

mov
lea
lea
call
mov
mov
test
jne
jmp

byte ptr [c],0

rcx, [c]

rdx,|[offset to a Color::White object]|
PartialEq: :eq

byte ptr [temp value],al

al,byte ptr [temp value]

al,1

print_something

end_program

* This offset points to a static address where the value “3” (u8) is
located. Why 3? Well 2> Red =0, Green =1, Blue = 2, White = 3 ... and
since we compare “c” with Color::White, the object has to be a “3”

Let’s see how a simple enum looks

Enums

ike in memory ?

sub
mov
mov
movzx
mov
movzx
mov

rsp,28h

gword ptr [rsp+8],rcx // self
gword ptr [rsp+10h],rdx // other
eax,byte ptr [rcx]

gword ptr [rsp+18h],rax

ecx,byte ptr [rdx]

gword ptr [rsp+20h],rcx

| cmp

rdx, [offset to a Color::White object]

rax,rcx Je

je
mov
jmp

if_then_part:

mov

end_if_label:

mov
and
movzXx
add
ret

if then_part
byte ptr [return_value],0 // false
end_if label

byte ptr [return_value],1 // true

al,byte ptr [return_value]
al,1

eax,al

rsp,28h

byte ptr [temp value],al
al,byte ptr [temp value]

mov byte ptr [c],0

lea rcx, [c]

lea

call PartialEq::eq|

mov

mov

test al,1

jne print_something
jmp end_program

As we can see all this function is

doing is to compare the first byte

from the two objects.

Enums

Let’s see how a simple enum looks like in memory ?
sub rsp,28h
mov gword ptr [rsp+8],rcx // self mov byte ptr [C],@
mov gword ptr [rsp+10h],rdx // other
movzx eax,byte ptr [rcx] lea e [C] . .
mov gword ptr [rsp+18h], rax lea rdx, [offset to a Color::White object]
movzx ecx,byte ptr [rdx] call PartialEq::eq|
’2;‘; ﬁgi"iczt" |PSEAenllo e mov byte ptr [temp value],al
je if then part mov al,byte ptr [temp_value]
mov byte ptr [return_value],® // false test al,1
~ Jmp end_if_label jne print_something
if_then_part: . d
mov byte ptr [return_value],1 // true Jmp Sre_prrergrein
end_if label:

i al,byte ptr [return_value] Notice that “and al,1”. This instruction makes sure that the value
| and al,1 | of al is either 1 or O. This is a clear indicator that the result of this

Movzx eax;al function is a bool value (with 1=true and O=false).

add rsp,28h

ret

Enums

Let’s see how a simple enum looks like in memory ?

Rust

derive() mov byte ptr [c],0
enum Color { Red, Green, Blue, lea rcx, [c]
White, Black } lea rdx, [offset to a Color::White object]
fn main() { call PartialEq::eq
let mut c = Color::Red; mov byte ptr [temp value],al

if ¢ == Color::White { mov al,byte ptr [temp_value]
println! ("Color is white"); test al,1

} jne print_something

jmp end_program

 Finally, we check the bool value returned from the previous step to
see if it is true (value 1) or not

Enums

This means that a proper C++ code that reflects this Rust code is:

C++ equivalent for Rust Color enum

class Color {
uint8 t value;
Color(uint8 t v) : value(v) {}
public:
static const Color Red,Green,Blue,White,Black;
bool operator==(const Color& v) { return value == v.value; }
}s
const Color Color::Red (0);
const Color Color::Green(1l);
const Color Color::Blue (2);
const Color Color::White(3);
const Color Color::Black(4);

void main() {
Color ¢ =
if (c == Color::White) printf("Color is White");

Color: :Red;

Enums

So ... why are Rust enums built like this ? Is there a specific advantage
they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)
1. Enum with just some variants

Rust C++
derive() enum class Color {

enum Color { Red, Green, Blue, Red, Green,Blue,White,Black
White, Black } }s

Enums

So ... why are Rust enums build like this ? Is there a specific advantage

they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)
2. Enum with just some variants with specific values

Rust
derive(

enum Color {
Red = 2,

Green = 10,
Blue,
White, Black

C++

enum class Color {

Red
Green
Blue,
White,
Black

2,
10,

Enums

So ... why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)
3. Enum with a specific type (e.g. int)

Rust C++
derive(enum class Color : int {
(i32) Red p)
enum Color { Green = 1
Red = 2, Blue,

J
9,

Green = 10, White,
Blue, White, Black Black

Enums

So ... why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)
3. Enum with a specific type (e.g. int)

To specify a certain type/representation behind the discriminant of an enum, use
) the following format: #[repr()]
where type can be u8/i8, ul6/il6, ... u128/i128, usize/isize.
Red = Zf Currently, u128/i128 layout is unstable !

derive(

(

Green = 10, White,
Blue, White, Black Black

Enums

So ... why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)

3. Enum with a specific type (e.g. int)
Rust

error[E@552]: unrecognized representation hint
--> src\main.rs:1:8
|
1 | #[repr(bool)]
| AAANA
= help: valid reprs are "C, "align , “packed , "transparent™, “simd", 18, "u8,
“il6’, “uleé’, "i32°, "u32", "i6e4, "u6d’, 1128, "ul28, “isize’, “usize’

Not all representation are allowed ! Only
numerical (integer) representation can
be used for an enum discriminant.

Enums

So ... why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)
3. Enum with a specific type (e.g. int)

Rust
(132)

enum Color {
Red = 1,Green = 3,Blue = 15

¥

fn main()

let ¢ Color: :Green;
let 1 = ¢ as 132;
println! ("i={1i}");

You can also use as to convert an enum that has a
numeric representation to its numerical value.

Enums

So ... why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

Well ... yes = but first, let’s see some examples (Rust/C++)

4. Bitflags
 Bitflags are NOT possible in Rust (with the standard library and functionality)

* There are however different crates (e.g EnumBitFlags , bitflags) that provides
this functionality through some Rust macros

* In C++ bitflags over enums are easily implemented via friend functions that
implement operators like | |, &&, 1, etc.

Enums

So ... why are Rust enums build like this ? Is there a specific advantage
they get by doing this ?

This is the main case why enums are build like this (flexibility).

5. Multiple data member types enums

e Since an enum in Rust is more like a class than a classical enum from C, there
is no reason to limit the variants to a specific type

* In C/C++, all variants from an enum have the same type (usually int if
something else is not provided). This limitation can be overcome if we use
classes with static const values instead of | Rust

enum <Name> {
enums. Variant,(type,),

* In Rust, however, we can create different variant,(type,,..)
variants of different types -> Variant,

Overview (Rust enums vs C/C++ enums)

I L S =T

Simple enums Yes Yes
Simple enums mapped to a specific type Yes Yes
Simple enums with different values (of the same Yes Yes
type) associated to each variant

Enums that work as a bitflag No* Yes**
Enums with value of different types Yes No***

* There are some crates such as EnumBitFlags, bitflags that solves this problem via macros

** Requires the usage of friend keyword do overwrite operators such as || , &&, etc
*** Can not be done with classical enums, but fully supported through std::variant

Enums

Enums

Let’s see some example of enums with variant of multiple types.
Rust

derive(

Integer(132), Integer(10),Float(1.2),Character('a’)
Float(f32),

Character(char)

¥

fn main() {
let i = Values::Integer(10);
let f = Values::Float(1.2);
let ¢ = Values::Character('a');

println! ("{:?},{:?},{:?}",i,f,c);

The reason for the Debug derivation is to provide printin! macro some
sort of reflection that can be used to print enum values.

Enums

Let’s see some example of enums with variant of multiple types.
Rust
enum Values {

Integer(i32),

Float(FBZ), error[E@605]: non-primitive cast: “Values as "i32°

Char‘acter‘(char‘), —r src\main.rs:15:25

} 15 | println!("i is {}",

fn main() { | an ~as expression can only
g be used to convert between primitive types or to coerce to a
let i = Values::Integer(10); specific trait object

println! ("1 is {}", 1 as 132);

So ... if this is not possible:
How can we tell if “i” is a Values::Integer, Values::Float or
Values::Character ?

Enums

Let’s see some example of enums with variant of multiple types.
Rust
enum Values {

Integer(i32),

Float(f32),

Character(char),

When we are trying to find the underlying type of one of the variants
from an enum, we often use the term discriminant. The discriminant is
often a numerical value that specifies the type (for example in this

example the discriminant could be 0 for Integer, 1 for Float and 2 for
Character).

Enums

The solution is to use match to validate the type of an object from Values:
Rust

enum Values {
Integer(i32),
Float(f32),
Character(char),
}
fn extract _integer(v: &Values) -> i32 {
match v {

Values::Integer(ivalue) => return *ivalue,
_ => return -1,

}
}
fn main() {
let i = Values::Integer(10);
println!("i is {}", extract_integer(&1i));

Enums

The same can be obtained by implementing a method into an enum:

Rust

enum Values {
Integer(i32),
Float(f32),
Character(char),
}
impl Values {
fn get _int(&self) -> 132 {
match self {

Values::Integer(ivalue) => return *ivalue,
_ => return -1,

}
}
fn main() {

let i = Values::Integer(10);
println!("i is {}", i.get_int());

Enums

Alternatively, we can use std::mem::discriminant(...) to check if two values

from the same enum have the same discriminant.
Rust

use std: :mem;
enum Values { 'a' and 'b' are of the same variant type !

