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OOP



Rust structures have both a role of a structure and C++ class. However, there are 
several differences between how a class in C++ and its equivalent in Rust are 
designed. 

Maybe one of the most important one, is that methods for every object are 
implemented separately (and not as part of that object definition). This techniques 
allows rust to define traits (characteristics) that can be define for every object 
(including the one that are already part of the standard library and basic types).

OOP

struct MyClass {
  // data members
}
impl MyClass {
  // methods of the class
}

Rust

To add a method to a class, use the impl keyword, 
follow by the name of the class.



Methods are defined with the impl construct with the following format:
• [visibility] fn method_name ([params]) -> <return_type> {…}

• [visibility] fn method_name (self, [params]) -> <return_type> {…}

• [visibility] fn method_name (&self, [params]) -> <return_type> {…}

• [visibility] fn method_name (&mut self, [params]) -> <return_type> {…}

Where:

- [params] → is a list of parameters (similar to the one that can be added to a 
regular Rust function)

- [visibility] → a set of keywords that explain the visibility of that method

- <return_type> → the return type of that method

- self, &self, &mut self → used if the method is applying to the object. If not 
prezent, the method is considered static.

Methods



Let’s see a very simple example:

Methods

struct MyClass {
  value: i32
}
impl MyClass {
  fn inc(&mut self) { self.value += 1; }
  fn get(&self) -> i32 { return self.value; }
}

fn main() {  
  let mut obj = MyClass{value:0};
  obj.inc();
  println!("{}",obj.get());
}

Rust

Output 

1



Let’s see a very simple example:

Methods

struct MyClass {
  value: i32
}
impl MyClass {
  fn inc(&mut self) { self.value += 1; }
  fn get(&self) -> i32 { return self.value; }
}

fn main() {  
  let mut obj = MyClass{value:0};
  obj.inc();
  println!("{}",obj.get());
}

Rust

Output 

1

“self” is somehow similar to “this” pointer from C++.
For this method a mutable reference to the object is 

required in order to be able to change its data members.



Let’s see a very simple example:

Methods

struct MyClass {
  value: i32
}
impl MyClass {
  fn inc(&mut self) { self.value += 1; }
  fn get(&self) -> i32 { return self.value; }
}

fn main() {  
  let mut obj = MyClass{value:0};
  obj.inc();
  println!("{}",obj.get());
}

Rust

Output 

1

In this case we only need an immutable reference 
towards the object as we don’t need to modify its 

content.



Let’s see a very simple example:

OBJ: Notice that methods in Rust that receive a &self are translated as const 
methods in C++ (see method get)

Methods

struct MyClass {
  value: i32
}
impl MyClass {
  fn inc(&mut self) { self.value += 1; }
  fn get(&self) -> i32 { return self.value; }
}
fn main() {  
  let mut obj = MyClass{value:0};
    obj.value = 5;
  obj.inc();
  println!("{}",obj.get());
}

Rust

class MyClass {
  public:
    int value;
    void inc() { value+=1; }
    int get() const { return value; }
};
void main() {
  MyClass obj;
  obj.value = 5;
  obj.inc();
  printf("%d\n",obj.get());
}

C++

Output 

6



If the &self / &mut self or self are omitted when defining an object method, that 
method is considered to be static. In this example, method print_name is static and 
can only be access via the class/struct name specifier.

Static Methods

struct MyClass {
  value: i32
}
impl MyClass {
  fn print_name() {
    println!("MyClass");
  }
}
fn main() {  
  MyClass::print_name();
}

Rust

class MyClass {
  public:
    int value;
    static void print_name() {
      printf("MyClass");
    }
};
void main() {
  MyClass::print_name();
}

C++

Output 

MyClass



If you want to call a static method from a regular method you can use either “Self” 
(with capital “S”) as a type, or the name of the type you are implementing a 
method for.

Static Methods

struct MyClass {
  value: i32,
}
impl MyClass {
  fn print_name() {
    print!("MyClass");
  }
  fn print_me(&self) {
    Self::print_name();
    println!(" -> value: {}",self.value);
  }
}
fn main() {
  let x = MyClass{value:10};
  x.print_me();
}

Rust
Output 

MyClass -> value: 10



If you want to call a static method from a regular method you can use either “Self” 
(with capital “S”) as a type, or the name of the type you are implementing a 
method for.