Integer(i32), 'a' and 'c' are not the same variant type !
Real(f64),

Output

}

fn main() {
let a = Values::Integer(10);

let b = Values::Integer(20);

let ¢ = Values::Real(1.2);

if mem::discriminant(&a) == mem::discriminant(&b) {
println!("'a' and 'b' are of the same variant type !");

}
if mem::discriminant(&a) != mem::discriminant(&c) {
println!("'a' and 'c' are not the same variant type !");

}

Enums

The previous example can be adjusted to find out if a value of an enum is
of a specific type. Keep in mind that this method, while it works implies

creating a temporary object to be used for comparison |

Rust
enum Values {
Integer(i32), i is int: true
Float(f32),
Character(char),

}
impl Values {

fn is_int(&self) -> bool {

std::mem: :discriminant(self) == std::mem::discriminant(&Values::Integer(0))

}
¥
fn main() A

let 1 = Values::Integer(10);
println!("i is int: {}", i.is_int());

Enums

A variant from an enum can also be a set of values. The next example

creates two version of an IpAddress (v4 and v6).
Rust

derive()
enum IpAddress {
v4(u8, u8, u8, u8),
v6(ul6, ul6, ulé, ul6, ule, ule), v4(192, 168, 0, 1), v6(8208, 4660, 255, 0, 0, 65298)
}

fn main() {
let ip 1 IpAddress::v4(192, 168, 9, 1);
let ip 2 IpAddress::v6(0x2010, 0x1234, OxO0FF, 0x0000, 0x0000, OxFF12);
printIn!("{:?}, {:?}", ip_1, ip_2);

Enums

Let’s see some example of enums with variant of multiple types.

Rust
derive(

il Output
Integer(i32),
Float(f32), Different integers

}

fn main() {
let i1 = Values::Integer(10);

let i2 = Values::Integer(20);
if 11 == i2 {
println! ("Equal integers")
} else {
println! ("Different integers");

¥

When comparing two enum variants, Rust will compare both their
types and their value (if present).

Enums

Let’s see some example of enums with variant of multiple types.

Rust
derive(

e tegen(i Output
Integer(i32),
Float(f32), Equal integers

}

fn main() {
let i1 = Values::Integer(10);

let i2 = Values::Integer/(10);
if 11 == i2 {
println! ("Equal integers")
} else {
println! ("Different integers");

¥

When comparing two enum variants, Rust will compare both their
types and their value (if present).

Enums

Let’s see some example of enums with variant of multiple types.

Rust
derive(

il Output
Integer(i32),
Float(f32), Different integers

}

fn main() {
let i1 = Values::Integer(10);

let i2 = Values: {Floati(2.90);
if 11 == i2 {
println! ("Equal integers")
} else {
println! ("Different integers");

¥

When comparing two enum variants, Rust will compare both their
types and their value (if present).

Enums

Let’s see some example of enums with variant of multiple types.

Rust
derive(

il Output
Integer(i32),
Float(f32), Different integers

}

fn main() {
let i1 = Values::Integer(10);

let 12 = Values::Float(10.0);
if 11 == i2 {
println! ("Equal integers")
} else {
println! ("Different integers");

¥

Even if the value is the same (10) since there are different types
(Integer and Float) they will not be equal.

Enums

Let’s see some example of enums with variant of multiple types.
Rust

derive(

Integer(i32), -
Bool(bool), Size of Values =16

Real(f64),

}
fn main() {

println!("Size of Values = {}", std::mem::size of::<Values>());

¥

So ... why is the size of Values 16 bytes ?
- an Integer is 4 bytes
- a bool is one bytes
- a float64 is 8 bytes

Enums

Let’s see some example of enums with variant of multiple types.
Rust

derive(
enum Values {
Integer(i32),
Bool(bool),
Real(f64),

}
fn main() {

let i Values::Integer(10);
let b = Values::Bool(true);
let r = Values::Real(1.234);

Let’s see how i, b, or r look in memory.

Enums

Let’s see some example of enums with variant of multiple types.
Rust

derive(

enun Values { L e L L
Integer(i32),

BOOl(bOOl), +10 +11 +12 +13 +14 +15
Real(f64),

¥

fn main()

let i Values::Integer(10);
let b = Values::Bool(true);
let r = Values::Real(1.234);

Let’s see how i, b, or r look in memory.

Enums

Let’s see some example of enums with variant of multiple types.
Rust

derive(

enun Values { NN
Integer(i32),

BOOl(bOOl), +10 +11 +12 +13 +14 +15
Real(f64),

}
fn main() {

let i = Values::Integer(10);
let b = Values::Bool(true);
let r = Values::Real(1.234);

Let’s see how i, b, or r look in memory.

Enums

Let’s see some example of enums with variant of multiple types.
Rust

derive(

N ™
Integer(i32),

+10 +11 +12 +13 +14 +15
Bool(bool),

Real(f64), 58 39 B4 C8 76 BE F3 3F

}
fn main() {

let i Values::Integer(10);
let b = Values: :Bool(true);
let r = Values::Real(1.234);

Let’s see how i, b, or r look in memory.

Enums

This means that in reality, this is more like a union than multiple data
members within the same class..

C++ aproximation
Values

C++ (2017 and beyond)

std::variant<int32_t,
uint8 t index;
{
Integer {
uint8 t index;
int32_t value; Where Values::index is:

Bool { 0 -2 if the underline type from the union is Integer
uint8 t index;

value;

1 - if the underline type from the union is Bool
2 = if the underline type from the union is Real

Real {
uint8 t index;
value;

Error management

Error management

For every program (regardless of the language it is written in) there are

three situations that require error management:

Compile Error Usually when some semantics of the language are
incorrect.

Run-time Error An error that can be managed by the program (e.g. we
(manageable) are trying to connect to a database but the internet
connection is unavailable)

Run-time Error An error that by its nature stops the execution of the
(critical) program (e.g. a game can not start if the graphical
driver is not working)

Repair the error and compile again

In this case, we need to have a logic
within the program that treats this
error (e.g. pops up a message and
then wait for the internet
connection to be available)

Nothing. These are the cases where
the program just stops.

Error management

In reality, run-time errors can be:

1. Treated =2 meaning that there is a specific code that treats an error
(a specific execution flow that takes into consideration various cases
where errors might occur)

2. Un-treated =@ these are dangerous situation that might lead to
program crashing or undefined behavior

A well written program falls into category 1 (meaning that the
programmers of that program were very careful about various situation
that might occur and can produce an error).

Error management

Let’s see a C/C++ example and discuss how an error might be treated:
C

int div(const char * nl, const char* n2) {
return atoi(nl)/atoi(n2);

}

void main(char** argv, int argc) {
printf("Result is: %d",div(argv[1l],argv[2]));

}

We will focus on div function, and not on the problems from the main
function (e.g. not enough parameters).

Error management

What potential problems can we spot on div function ?

int div(const char * nl1, const char* n2) {

return atoi(nl)/atoi(n2);

1. “nl® or “n2” can be null pointers (e.g. for example if the command
line arguments are less than 2)

2. “n1” or “n2” can be invalid numbers (we are working with string, so
there is no guarantee that either n1 or n2 respect a valid numerical
format;

3. “n2” could be a valid number, but it is 0 and division by 0 will
produce an error.

Error management

So how can we change function “div” to treat errors ?

1. Change the signature of function “div” to return either true (if the

division was successful) or |EIHs otherwise and put the actual result
in a reference or pointer.

C

bool div(const char * nl, const char* n2, int* result) { .. }

bool div(const char * nl, const char* n2, int& result) { .. }

It is recommended to use a reference as we don’t need to add an extra
validation to check if the result pointer is valid.

Error management

So how can we change function “div” to treat errors ?

1. Change the signature of function “div” to return either true (if the

division was successful) or |EIHs otherwise and put the actual result
in a reference or pointer.

The usage of such a function will be as follows:

C

void main(char** argv, int argc) {
int result;
if (div(argv[1l],argv[2],result)==true) {
printf("Result is: %d",result);

} else {
// error case

¥

Error management

So how can we change function “div” to treat errors ?

1. Change the signature of function “div” to return either true (if the

division was successful) or |ElHs otherwise and put the actual result
in a reference or pointer.

* Easy to write (regardless of the language) * We need references (this means that every
function call should be preceded by a
variable definition where the result will be
put)

* Bool type is not necessarily associated with
errors and as such some results might be
misleading.

* We don’t know the actual error (just that
there is one).

Error management

So how can we change function “div” to treat errors ?

2.

Change the signature of function “div” to return an error code (an
int value that if set to O (or other constant) means no error, and
otherwise means an error code). Similar to precedent case, the
actual result should be put in a reference or pointer.

C

int div(const char * nl, const char* n2, int* result) { .. }

int div(const char * nl, const char* n2, int& result) { .. }

Error management

So how can we change function “div” to treat errors ?

2. Change the signature of function “div” to return an error code (an
int value that if set to O (or other constant) means no error, and
otherwise means an error code). One possible usage:

void main(char** argv, int argc) {
int result;
int error = div(argv[l],argv[2],result);
if (error 9) {
printf("Result is: %d",result);
} else {

switch (error) {
case 1: printf("First parameter is null !"); break;
case 2: printf("Second parameter is null !"); break;

Error management

So how can we change function “div” to treat errors ?

2. Change the signature of function “div” to return an error code (an
int value that if set to O (or other constant) means no error, and
otherwise means an error code). One possible usage:

* Easy to write (regardless of the language) * We need references (this means that every

* We know the error and we can act on it function call should be preceded by a
variable definition where the result will be
put)

* Int (or numerical) types are not necessary
associated with errors and as such some
results might be misleading.

Error management

So how can we change function “div” to treat errors ?

3. Use exception (meaning that div function signature will not be
changed). Instead, whenever an error occurs, an exception will be

thrown.
C

int div(const char * nl, const char* n2) { .. }

This is a different approach that starts from the assumption that a
function signature should reflect its purpose and not its error

handling mechanisms.

Error management

So how can we change function “div” to treat errors ?

3. Use exception (meaning that div function signature will not be
changed). Instead, whenever an error occurs, an exception will be
thrown. Possible usage:

C

void main(char** argv, int argc) {

try {
printf("Result is: %d",div(argv[l],argv[2]));

}

catch (DivisionBy®Error)

{
}
catch (...)
{

}

printf("Division by 0");

printf("other error")

Error management

So how can we change function “div” to treat errors ?

3.

Use exception (meaning that div function signature will not be
changed). Instead, whenever an error occurs, an exception will be

thrown.

* Easy to write (regardless of the language) * Not really linear in terms of code execution

* We know the error and we can act on it * Memory allocation might not be cleared
* (Can’t really be enforced (someone can

decide not to use it, because a try...catch
block is not necessary to read the result of a

function.

Error management

So how can we change function “div” to treat errors ?

4. Use an Jige]gyel=eiileRi'/els that holds both the value and the

error/error code. This is a more modern approach of the error
management problem. A definition (for C++ language) looks like

this:
C++17 and beyond

std::optional<int> div(const char * nl, const char* n2) { .. }

This type was introduced in C++ with the 2017 standard.

Error management

So how can we change function “div” to treat errors ?

4. Use an Jige]gyel=eiileRi'/els that holds both the value and the
error/error code. This is a more modern approach of the error

management problem. A possible usage:

void main(char** argv, int argc) {
auto res = div(argv[1l],argv[2]);
if (res.has_value()){
printf("Result is: %d",res.value());

} else {
// process error

}

}

Notice that the code is quite small and the res variable incapsulates
both the value and the error.

Error management

So how can we change function “div” to treat errors ?

4. Use an Jige]gyel=eiileRi'/els that holds both the value and the

error/error code. This is a more modern approach of the error
management problem.

Easy to write (regardless of the language) * Might require some adjustments in how

We know the error and we can act on it someone programs if he/she are used with
Linear programming an error management similar to cases 1,2 or
Enforceable (you can not get the result 3

without knowing the error as well)
This is a type designed for error
management so it has no double
interpretation

Error management

A general observation on these four cases:

- Older languages (e.g. C) usually use cases 1 or 2 (e.g. Windows API
(case 1), Linux API (case 2))

- Newer languages (C++, Java, C#, Python, etc) usually support cases 1
to 3. The potential risk here is that none of these cases are

enforceable (meaning that someone might write a program and use
all 3 techniques to propagate errors)

- Modern languages (e.g. C++17/C++20/C++23, Rust) support the 4th
method as well.

Error Management

——m

Case 1 (return True/False)

Case 2 (return error code) Yes Yes Yes
Case 3 (exceptions) - Yes -

Case 4 (return True+value for success, False otherwise) - std::optional Option
Case 4 (return value for success, error information - std:expected Result

otherwise) std::variant

Error management

* What differentiate Rust from the rest of the languages that
implement the 4t method is that Rust does not implement
exceptions.

* This means that a programmer can decide to use either case 1,2 or 4
in Rust if he/she wants to return an error.

Error management

Error management in Rust is done via:

1.
2.

panic macro (if we want to immediately exit a program)

Option template/generic type (if we want to return a value or
nothing — the latter meaning that an error has occurred)

Result template/generic type (if we want to return a value or an
error that explains what happened).

Error management (panic)

Error management (panic)

A “panic” is a critical runtime-error that you can not recover from.
In Rust, these situation can be encountered in two scenarios:

1. The execution flow reach a point where the outcome cannot be
computed in a deterministic way (e.g. a possible undefined
behavior). Stopping the execution at this point will provide more
information for a developer to fix the actual issue (e.g. a heap
overflow). In Rust this is done at thread level (meaning it will stop
the current thread, not the entire process).

2. The logic of the problem / its purpose can not be served anymore,
and the programmer decides to stop the problem at the current
point of the execution.

Error management (panic)

Rust provides a macro (called panic!) that can be used to abord a
program immediately. panic! macro has two forms:

Rust

panic! ();

fn main() {
let rl1 20;
let r2 10

panic! (message);

J

panic!("Expecting rl1={rl} to be smaller than r2={r2}");

Panic (runtime —v 1.61.0)

thread 'main' panicked at 'Expecting rl=20 to be smaller than r2=10', src\main.rs:7:9
stack backtrace:
0: std::panicking::begin_panic_handler
at /rustc/fe5bl13d681f25ee6474be29d748c65adcd91f69e\/library\std\src\panicking.rs:584
1: core::panicking::panic_fmt
at /rustc/fe5bl13d681f25ee6474be29d748c65adcd91f69e\/library\core\src\panicking.rs:143
2: first::main
at .\src\main.rs:7

Error management (panic)

Panic errors can also be triggered if the programmer is trying to
perform an operation with an undefined result:

Rust Panic (runtime) — for Rust 1.61.0

. thread 'main’' panicked at 'index out of bounds: the len is 3 but the index is 10', src\main.rs:3:13
fn rna]}1() { stack backtrace:
let v [1@) 20, 3@] ; 0: std::panicking::begin_panic_handler
at /rustc/fe5bl13d681f25ee6474be29d748c65adcd91f69e\/library\std\src\panicking.rs:584
1: core::panicking::panic_fmt
at /rustc/fe5bl13d681f25ee6474be29d748c65adcd91f69e\/library\core\src\panicking.rs:143

let x = v[v[0O]];
println! ("x={x}");

2: core::panicking::panic_bounds_ check

In this case, there is an attempt to read a value from a vector outside
its bounds. While it is possible that the memory from the offset “10”
(the value of v|[0]) is accessible (e.g. a value on the stack) the outcome
is undetermined and it is better to cause an abord at this point that try
to understand an error thrown by an incorrect value of later.

Error management (panic)

Its also important to notice that Rust tries to identify this kind of error
from the compile phase. Let's compare the next three cases:

Rust

main()
v = [10,20,30];

X = v[10];

println! ("x={x}");

Error

error: this operation will panic
at runtime
--> src\main.rs:3:13

That’s obvious (v[10] is clearly out of bounds for an
array of 3 elements).

|
3 | let x = v[10];
| annan index out
of bounds: the length is 3 but
the index is 10

Error management (panic)

Its also important to notice that Rust tries to identify this kind of error
from the compile phase. Let's compare the next three cases:

Rust Rust (1.61.0)

fn main() { fn main() {
let v [10,20,30]; let v = [10,20,30];
let x = v[10]; let x = v[v[O]];
println! ("x={x}"); println! ("x={x}");

Panic (runtime — 1.61.0)

error: this operation will panic
at runtime

s src\main.rs:3:13 thread 'main’ panicked at 'index In this case, Rust 1.61.0 crashes at runtime

| out of bounds: the len is 3 but (it is unable to identify that|v[v[0]] = v[10]
3 | let x = v[10]; the index is 10',
I

AAAAA index out src\main.rs:3:13 that is clearly out of bounds)

of bounds: the length is 3 but
the index is 10

Error management (panic)

Its also important to notice that Rust tries to identify this kind of error
from the compile phase. Let's compare the next three cases:

Rust Rust (1.61.0) Rust (1.71.0)
main() { main() { main() {
v = [10,20,30]; v = [10,20,30]; v = [10,20,30];

X = v[10]; x = v[v[e]]; x = v[v[e]];
println! ("x={x}"); println! ("x={x}"); println! ("x={x}");

Panic (1.71.0)

error: this operation will panic

Notice that this is the exact same code but tested with a
different (newer) version of Rust. As it turns out, Rust constantly at runtime

--> src\main.rs:3:13

improves its detection for out of boundery cases. This is why |
the same case that will trigger a runtime panic for version 3 I let x = vv[e]];

AAAAAAA index out

1.61.0 will be identified as a compile error for version 1.71.0 of bounds: the length is 3 but

CIIT 1I1IUCA 1O 4y the index iS 1@

Error management (panic)

Rust 1.71.0 seems to be able to identify even more complicated cases
(for example when we use more complex equations)

Rust (1.71.0)

main() {
v = [10, 20, 30];
x = v[v[e]*v[e]/v[1]];
println! ("x={x}");

Error

error: this operation will panic at runtime
--> src\main.rs:3:13

| The compile makes the correct inference (v[0] = 10,
E I let x = v[v[@]*v[@]/v[1]]; v[1] = 20, v[0] * v[0] / v[1] = 10*10/20 = 100/20 = 5