Static Methods

struct MyClass {
  value: i32,
}
impl MyClass {
  fn print_name() {
    print!("MyClass");
  }
  fn print_me(&self) {
    Self::print_name();
    println!(" -> value: {}",self.value);
  }
}
fn main() {
  let x = MyClass{value:10};
  x.print_me();
}

Rust
Output 

MyClass -> value: 10

Alternatively, you can use 
“MyClass::print_name()” 

to obtain the same result.



There are also no static data members in Rust. However, we can use global variable 
to achieve a similar result as a static data member in C++. When we are going to 
talk about visibility, we will show how this global variables can be hidden.

Static data members

struct MyClass {
  value: i32,
}
static mut my_class_x: i32 = 10;
impl MyClass {
  fn inc() { unsafe { my_class_x += 1; } }
  fn get()->i32 { 
         unsafe { return my_class_x; } 
    }
}
fn main() {
  MyClass::inc();
  println!("{}",MyClass::get());
}

Rust

class MyClass {
  public:
    int value;
    static int x;
    static void inc() { x++; }
    static int get() { return x; }
};
int MyClass::x = 10;
void main() {
  MyClass::inc();
  printf("%d\n",MyClass::get());
}

C++

Output 

11



There are also no static data members in Rust. However, we can use global variable 
to achieve a similar result as a static data member in C++. When we are going to 
talk about visibility, we will show how this global variables can be hidden.

Static data members

struct MyClass {
  value: i32,
}
static mut my_class_x: i32 = 10;
impl MyClass {
  fn inc() { unsafe { my_class_x += 1; } }
  fn get()->i32 { 
         unsafe { return my_class_x; } 
    }
}
fn main() {
  MyClass::inc();
  println!("{}",MyClass::get());
}

Rust

class MyClass {
  public:
    int value;
    static int x;
    static void inc() { x++; }
    static int get() { return x; }
};
int MyClass::x = 10;
void main() {
  MyClass::inc();
  printf("%d\n",MyClass::get());
}

C++

Notice the usage of a special keyword -> 
unsafe. Global variables can be modified 

by multiple threads and as such their 
usage may lead to undefined behavior.



As a general rule, it is not recommended to create a global (mutable) variable to be 
used as a static field for an object. However, since some designed patters (such as 
Singleton) might require such an approach this is allowed but must be done in such 
a way that access to that variable is limited (so that we reduce the chance of an 
undefined behavior). 

If such a construct is used without the unsafe keyword, the code will not compile.

Static data members

struct MyClass {
  value: i32,
}
static mut my_class_x: i32 = 10;
impl MyClass {
  fn inc() { my_class_x += 1; }
  fn get()->i32 { return my_class_x; }

Rust
error[E0133]: use of mutable static is unsafe and requires 
unsafe function or block
 --> src\main.rs:6:17
  |
6 |     fn inc() {  my_class_x += 1;  }
  |                 ^^^^^^^^^^^^^^^ use of mutable static
  |
  = note: mutable statics can be mutated by multiple threads: 
          aliasing violations or data races will cause undefined 
          behavior

Error



Another interesting thing is that (semantically) Rust has “self” (in different forms) 
as the first parameter for methods that are associated/implemented for a struct.

This implies that a method is a little bit different than what we know from C++. In 
C++ a method can only be called by the actual object, in Rust a method can be 
called in two different ways:

• object.method (Param1, Param1,.. Paramn), where object is of type ObjectType

or
• ObjectType::method ([reference]object, Param1, Param1,.. Paramn)

Where [reference] refers to the fact that the first parameter should reflect its 
definition ( self , &self or &mut self )

Calling methods



Let’s see an example:

Notice that we have called print_a method in two different ways !

Calling methods

struct A { value: u32 } 
impl A {
  fn print_a(&self) { 
    println!("value = {}",self.value);
  }
}

fn main() {
  let a1 = A{value:10};
  let a2 = A{value:20};
  a1.print_a();
  A::print_a(&a2);
}

Rust

Output 

value = 10
value = 20



Also, there is no difference between a regular function that is designed to take the 
first parameter a reference or an object of type “A”, or a similar method 
implemented for type “A”.  In this example, we showcase this behavior. Method call 
receives a pointer to a function that has a first parameter of type &mut A and the 
second parameter of type u32. Both “g” and “A::f” qualify for this type of functions.