AAAAAAAAAAAAAAAAA index .out of
bounds: the length is 3 but the index is 5

Error management (panic)

A solution to “trick” rust compiler and make it not detect an out of
boundary case is the following:

Rust (1.71.0)
use std::{time::{SystemTime, Duration}, thread::sleep};
fn main() {
let start = SystemTime: :now();
sleep(Duration::from_secs(5));
let dif = start.elapsed().unwrap().as_secs();
let v = [10, 20, 30];
let x = v[dif as usize];

println! ("x={x}");

thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 5°',
src\main.rs:7:13
stack backtrace:
0: std::panicking::begin_panic_handler
at
/rustc/8ede3aae28fe6e4d52b38157d7bfe@d3bceef225/1ibrary\std\src\panicking.rs:593
1: core::panicking::panic_fmt
at
/rustc/8ede3aae28fe6e4d52b38157d7bfe@d3bceef225/1ibrary\core\src\panicking.rs:67

Error management (panic)

A solution to “trick” rust compiler and make it not detect an out of
boundary case is the following:
Rust (1.71.0)

Notice that we did the following steps:

1. Get the current time

2. Wait (sleep) for 5 seconds

3. Compute the elapsed time
It is obvious that the elapsed time should be 5
and if we use it as index access on a 3 elements
array it will produce a panic.

sleep(::from_secs(5));

dif = start.elapsed().unwrap().as_secs();

Keep in mind that this solution was tested with Rust 1.71.0/1.80.0

It is possible that future version of Rust might detect this behavior fro
the compile time and trigger a compile error instead of runtime pani

Error management (panic)

Rust also has a method (catch_unwind) that can be used to capture a
panic (similar to what try...catch mechanism is doing).

However, it is not recommended and if used with C++ exceptions from
an exported function, the behavior is undefined.

Error management (panic)

Rust also has a method (catch_unwind) that can be used to capture a

panic (similar to what try...catch mechanism is doing).

Rust

use std::{
thread: :sleep,
time::{Duration, SystemTime},

¥

fn some_function() -> 132 { thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 5°,
let start = SystemTime::now(); src\main.rs:4:13
sleep(Duration: :from_secs(5)); stack backtrace:
let dif = start.elapsed().unwrap().
let v = [10, 20, 30]; Function failed with panic
let x = v[dif as usize];
println! ("x={x}");
return x as i32;

}
fn main() {

let r = std::panic::catch _unwind(some_function);
if r.is_ok() {

println! ("Function was successful -> return value is: {}", r.unwrap());
} else {

println! ("Function failed with panic");

}

Error management (panic)

Rust also has a method (catch_unwind) that can be used to capture a
panic (similar to what try...catch mechanism is doing).

Rust

fn some function() -> i32 {
let v =/[1, 2, 3]; _
let x = V[V[O]]; =2 _
println! ("x={x}"); Function was successful -> return value is: 2

return x as 132;

}
fn main() {

let r = std::panic::catch_unwind(some function);
if r.is_ok() {

println! ("Function was successful -> return value is: {}", r.unwrap());
} else {

println! ("Function failed with panic");

¥

Error management (Option type)

Error management (Option type)

Rust Option type allows a function to return two scenarios:
* A m case (something is not OK) = and no value associated

A true case = the requested value is returned.

Rust (Source: option.rs from core library)
pub enum Option<T> {
#[1lang = "None"]

#[stable(feature = "rustl”,

#[lang = "Some"]
#[stable(feature
Some (#[stable(feature

since = "
"rustl”, since

"rustl”,

"1.0.0")] T),

Simplified view

pub enum Option <T>

{

None,
Some(T),

Error management (Option type)

Let’s consider the following problem = we would like to write a
function that returns a number only if the parameter is odd, or no
number if the parameters is even.

Rust Rust

fn validate odd(n: i132) -> Option<i32> fn validate odd(n: i132) -> Option<i32>

{ {
ifn»2==1{ itfn»2==1{
return Some(n); Some(n)

} else { } else {
return None; None

} }

Error management (Option type)

Option type has the following methods:

fn unwrap(self) -> T Returns the value if no error is present or panics
otherwise
fn expect(self, msg: &str) -> T Returns the value if no error is present or panics

with a specific message otherwise
fn is_some(&self) -> bool True if no error is present, false otherwise
fn is_none(&self) -> bool True if error is present, false otherwise

fn unwrap_or(self, default: T) -> T Returns the value if no error is present or a default
value in case of error

AT - To Mo I ol =N EY-C DN TN R S AN D IED NI Returns the value if no error is present or the
result of a function in case of error

Error management (Option type)

Let’s see some possible usage of validate odd(...) function:

Rust
fn validate odd(n: i32) -> Option<i32> { ... }

fn main() {
let r = validate_odd(5); m
1F .15 some() |

println! ("Number is odd: {}", r.unwrap());
} else {
println!("Error");

}

Error management (Option type)

The same example can be written using the match keyword in the
following way (this is actual recommended way to check the value of an
Option).

Rust

fn validate odd(n: i32) -> Option<i32> { .. }

fn main() { Output
let r = validate odd(5); Odd value: 5
match r {

Some(value) => println!("0dd value: {value}"),
None => println!("Not an odd number"),

Error management (Option type)

Let’s see some possible usage of validate odd(...) function:

Rust
fn validate odd(n: i32) -> Option<i32> { .. }

fnmain() o ouput
let r = validate_odd(5).unwrap();

println! ("Number is odd: {}",r); Number is odd: 5

In this case we expect validate_odd function to work correctly.

“,n
r

Variable is of type i32.

Error management (Option type)

Let’s see some possible usage of validate odd(...) function:

Rust

fn validate odd(n: i32) -> Option<i32> { .. }
fn main() {
let r = validate_odd(4)).unwrap();
println! ("Number is odd: {}",r);

In this case, since 4 is not odd, a panic (runtime) error will be triggered.

Panic (runtime)

thread 'main' panicked at 'called “Option::unwrap()” on a “None value', src\main.rs:11:28

Error management (Option type)

Let’s see some possible usage of validate odd(...) function:

Rust

fn validate odd(n: i32) -> Option<i32> { .. }

fn main() {
let r = validate_odd(4)) .expect("Expecting a valid odd number|);
println! ("Number is odd: {}",r);

In this case, since 4 is not odd, a panic (runtime) error will be triggered.

thread 'main' panicked at ' ', src\main.rs:11:28

Error management (Option type)

Let’s see some possible usage of validate odd(...) function:

Rust
fn validate odd(n: i32) -> Option<i32> { .. }

frmain() Output
let r = validate_odd(4)).unwrap_or(-1);

println! ("Number is odd: {}",r); Number is odd: -1

In this case since we have used [ilWig]Jlel1 method, the Option<i32>
value is evaluated. Since, 4 is not an odd number, the error case will be
triggered and the default value will be returned (in this case, it is)

Error management (Option type)

Let’s see some possible usage of validate odd(...) function:

Rust

fn validate odd(n: i32) -> Option<i32> { .. }
fn response function() -> i32 {

println! ("There is an error !");

return -1; There is an error |
} Number is odd: -1

fn main() {
let r = validate_odd(4).unwrap_or_else(response_ function);
println! ("Number is odd: {}",r);

Similarly, a function that returns the value in case of error can be used
via Vi JRe gl ethod.

Error management (Option type)

Let’s consider the following code:
Rust

fn main() {
let mut x: Option<String> = Some(String::from("my string"));
let mut y: Option<String>

println! ("x={:?}, y={:?}",
y = X;
println! ("x={:?}, y={:?}",x,¥);

What is the issue with this piece of code ?

Error management (Option type)

Let’s consider the following code:

Rust

y = X;
println! ("x={:?}, y={:?}",x,y);

Compile Error

error[E@382]: borrow of moved value: “x°
--> src\main.rs:7:31

let mut x: Option<String> = Some(String::from("my string"));
move occurs because “x has type Option<String> , which does not implement the “Copy trait

- value moved here
println!("x={:?}, y={:?}",x,y);

Error management (Option type)

Assignments between enums follow the same rules as for other data types. In
particular for Option, since String does not implement the Copy trait the ownership
of that string is transferred entirely to variable “y” making variable “x” useful.

But what if want to transfer just the String (not the entire variable) and keep the
variable “x” but with the variant “None” ? This feature is in particular useful is an
Option<T> is part of a structure from where its more complicated to remove it ?

The solution is to use the method .take(&mut self) defined as following: lets assume
variable “s” is of type Option<T>; then let s2 = s.take() will have the following effect:
* Ifsis of type Some(T), then make s2 of type Some(T) and move the T value from s to s2. Then s
becomes None
* If sis of type None, then make s2 of type None and do nothing to s

Error management (Option type)

Let’s consider the following code:
Rust

fn main() {
let mut x: Option<String> = Some(String::from("my string"));
let mut y: Option<String> = None;

println! ("x={:?}, y={:?}",x,y¥);
y = x.take(); x=Some("my string"), y=None

println! ("x={:?}, y={:?}",X,y); x=None, y=Some("my string")

Notice that after the call y = x.take(), x becomes None, and the String
from X is transferred toy.

Error management (Option type)

Let’s consider the following code:

fn main() {

let mut x: Option<String> = Some(String::from("my string"));
let mut y: Option<String> = None;
println! ("x={:?}, y={:?}",X,y);

y = x.take(); x=Some("my string"), y=None
println! ("x={:?}, y={:2}",%x,y); x=None, y=Some("my string")
y = x.take(); x=None, y=None

println! ("x={:?}, y={:?}",X,y);

In this case:

* First JEERCREICIOH Mmoves “my string” from “x” to “y” and makes “x” None

* Second VEEE'GRELEI@H has nothing to move from “x” (as it is already None) and as such

becomes None as well.

Error management (Option type)

How does an Option<T> looks in memory ?

The simplest way is to consider it as a structure with two fields (a bool
one and one of type T):

e e luse

ok bool (or an aligned number) If this field is 1 (true) than the field value is
correct and available, otherwise it is not

value T (the type from the template/generics) The actual value (only if field ok is 1 (true))

However, for some cases this template only contains the value. Since a
reference is never null, an Option<reference> in Rust does not need the
field, and as such it is guaranteed to be of the same size as the size
of a reference !

Error management (Option type)

Let’s see the sizes of an Option in memory. For that we will use the following
standard command (SfeMulilr{=leli) , that is an equivalent of sizeof keyword

from C/C++.

Rust

fn main() {
println!("Size
println! ("Size
println! ("Size
println! ("Size
println! ("Size

of Option<usize> =
of Option<i32> = {}", std::mem::size of::<Option<i32>>());
of Option<i64> = {}", std::mem::size of::<Option<i6d>>());
of Option<&str> = {}", std::mem::size of::<Option<k&str>>());
of Option<Box<i32>> = {}", std::mem::size of::<Box<i32>>());

{}", std::mem::size of::<usize>());

Size of Option<usize> = 8
Size of Option<i32> =8

Size of Option<i64> =16

Size of Option<&str> =16
Size of Option<Box<i32>> =8

Error management (Option type)

Let’s discuss the previous results.

usize 8 It can be either 2,4 or 8 (depending on the architecture). In this case it is a x64
architecture (meaning the size of 8).

Option<i32> 8 Two field member (first field =2 4 bytes (with alignment) is the ok part, second
field is an actual i32 value)

Option<i64> 16 Two field member (first field =2 8 bytes (with alignment) is the ok part, second
field is an actual i64 value)

Option<&str> 16 One field (the actual str value). If null than None value is considered.
Keep in mind that size_of(str) = 16 (pointer+size), both 8 bytes

Option<Box<i32>> 8 One field (the pointer to an i32 value). If null, than None value is considered.

Error management (Option type)

Now let’s see how Option handles memory for an enumeration:

enum Color { .
Red, Green, Blue Size of Color =1
} Size of Option<Color>=1

fn main() {
println!("Size of Color {}", std::mem::size of::<Color>());
println!("Size of Option<Color> = {}", std::mem::size of::<Option<Color>>());

Notice that Option<Color> and Color have the same memory size.

Let’s see why this happens.

Error management (Option type)

Let’s evaluate how memory looks like in the following cases:

Variable | Type Value Memory
(Hex)

Rust

enum {
Red = 2, Green = 4, Blue = 10

}
fn main() {

let ¢ = : :Red;

let 01l = Some(: :Green);

let mut o2: < > = None;
02 = Some(: :Blue);

Error management (Option type)

Let’s evaluate how memory looks like in the following cases:
Variable | Type

Color::Red

As Color is an enum, its size is considered one byte and
values Redj Green'and Blue are mapped in this byte.

Error management (Option type)

Let’s evaluate how memory looks like in the following cases:

Variable | Type Value Memory
Hex)

Color Color::Red

ol Option<Color> Some(Color::Green) 04 I

Notice that “01” has the same memory representation as
with what Color type has (meaning that Color::Green looks
identical in memory with Some(Color::Green)).

In this case, the question is how do we differentiate
between None and Some (in case of Color) ?

Error management (Option type)

Let’s evaluate how memory looks like in the following cases:

Variable | Type Value Memory
Hex)

Color Color::Red
ol Option<Color> Some(Color::Green) 04
02 Option<Color> None 01 I

As it turns out, Rust searches an invalid value that can be
store on a byte (the same size as what Color has) and uses
that value to represent . Since Color is using 2, 4 and
10, then value 1 (Hex: 01) is unused and as such Rust can

use this invalid value to represent None. As such, the size
of an enum and of an Option<enum> will be the same.

Error management (Option type)

The same logic applies for enums with multiple types:

Rust
derive()

{
Integer(),
Float(),
Bool (),
Double()

main() {
i =

::Integer(10);
: :Double(1.5);
n: < > = None;

println! (" s s ",i,d,n);

Integer(10),Double(1.5),None

In this case:

* Values::Integer = will use the discriminant 0

* Values::Float - will use the discriminant 1

* Values::Bool - will use the discriminant 2

* Values::Double - will use the discriminant 3
As such, the first free (invalid) value is 4. As a
result, “n” will have the same size as Values, but its
discriminant will be 4 (an invalid value to represent
None).

Error management (Option type)

There are some exception cases to this type of optimization:
Rust

derive() Size of MultiValueEnum =1

enum MultivalueEnum { Size of Option<MultiValueEnum> =1
Value 0,

Value 253,
Value 254,

}
fn main() {

println! ("Size of MultiValueEnum = {}", std::mem::size of::<MultiValueEnum>());
println! ("Size of Option<MultiValueEnum> = {}", std::mem::size of::<Option<MultiValueEnum>>());

In this case, MultiValueEnum has 254 values. As such it is still possible for Rust to
find an invalid value (255) to be used for None cases. As such the size of the
enum and Option<...> are the same (one byte).

Error management (Option type)

There are some exception cases to this type of optimization:
Rust

derive() : :
enum MultiValueEnum { Size of MultiValueEnum =1

Value 0, Size of Option<MultiValueEnum> = 2

Value 253,
Value 254,
Value_ 255,

}
fn main() {

println! ("Size of MultiValueEnum = {}", std::mem::size of::<MultiValueEnum>());
println! ("Size of Option<MultiValueEnum> = {}", std::mem::size of::<Option<MultiValueEnum>>());

However, if an enum fills up the entire space of possible value, this will force the
Option to use an additional byte to represent the discriminant. As such, the size of
the Option<...> will be higher.

Error management (Option type)

It is also worth mention that Rust has several types that have similar optimization if
used with an Option:

* NonNull (a raw pointer that can not be Null). In this case, the value Null (since it
is an impossible value) will be used to describe the None case from an Option

* NonZero{numeric type} (an integer that can not be 0). The following types are
allowed: NonZerol8, NonZerol16, NonZerol32, NonZerol64, NonZerol128,
NonZerolsize, NonZeroU8, NonZeroU16, NonZeroU32, NonZeroU64,
NonZeroU128, NonZeroUsize. These types are in fact wrappers around the basic
integer types that make sure that the value is not 0. As such, they can be used
within an Option and keep the same size in memory.

Error management (Option type)

Now ... let’s see how a C++ representation of a Rust Option looks like.
We will try to represent an Option<i32> in Rust.

C++ (possible representation for Option<i32>)

class Optionallnt {
bool ok;
int value;
public:

OptionalInt(): ok(false), value(©) {}

OptionalInt(int v): ok(true), value(v) {}

inline bool has_value() const { return ok; }

inline int value() const { if (!'ok) throw "error"; return value; }

Error management (Option type)

And the usage within our function for odd numbers will look like this:

C++

class Optionallnt {
bool ok;
int value;

OptionalInt validate odd(int value) {
if (value % 2 1)
return OptionalInt(value);
else
return Optionallnt();

Error management (Option type)

Similarly, for the case of a reference (denoted by a non-null pointer in
C++), consider the following possible implementation:

C++

class OptionalReferenceTolnt

{
int *value;

public:
OptionalReferenceTolInt() : value(nullptr) {}
OptionalReferenceTolInt(int *v) : value(v) {}

inline bool has value() const { return value != nullptr; }
inline int& value() const

{

if (value == nullptr) throw "error";
return *value;

C++ comparison:
fn expect(self, msg: &str) -> T _
o s none(eseln) sbool [

Obs: method is the opposite of (so it is not necessary).

Error management (Option type)

C++ also supports a lot of operators on top of std::optional. For example (.has_value() method is dlso

called via a cast operator to bool).

C++ comparison:
Rust

fn validate _odd(n: i32) -> Option<i32> {
ifnX%2==1{
return Some(n);
} else {
return None;
}
}
fn main() A
let r = validate_odd(5);
if r.is_some() {
println! ("Number is odd:
r.unwrap());
1} else {
println!("Error");

}

Error management (Option type)

C++17 and beyond

std::optional<int> validate odd(int value) {
if (value % 2 == 1)
return value;
else
return std::nullopt;
}
void main() {
auto r = validate_odd(5);
if (r.has_value())
printf("Number is odd %d", r.value());
else

printf("Error");

Error management (Option type)

As a general overview, use Option in the following cases:

1. You have a function that might or might not return a value of some type (one
good example will be something like a String to Number function that might be
able to convert a parameter into a valid number or it might be not).
Option<i32> StringToNumber(s: &str)

instead of

bool StringToNumber(s: &str, result: &mut 1i32)

2. You need to return an error code from a function (e.g., use the Option<T> to

include the error code, or None for no error code). This a less utilized case, but
it is still possible.