Calling methods

struct A {}
impl A {
  fn f(&mut self, x: u32) { println!("{}", x); }
}
fn g(_: &mut A, x: u32) { println!("{}", x + 10); }
fn call(fun: fn(&mut A, u32)) {
  let mut x = A {};
  fun(&mut x, 5);
}
fn main() {
  call(A::f);
  call(g);
}

Rust

Output 

5
15



Rust does not have a constructor-like method similar to what C++ has. This is 
because any struct has a clear initialization way where each field MUST BE 
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
  value: i32
}
impl MyClass {
  fn create(val: i32)-> MyClass {
    return MyClass { value: val };
  }
}
fn main() {  
  let m = MyClass::create(10);
  print!("{}",m.value);
}

Rust

class MyClass {
  public:
    int value;
    MyClass(int v): value(v) {}
};
void main() {
  MyClass m(10);
  printf("%d\n",m.value);
}

C++

Output 

10



Rust does not have a constructor-like method similar to what C++ has. This is 
because any struct has a clear initialization way where each field MUST BE 
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
  value: i32
}
impl MyClass {
  fn create(val: i32)-> MyClass {
    return MyClass { value: val };
  }
}
fn main() {  
  let m = MyClass::create(10);
  print!("{}",m.value);
}

Rust

class MyClass {
  public:
    int value;
    MyClass(int v): value(v) {}
};
void main() {
  MyClass m(10);
  printf("%d\n",m.value);
}

C++

Output 

10

This static method acts as a constructor. It creates a new 
MyClass object and returns it (this transfers the 

ownership towards the variable “m”).



Rust does not have a constructor-like method similar to what C++ has. This is 
because any struct has a clear initialization way where each field MUST BE 
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
  value: i32
}
impl MyClass {
  fn create(val: i32)-> MyClass {
    return MyClass { value: val };
  }
}
fn main() {  
  let m = MyClass::create(10);
  print!("{}",m.value);
}

Rust

class MyClass {
  public:
    int value;
    MyClass(int v): value(v) {}
};
void main() {
  MyClass m(10);
  printf("%d\n",m.value);
}

C++

Output 

10

mov    ecx,10  
call   MyClass::create 
mov    dword ptr [m],eax 

push  rax  
mov   dword ptr [rsp],ecx  
mov   eax,dword ptr [rsp]  
pop   rcx  
ret 



Rust does not have a constructor-like method similar to what C++ has. This is 
because any struct has a clear initialization way where each field MUST BE 
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
  value: i32
}
impl MyClass {
  fn create(val: i32)-> MyClass {
    return MyClass { value: val };
  }
}
fn main() {  
  let m = MyClass::create(10);
  print!("{}",m.value);
}

Rust

class MyClass {
  public:
    int value;
    MyClass(int v): value(v) {}
};
void main() {
  MyClass m(10);
  printf("%d\n",m.value);
}

C++

Output 

10

This means that in reality, what Rust does is to copy the 
value that we get from parameter “val” to “m” variable 

from the main function.



Rust also have a special type call Self that refers to the current type (not object). It 
is often useful when returning an object of that type.

Constructors

struct MyClass {
  value: i32,
}
impl MyClass {
  fn create(val: i32) -> Self {
    return MyClass { value: val };
  }
}
fn main() {
  let m = MyClass::create(10);
  print!("{}", m.value);
}

Rust

struct MyClass {
  value: i32,
}
impl MyClass {
  fn create(val: i32) -> MyClass {
    return MyClass { value: val };
  }
}
fn main() {
  let m = MyClass::create(10);
  print!("{}", m.value);
}

Rust

Output 

10



Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
  value: i32,
  data: [u8;30]

}
impl MyClass {
  fn new(val: i32, d: u8)-> MyClass {
    return MyClass { value: val, data: [d;30] };
  }

}

fn main() {  
  let m = MyClass::new(1,2);
  print!("{}",m.value);

}

Rust



Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
  value: i32,
  data: [u8;30]

}
impl MyClass {
  fn new(val: i32, d: u8)-> MyClass {
    return MyClass { value: val, data: [d;30] };
  }

}

fn main() {  
  let m = MyClass::new(1,2);
  print!("{}",m.value);

}

Rust

lea         rcx,[m]  
mov         edx,1  
mov         r8d,2  
call        MyClass::new



Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
  value: i32,
  data: [u8;30]

}
impl MyClass {
  fn new(val: i32, d: u8)-> MyClass {
    return MyClass { value: val, data: [d;30] };
  }

}

fn main() {  
  let m = MyClass::new(1,2);
  print!("{}",m.value);