Error management (Result type)

Error management (Result type)

Rust has a special generics/template type (declared as an enum)

named Result that is used for these cases:

Rust (Source: result.rs from core library)
pub enum Result<T, E> {
#[lang = "Ok"]
#[stable(feature = "rustl", since = "1.0.0")]

Ok (#[stable(feature = "rustl", since = "1.0.0")] T),

#[lang = "Err"]
#[stable(feature = "rustl", since = "1.0.0")]
Err(#[stable(feature = "rustl", since = "1.0.0")] E),

Simplified view

pub enum Result<T, E>

{

ok(T),
Err(E),

Error management (Result type)

Let’s see some examples:
Rust
fn division(nl: 132, n2: i32) -> Result<i32, &'static str> {
if n2 == 0 {
return Err("Division by zero");
} else {
return Ok(nl / n2);

}

}
fn main() {

let rl = division(5, 9);
let r2 = division(5, 1);
print!("{:?},{:?}", rl, r2);

Error management (Result type)

Note that division function can be simplified by removing the return

keyword and the final semicolon:

Rust
fn division(nl: i32, n2: i32) -> Result<i32, &'static str> {
if n2 == 0 {
Err("Division by zero")
} else {
Ok(nl / n2)
}

. Rust
To pI"OVIde €ven more fn division(nl: 132, n2: i32) -> Result<i32, &'static str> {
clarity, [4gg and Ok can if n2 == @ {

Result::Err("Division by zero"
be preceded by the } else { (g :
enum name: Result::0k(nl / n2)

}

Error management (Result type)

To check if a Result contains an [Egge]s or an 0k value, use the methods:

is_err()Wi.errOf.is_okOHd. ok()

Rust

fn division(nl: i32, n2: i32) -> Result<i32, &'static str> { ...
fn main() {
let r = division(5, 0);
if r.is_err() {
println! ("Error found: {}", r.err().unwrap());
} else {
println!("Success, result is {}", r.ok().unwrap());

}

Error found: Division by zero

Error management (Result type)

To check if a Result contains an [Egge]s or an 0k value, use the methods:

is_err()Wi.errOf.is_okOHd. ok()

Rust

fn division(nl: i32, n2: i32) -> Result<i32, &'static str> { ...
fn main() {
let r = division(5, |9);
if r.is_err() {
println! ("Error found: {}", r.err().unwrap());
} else {
println!("Success, result is {}", r.ok().unwrap());

}

Success, result is 2

.. and a success case (e.g. a division between 5 and 2)

Error management (Result type)

Why do we need that .unwrap() to get the &{j or ok value ?

Rust

fn division(nl: i32, n2: i32) -> Result<i32, &'static str> { ...
fn main() {

let r = division(5, 2);

if r.is_err() {

println! ("Error found: {}", r.err().unwrap());
} else {

println!("Success, result is {}", r.ok().unwrap());

}

That’s because both .err() and .ok() methods return an Option and not the actual
value: pub const fn err(self) -> Option<E> and pub const fn ok(self) -> Option<T>
Where T and E are template/generics [EEEEIEL kR95U1t<T: E> {

types define in Result enum. Ok(T),

Err(E)

Error management (Result type)

Result type has the following methods:

Returns the value if no error is present or panics otherwise

fn unwrap(self) -> T

fn expect(self, msg: &str) -> T Returns the value if no error is present or panics with a specific

message otherwise

fn expect _err(self, msg: &str) -> E

fn is_ok(&self) -> bool

Returns the error if present, else panics with a specific message
True if no error is present, false otherwise
fn is_err(&self) -> bool True if error is present, false otherwise

fn unwrap_or(self, default: T) -> T Returns the value if no error is present or a default value in case of

error

V[Yo To Mo Tl =N EY-C i C-NA SN AN D IO SR Ml Returns the value if no error is present or the result of a function in
case of error

fn err(self) -> Option<E> Returns an Option over an error

fn ok(self) -> Option<T> Returns an Option over the value

Error management (Result type)

Let’s see how Rust result type is stored in memory:
Rust
fn 132 or_i8(value: i32) -> Result<i32, i8>
{
if value < 255 {

Err(value as i8)
1} else {
Ok(value as 1i32)

}
}
fn main() {
let mut r = i32 or_i8(10);
r =132 or _18(1000);
if r.is_ok()
{

}

println!("value = {}", r.unwrap());

Error management (Result type)

Let’s see how Rust result type is stored in memory:
Rust

fn 132 or_i8(value: i32) -> Result<i32, i8>
{
if value < 255 {

y eligrivalue as 18) +0 +1 42 +3 44 45 +6 +7

Ok(value as i32) 01 OA 00 00 00 00 00 00
) l
i:n main() { OA (hex) = 10 => the i8 value

let mut r = i32 or_i8(10); !
01 = ERROR (we are on the error case)

= 132 or 18(1000);

if r.is_ok()

{ Possible structure (C representation)
println!("value = {}", r.unwrap()); struct ErrorCase {

} unsigned char index;

signed char value;

}

Memory layout for variable “r”

Error management (Result type)

Let’s see how Rust result type is stored in memory:
Rust
fn 132 or_i8(value: i32) -> Result<i32, i8>
{

value < 255 {

} EPP&Value as 18) 0 41 42 43 +4 45 46 +7

Ok(value as 132) 00 0A 00 00 E8 03 00 00
} . J

Y
} v
fn main() { E8 03 00 00 (hex) = 1000 (OxE8+0x03*256)
let mut r = 132 or i8(10);
= 132 or 18(1000);
r.1s _ok()

Memory layout for variable “r”

v

00 = OK (we are on the ok case)

{ Possible structure (C representation)
println!("value = {}", r.unwrap()); struct OkCase {
}

unsigned char index;
unsigned int value; alignment

Error management (Result type)

Let’s see how Rust result type is stored in memory:
Rust

fn 132 or_i8(value: i32) -> Result<i32, i8>
{

Possible structure (C representation)

union Result_i32_i8 {

if value < 255 { unsigned char index;

Err(value as i8)

1} else {
Ok(value as 1i32) struct {
} unsigned char index;
} unsigned int value;
fn main() { } Ok;
let mut r = i32 or_i8(10);
= 132 or 18(1000); struct {
?c r.is_ok() unsigned char index;

signed char value;

println!("value = {}", r.unwrap());
) } Err;

}

Error management (Result type)

Let’s see how Rust result type is stored in memory:

Caller:

fn 132 or_i8(value: i32) -> Result<i32, i8> lea rex,[r]

{

call Result::is_ok

value < 255 {
Err(value as i8) : “.n”
) { Notice that RCX holds the address of “” !!!

Ok(value as 1i32)

}

}
fn main() {

let mut r = i32 or 18(10);
= i32 or 18(1000);
r.is_ok()

{

println!("value = {}", r.unwrap());

}

Error management (Result type)

Let’s see how Rust result type is stored in memory:
Result::is_ok:

i32 or_i8(:) -> < s > sub rsp,10h
{ mov gword ptr [rsp+8],rcx

<255 1 Indeed, the first byte from MOV al,byte ptr [rex]
Err(and al,1

) / the address of “r” is being R eax, al

Ok (checked to seeifitis1or0 cmp rax, 0
} jne index_is 0
} mov byte ptr [rsp+7],1
main() { jmp
r =132 or 1i8(10); index_is_0:
r =132 or 18(1000); mov byte ptr [rsp+7],0
r.is_ok()
{ mov al,byte ptr [rsp+7]
println!("value = ", r.unwrap()); and al,1
} movzx eax,al
add rsp,10h
ret

Error management (Result type)

Rust Result type has two similarities in C++:

1. std::variant (available from C++17) = more generic, and can be
adjusted to reflect a Result

2. std::expected (available from C++23) - this is the closest template
that mimics the way Rust Result works.

Note that std::variant is not designed for error management (but it can
be used for this purpose). std::variant can contain multiple different
types while Result only has two types.

Error management (Result type)

C++ comparison:

Rustosut) | oo (aopected) |Crvttaran)
AT e e R L L
T e L L

fniserr(eself) > bool WA |bool stdholds alternative<E> ()
o unwrap or(self, default: T) > T WA WA
fnumrap or elsech(self, 2 F) > T WA WA

Obs: method is the opposite of (so an equivalent is not necessary).

Error management (Result type)

C++ comparison:
Rust

fn 132 or_i8(value: i32) -> Result<i32, i8>

{
if value < 255 {

Err(value as i8)
1} else {
Ok(value as 1i32)

}
}
fn main() {
let mut r = i32 or_i8(10);
= 132 or 18(1000);
if r.is_ok()
{

}

println!("value = {}", r.unwrap());

std::variant<int32 t,int8 t> i32 or i8(int value)
{
if (value < 255)
return (int8 t)value;
else
return (int32_ t)value;

}

void main()
{
auto r = 132 _or_i8(10);
r =132 or_i8(1000);
if (std::holds_alternative<int32 t>(r))
printf("Value = %d",std::get<int32_t>(r));

Error management (Result type)

C++ comparison:
Rust

fn 132 or_i8(value: i32) -> Result<i32, i8>

{
if value < 255 {

Err(value as i8)
1} else {
Ok(value as 1i32)

}
}
fn main() {
let mut r = i32 or_i8(10);
= 132 or 18(1000);
if r.is_ok()
{

}

println!("value = {}", r.unwrap());

std::expected<int32 t,int8 t> 132 or_i8(int value)

{
if (value < 255)

return (int8 t)value;
else
return (int32_ t)value;

}

void main()

{
auto r = 132 _or_i8(10);
r =132 or_i8(1000);
if (r.has_value())

printf("Value = %d", r.value());

Error management (Result type)

It is worth mention that Result can be used as a returned type for main
function, Option however can not. In order to use a Result as a return
type for the main function, the Ok type has to implement a special trait
called Termination. For example, the following types implement this
trait:

 std::process::ExitCode

e Unit type “()” or void

* Never type “!”

Error management (Result type)

Let’s see some examples:
Rust
fn main() -> Result<(), 132> {
let x = 10;
println!("x = {:?}", X);
Ok (())

or with
Rust

Output

use std::process: :ExitCode; m

fn main() -> Result<ExitCode, i32> {
let x = 10;

println!("x = {:?}", X);

Ok (ExitCode: : SUCCESS)

Error management (Result type)

Let’s see some examples:
Rust

fn main() -> Result<i32, bool> {
let x = 10;
println!("x = {:?}", X);

Ok (10
110)

error[E@277]: the trait bound "i32: Termination™ 1is not satisfied
--> src\main.rs:1:14

1 | fn main() -> Result<i32, bool> {
| the trait “Termination™ is not implemented for "“i32°

= note: required for "Result<i32, bool>" to implement "Termination’

Since “i32” does not implement the trait Termination, it can not be
used as valid type for the Ok variant of an Result from main function.

If let
let else
while |let

If let / let else / while let

When used with enums, if let and while let have a special syntax that
allows de-structuring the enum and copy the value associated with it
into a variable that will further be used in the next expression block.

Format:
e if let EnumVariant(variable) = Expression { ... }
» while let EnumVariant(variable) = Expression { ... }

Where:
- Expression returns an Enum object. One of the variants of that Enum has to
be of type EnumVariant
- If variable is of type EnumVariant, the variable is initialized and the if
condition is considered to be true

- This also mean that while in complex expression from if let or while let form,
that variable is initialized and can be used.

If let / let else / while let

Let’s see a simple example:
Rust

enum Values {
Bool(bool),
Integer(i32), i is Integer and has value: 10
Float(f32),

}
fn main() {

let i = Values::Integer(10);
if let Values::Integer(v) = 1 {
println!("i is Integer and has value: {v}");

}

If let / let else / while let

Let’s see a simple example:
Rust
enum {

Bool()

Integer()
Float()

}

fn main() {
let i = ::Integer(10);
let ::Integer(v) = i {
println!("i is Integer and has vc

This translates in the following way:

- if “I” is of variant Integer, that copy the value of “1” (of
type i32) into a newly created variable (v) of type i32 and
run the THEN block of the if instruction.

If let / let else / while let

Let’s see a simple example:
Rust
enum Values {
Bool(bool),
Integer(i32),
Float(f32),
}

use Values::*;

fn main() {
let 1 = Values::Integer(10); [Notice thatimporting all values from values: use Values::*;
if let |Integer(v) = i |{ allows us to use the name of the variant directly in an if let /
println! ("i is Integer an{while letstructure.

}

If let / let else / while let

Let’s see a simple example:
Rust

enum Values {

Bool(bool),
Integer(i32), i is Integer and has value: 10

Float(f32), fis Float and has value :1.2
}

use Values::*;
fn main() {

let i = Values::Integer(10);

let £ = Values::Float(1.2);

if let (Integer(vl),Float(v2)) = (i,f) {
println!("i is Integer and has value: {v1}");
println! ("f is Float and has value : {v2}");

If let / let else / while let

Let’s see a simple example:
Rust

This actually translates into:
If “1” is of type Integer and “f” is of type Float then
copy the value of “I” into “v1” and the value of “f” into “v2”

if let (Integer(vl),Float(v2)) = (i,f)

If let / let else / while let

Let’s see a simple example:
Rust

enum Values { Bool(bool), Integer(i32), Float(f32) } m
use Values::*;

o meinG.

let i = Values::Integer(10);
let ¥ = Values::Bool(true);
if let (Integer(vl),Float(v2)) = (i,f) {

println!("i is Integer and has value: {v1}");

println!("f is Float and has value : {v2}");
} else {

println!("No match");

}

If let / let else / while let

Let’s see a simple example:
Rust

Notice that “f” is of type Bool. As such

let £ = Values::Bool(true); the condition from if let statement is

if let (Integer(vl),Float(v2)) = (i,f)

false as “f” is not of type Float

This feature is in particular useful for usage with Option. For example:

Rust

fn smaller _than_5(value: 132) -> Option<i32> {

if value < 5 {
Some(value)
} else {
None

}
}
fn main()
{
let mut x = 9;
while let Some(i
println! ("x
X += 1;

)

{

If let / let else / while let

smaller than 5(x)|{

it");

X X X X X
m 1 n 1
W N E~RL O

If let / let else / while let

The same logic with multiple variants can be used for while let as well:
Rust

fn smaller than(x: 132, value: 132) -> Option<i32> {
if x < value {
Some (x)
} else {
None

}
}
fn main() {
let mut x = 9;
while let (Some(i), Some(j)) = (smaller_than(x, 5), smaller than(x * 3, 8)) {
println! ("1 = {1}, j = {j}");
X += 1;

If let / let else / while let

The same logic with multiple variants can be used for while let as well:
Rust

This translate as follows: while smaller than(x, 5) returns a variant type of Some,
and smaller than(x * 3, 8) also return a variant type of Some, copy the resulted
values into variable “i” and “j” and enter the while loop.

{a:n
J

while let (Some(i), Some(j)) = (smaller_than(x, 5), smaller than(x * 3, 8))

If let / let else / while let

let else is also a special syntax that allows direct initialization of a
variable from an expression that results in an enum (for example an
Option)

Format:
 Jet EnumVariant(variable) = Expression else { <error code> }

The error code is usually a panic macro, or a return values (if this is
called from a function). It should be noticed that this is a sugar syntax

for the following:
 let x = if let EnumVariant(variable) { variable } else { <error code> }

If let / let else / while let

Example:
Rust

fn smaller_than(x: i32, value: i32) -> Option<i32> {
if x < value {
Some (x)
} else {
None

}

}
fn main() {

let Some(x) = smaller than(2, 3) else { panic!("Fail to initialize x"); };
println! ("x={x}");

Notice that “x” is of type i32 ! (and not Option<i32>)

If let / let else / while let

Example:
Rust

Panic (runtime)

thread 'main' panicked at 'Fail to initialize x', src\main.rs:9:44

fn smaller than(x: 132, valueg| stack backtrace:
. _ 0: std::panicking::begin_panic_handler
if x < value { at
Some (X) /rustc/8ede3aae28fe6e4d52b38157d7bfe@d3bceef225/1ibrary\std\src\panicking.rs:593
1: core::panicking::panic_fmt
} else { i
None /rustc/8ede3aae28fe6e4d52b38157d7bfe@d3bceef225/1ibrary\core\src\panicking.rs:67

}
fn main() {

let Some(x) = smaller than(4, 3) else { panic!("Fail to initialize x"); };
println! ("x={x}");

If let / let else / while let

You can also use let...else syntax to return something from a function:

Rust
fn smaller_than(x: i32, value: i32) -> Option<i32> {
if x < value {
Some (x)
} else {
None

}
}
fn get x(value: i32)->132 {
let Some(x) = smaller_than(value, 3) else { return -1; };
X*2
}
fn main() {
println!("get x(2)={}",get x(2));
println! ("get x(4)={}",get x(4));

Question mark operator (?)

Question mark operator (“?”)

Rust has a special unary operator “?” that works with Option and
Result generics in the following way:

I(24

* Let’s consider these expression: “x = a?”, where is of type

Option<...> or Result<...>

* The “?” performs the following actions:

1. If the value of “@” is Some (for Option) or Ok (for Result), then “@” gets
unwrapped and assigned it to “X”

2. If the value of “@” is None (for Option) or Err (for Result) and the function
where “x = a?” operation is located returns an Option or Result, then the
function returns immediately the value of “@” = a None or Err

OBS: “?” operator can only be used in a function that has a return
type of Option<...> or Result<...>

Question mark operator (“?”)

Let’s see some examples:
Rust
fn sum(vl: Option<i32>, v2: Option<i32>) -> Option<i32> {

let x = v1?; m
= P

let y = v2?; Some(25)

Some(x + y)

¥

fn main() {
let result = sum(Some(10), Some(15));
println! ("{:?}", result);

In this case since both Some(10) and Some(15) are valid, the result
returns the expected sum.

Question mark operator (“?”)

If however, we change one of the parameters to None, the sum is not
possible anymore, but we don’t need to change the code as the

o, .7

execution will stop when evaluating “y”.

Rust
fn sum(vl: Option<i32>, v2: Option<i32>) -> Option<i32> {

let x = v17; Output

let y = v27?;
Some(Xx + V)

}
fn main() {

let result = sum(Some(10), None);
println!("{:?}", result);

Question mark operator (“?”)