}

Rust mov         byte ptr [rsp+2Bh],r8b  
mov         eax,edx // eax = 1 
mov         dl,byte ptr [rsp+2Bh] // edx = 2
mov         dword ptr [rsp+2Ch],eax  
mov         qword ptr [rsp+30h],rcx  
mov         qword ptr [rsp+38h],rcx  
mov         dword ptr [rsp+60h],eax  
mov         byte ptr [rsp+67h],dl  
lea         rcx,[rsp+42h]  
mov         r8d,30  
call        memset   
mov         edx,dword ptr [rsp+2Ch]  
mov         rcx,qword ptr [rsp+30h]  
mov         rax,qword ptr [rsp+38h]  
mov         dword ptr [rcx],edx // m.value = 1  
mov         rdx,qword ptr [rsp+42h]  
mov         qword ptr [rcx+4],rdx  
mov         rdx,qword ptr [rsp+4Ah]  
mov         qword ptr [rcx+0Ch],rdx  
mov         rdx,qword ptr [rsp+52h]  
mov         qword ptr [rcx+14h],rdx  
mov         edx,dword ptr [rsp+5Ah]  
mov         dword ptr [rcx+1Ch],edx  
mov         dx,word ptr [rsp+5Eh]  
mov         word ptr [rcx+20h],dx 

memcpy



Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
  value: i32,
  data: [u8;30]

}
impl MyClass {
  fn new(val: i32, d: u8)-> MyClass {
    return MyClass { value: val, 

                         data: [d;30] 
                       };
  }

}

fn main() {  
  let m = MyClass::new(1,2);
  print!("{}",m.value);
}

Rust

class MyClass 
{
  public:
    int value;
    uint8_t data[30];
    static void fn_new(MyClass * output, int val, uint8_t d) 
        {
      MyClass local_obj;
      local_obj.value = val;
      memset(local_obj.data,d,30);
      memcpy(output,&local_obj,sizeof(MyClass));
    }
};
void main() {
  MyClass m;
  MyClass::fn_new(&m, 1, 2);
  printf("%d\n",m.value);
}

C++ (approximation)



In reality, there is no real difference on how Rust constructs an object (as opposite 
on how C++ does it). Both of them receive the address where the actual object is 
located and construct it there.

Usually, Rust uses names like:
• new(…)

• from(…)

• with_...(…)

to describe a constructor. However, any name can be used.

OBS: from is part of a trait and while it is used to construct an object it is usually 
associated with that trait.

Constructors



Keep in mind that defining a function similar to a constructor does not imply than an 
object can not be created in different ways. In the next example, we create an object 
of type MyClass using two different methods (::create(…) and structure initialization).

Constructors

struct MyClass {
  value: i32
}
impl MyClass {
  fn create(val: i32)-> MyClass {
    return MyClass { value: val };
  }
}
fn main() {  
  let m = MyClass::create(10);
  print!("{}",m.value);
}

Rust (via create method)

struct MyClass {
  value: i32,
}
impl MyClass {
  fn create(val: i32) -> MyClass {
    return MyClass { value: val };
  }
}
fn main() {
  let m = MyClass{value:10};
  print!("{}", m.value);
}

Rust (via structure initialization).

Output 

10



One advantage of construction an object like this, is that we can return an error when 
trying to construct an object, while using the constructor concept in C++ makes this 
task more complicated.

Let’s assume that we have an object (of type Student). For each student we have a 
name and a grade → but the grade should be between 1 and 10.

Using a constructor (like in C++) you can not return an error (so in theory every object 
is valid). In Rust, we can return an Option<> or a Result<> and only if the result is valid 
(Some for Option or Ok for Result) we obtain an  instance of a specific type.

Constructors



Let’s see an example:

Constructors

#[derive(Debug)]
struct Student {
  grade: i32,
  name: String
}
impl Student {
  fn new(stud_name: &str, stud_grade: i32) -> Option<Student> {
    if (stud_name.len()>0) && (stud_grade>=1) && (stud_grade<=10) {
      return Some(Student{grade: stud_grade, name: String::from(stud_name)});
    }
    return None;
  }
}
fn main() {
  let s1 = Student::new("Andrei",-5);
  let s2 = Student::new("Dragos",10);
  println!("s1={:?}",s1);
  println!("s2={:?}",s2);
}

Rust

Output 

s1=None
s2=Some(Student { grade: 10, name: "Dragos" })



Keep in mind that static functions are possible in C++ as well. This means that the 
same technique can be used there (create an object via a static function). The only 
difference is if we need to allocate a class in the heap or if we need to create an array. 
Since C++ builds a class directly in the allocated memory, there is a need of a 
constructor method that can be called automatically when an object is created.