In reality, sum function can be written in two ways:

A) Using question mark operator ?
Rust

fn sum(vl: Option<i32>, v2: Option<i32>) -> Option<i32> {
let x vl?;

let y = v27?;
Some(x + y)

B) Using if expressions Equivalent
Rust code
fn sum(vl: Option<i32>, v2:0ption<i32>) -> Option<i32> {
let mut x = 0;
if vl.is none() { return None; } else { x = vl.unwrap(); }

let mut y = 0;
if v2.is_none() { return None; } else { y = v2.unwrap(); }
Some(Xx + V)

Question mark operator (“?”)

Its important to notice that the operator “?” does not require the same
type to be used (but rather the same type for the error case).

Rust

fn foo()->0Option<i32> {
return None

}

fn goo()->Option<f6e4d> {
let x = foo()?;
Some(1.234)

}
fn main() {

let x = goo();
println!("x = {:?}",x);

Question mark operator (“?”)

Its important to notice that the operator “?” does not require the same
type to be used (but rather the same type for the error case).

Rust
fn |foo()->0ption<i32>
Notice that foo() and goo() function have different result types

(one returns an Option<i32> and the other one an Option<f64>)
fn |goo()->0Option<f6e4d>Hf
let x = foo()?;

Question mark operator (“?”)

Its important to notice that the operator “?” does not require the same
type to be used (but rather the same type for the error case).

Rust

However, what's important is that the error type should be similar (in our
case, the error type of an Option is None and as such is the same for both
Option<i32> and Option<f64>). Or to be more precisely,
Option<i32>::None can be converted into Option<f64>::None

Question mark operator (“?”)

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Rust

fn foo()->Result<String,i32> {
return Err(10)

}

fn goo()->Result<f64,i32> {
let x = foo()?;
Ok(1.234)

}
fn main() {

let x = goo();
println!("x = {:?}",x);

Question mark operator (“?”)

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Rust

In this case, the error case of foo is of type Err(i32). Similarly, the
error case of goo is of type Err(i32). This means that even if the Ok
cases for this two cases are different, we can use the “?” operator as
there is obviously a conversion possible from Err(i32) to Err(i32)

Question mark operator (“?”)

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Rust
fn foo()->Result<String)is: Notice that the Error types don’t have to

Err(10) be identical. There just has to be a m
} conversion possible between them. In this x = Err(10)

fn goo()->Result<f64,i326— case there is one between i8 and i32
let x = foo()?;
0k(1.234)

}
fn main() {

let x = goo();
println!("x = {:?}",X);

Question mark operator (“?”)

The same logic applies for Result as well. In this case it is important for
a conversion between the error type of different Results to be possible.

Rust
fn foo()->Result<String|f64>

return Err(10.2) . e
error[E@277]: " ?° couldn't convert the error to "i32
} --> src\main.rs:5:18

fn goo()->Result<f64,i32p—

let x = 'FOO()?; 4 | fn goo()->Result<f64,i32> {

expected "i32° because of this

A the trait “From<f64>" is not implemented for ~i32°

¥

fn main() { . R .
let _ . note: the question mark operation (" ?°) implicitly performs a conversion on
et X = goo(), the error value using the "From trait
println!("x = {:?}",x); = help: the following other types implement trait From<T>":

|

|

0k (1.234) |
. 5 | let x = foo()?;

|

|

In this case, Err(f64) can not be converted to Err(i32) so this type of
error can not be propagated.

	Default Section
	Slide 1: Course – 3 Gavrilut Dragos
	Slide 2: Agenda for today

	Enums
	Slide 3: Enums
	Slide 4: Enums
	Slide 5: Enums
	Slide 6: Enums
	Slide 7: Enums
	Slide 8: Enums
	Slide 9: Enums
	Slide 10: Enums
	Slide 11: Enums
	Slide 12: Enums
	Slide 13: Enums
	Slide 14: Enums
	Slide 15: Enums
	Slide 16: Enums
	Slide 17: Enums
	Slide 18: Enums
	Slide 19: Enums
	Slide 20: Enums
	Slide 21: Enums
	Slide 22: Enums
	Slide 23: Enums
	Slide 24: Enums
	Slide 25: Enums
	Slide 26: Enums
	Slide 27: Enums
	Slide 28: Enums
	Slide 29: Enums
	Slide 30: Enums
	Slide 31: Enums
	Slide 32: Enums
	Slide 33: Enums
	Slide 34: Enums
	Slide 35: Enums
	Slide 36: Enums
	Slide 37: Enums
	Slide 38: Enums
	Slide 39: Enums
	Slide 40: Enums
	Slide 41: Enums
	Slide 42: Enums
	Slide 43: Enums
	Slide 44: Enums
	Slide 45: Enums
	Slide 46: Enums
	Slide 47: Enums
	Slide 48: Enums
	Slide 49: Enums
	Slide 50: Enums
	Slide 51: Enums
	Slide 52: Enums
	Slide 53: Enums

	Error management
	Slide 54: Error management
	Slide 55: Error management
	Slide 56: Error management
	Slide 57: Error management
	Slide 58: Error management
	Slide 59: Error management
	Slide 60: Error management
	Slide 61: Error management
	Slide 62: Error management
	Slide 63: Error management
	Slide 64: Error management
	Slide 65: Error management
	Slide 66: Error management
	Slide 67: Error management
	Slide 68: Error management
	Slide 69: Error management
	Slide 70: Error management
	Slide 71: Error management
	Slide 72: Error management
	Slide 73: Error management
	Slide 74: Error management

	Panic
	Slide 75: Error management (panic)
	Slide 76: Error management (panic)
	Slide 77: Error management (panic)
	Slide 78: Error management (panic)
	Slide 79: Error management (panic)
	Slide 80: Error management (panic)
	Slide 81: Error management (panic)
	Slide 82: Error management (panic)
	Slide 83: Error management (panic)
	Slide 84: Error management (panic)
	Slide 85: Error management (panic)
	Slide 86: Error management (panic)
	Slide 87: Error management (panic)

	Option
	Slide 88: Error management (Option type)
	Slide 89: Error management (Option type)
	Slide 90: Error management (Option type)
	Slide 91: Error management (Option type)
	Slide 92: Error management (Option type)
	Slide 93: Error management (Option type)
	Slide 94: Error management (Option type)
	Slide 95: Error management (Option type)
	Slide 96: Error management (Option type)
	Slide 97: Error management (Option type)
	Slide 98: Error management (Option type)
	Slide 99: Error management (Option type)
	Slide 100: Error management (Option type)
	Slide 101: Error management (Option type)
	Slide 102: Error management (Option type)
	Slide 103: Error management (Option type)
	Slide 104: Error management (Option type)
	Slide 105: Error management (Option type)
	Slide 106: Error management (Option type)
	Slide 107: Error management (Option type)
	Slide 108: Error management (Option type)
	Slide 109: Error management (Option type)
	Slide 110: Error management (Option type)
	Slide 111: Error management (Option type)
	Slide 112: Error management (Option type)
	Slide 113: Error management (Option type)
	Slide 114: Error management (Option type)
	Slide 115: Error management (Option type)
	Slide 116: Error management (Option type)
	Slide 117: Error management (Option type)
	Slide 118: Error management (Option type)
	Slide 119: Error management (Option type)
	Slide 120: Error management (Option type)
	Slide 121: Error management (Option type)

	Result
	Slide 122: Error management (Result type)
	Slide 123: Error management (Result type)
	Slide 124: Error management (Result type)
	Slide 125: Error management (Result type)
	Slide 126: Error management (Result type)
	Slide 127: Error management (Result type)
	Slide 128: Error management (Result type)
	Slide 129: Error management (Result type)
	Slide 130: Error management (Result type)
	Slide 131: Error management (Result type)
	Slide 132: Error management (Result type)
	Slide 133: Error management (Result type)
	Slide 134: Error management (Result type)
	Slide 135: Error management (Result type)
	Slide 136: Error management (Result type)
	Slide 137: Error management (Result type)
	Slide 138: Error management (Result type)
	Slide 139: Error management (Result type)
	Slide 140: Error management (Result type)
	Slide 141: Error management (Result type)
	Slide 142: Error management (Result type)

	if/while let
	Slide 143: If let let else while let
	Slide 144: If let / let else / while let
	Slide 145: If let / let else / while let
	Slide 146: If let / let else / while let
	Slide 147: If let / let else / while let
	Slide 148: If let / let else / while let
	Slide 149: If let / let else / while let
	Slide 150: If let / let else / while let
	Slide 151: If let / let else / while let
	Slide 152: If let / let else / while let
	Slide 153: If let / let else / while let
	Slide 154: If let / let else / while let
	Slide 155: If let / let else / while let
	Slide 156: If let / let else / while let
	Slide 157: If let / let else / while let
	Slide 158: If let / let else / while let

	Question mark operator
	Slide 159: Question mark operator (?)
	Slide 160: Question mark operator (“?”)
	Slide 161: Question mark operator (“?”)
	Slide 162: Question mark operator (“?”)
	Slide 163: Question mark operator (“?”)
	Slide 164: Question mark operator (“?”)
	Slide 165: Question mark operator (“?”)
	Slide 166: Question mark operator (“?”)
	Slide 167: Question mark operator (“?”)
	Slide 168: Question mark operator (“?”)
	Slide 169: Question mark operator (“?”)
	Slide 170: Question mark operator (“?”)

	Q&A
	Slide 171