Rust works by creating a temporary object first and then assigned it to the actual 
object (transfer the ownership). Because of this, any kind of static function will work 
as we will need to provide that temporary object first , and then the assignment is 
performed by Rust.

Constructors



Obviously, there is no implicit default constructor in Rust. However, it is a common 
practice to name it new, while other constructors that imply creating from a specific 
type prefer the prefix from (as a derivation from the trait From).

Constructors

#[derive(Debug)]
struct MyClass {
  value: i32,
}
impl MyClass {
  fn new() -> MyClass { MyClass{value:0} }
  fn from_i32(val: i32) -> MyClass { MyClass{value:val} }
}
fn main() {
  let m1 = MyClass::new();
  let m2 = MyClass::from_i32(10);
  println!("m1={:?}",m1);
  println!("m2={:?}",m2);
}

Rust

Output 

m1=MyClass { value: 0 }
m2=MyClass { value: 10 }



The usage of .. operator is also called functional update syntax. It implies that you 
can use this to call another initialization method (that will be called first) followed 
by you own changes. Let’s see some example:

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: &'static str,
}
fn main() {
  let obj = Test {
    x: 1,
    ..Test { x: 5, y: 3, name: "abc" }
  };
  println!("obj={:?}", obj);
}

Rust 

Output 

obj=Test { x: 1, y: 3, name: "abc" }

In this case, first the 
..Test { x: 5, y: 3, name: "abc" } 

is called that instantiate obj with {x=5,y=3,name=“abc”}; 
Then, x is being overwritten with value 1.



The usage of .. operator is also called functional update syntax. It implies that you 
can use this to call another initialization method (that will be called first) followed 
by you own changes. Let’s see some example:

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: &'static str,
}
impl Test {
  fn new() -> Test { Test { x: 0, y: 0, name: "" } }
}
fn main() {
  let obj = Test {
    x: 1,
    name: "xyz",
    ..Test::new()    
  };
  println!("obj={:?}", obj);
}

Rust 

Output 

obj=Test { x: 1, y: 0, name: "xyz" }

In this case, first the ..Test::new() is called that 
instantiate obj with {x=0,y=0,name=“”}; Then, x is being 

overwritten with value 1, and name with value “xyz”



The usage of .. operator is also called functional update syntax. It implies that you 
can use this to call another initialization method (that will be called first) followed 
by you own changes. Let’s see some example:

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: &'static str,
}
impl Test {
  fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
}
fn main() {
  let obj = Test {
    name: "xyz",
    ..Test::new(5)    
  };
  println!("obj={:?}", obj);
}

Rust 

Output 

obj=Test { x: 5, y: 5, name: "xyz" }

In this case, first the ..Test::new(5) is called that 
instantiate obj with {x=5,y=5,name=“”}; Then, name is 

overwritten with value “xyz”



The .. operator has to be the last from the declaration.

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: &'static str,
}
impl Test {
  fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
}
fn main() {
  let obj = Test {
    name: "xyz",
    ..Test::new(5),
    x: 1    
  };
  println!("obj={:?}", obj);
}

Rust 

error: cannot use a comma after the base struct
  --> src\main.rs:13:9
   |
13 |         ..Test::new(5),
   |         ^^^^^^^^^^^^^^- help: remove this comma
   |
   = note: the base struct must always be the last field

Error



When using functional update syntax, you can also use another object (of the same 
type) as your base:

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: &'static str,
}
impl Test {
  fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
}
fn main() {
  let base = Test::new(5);
  let obj = Test {
    name: "xyz",
    ..base    
  };
  println!("obj={:?}, base={:?}", obj,base);
}

Rust 

Output 

obj=Test { x: 5, y: 5, name: "xyz" }, 
base=Test { x: 5, y: 5, name: "" }



However, there are a couple of pitfalls that we need to take into consideration:

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: String,
}
impl Test {
  fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
  let mut base = Test::new(5);
  base.x = 123;
  let obj = Test {
    name: String::from("abc"),
    ..base    
  };
  println!("obj={:?}, base={:?}", obj,base);
}

Rust 
Output 

obj=Test { x: 123, y: 5, name: "abc" }, 
base=Test { x: 123, y: 5, name: "123" }

Notice tha this 
snipped works as 

expected !



However, there are a couple of pitfalls that we need to take into consideration:

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: String,
}
impl Test {
  fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
  let mut base = Test::new(5);
  base.x = 123;
  let obj = Test {
    x: 10,
    ..base    
  };
  println!("obj={:?}, base={:?}", obj,base);
}

Rust 

error[E0382]: borrow of partially moved value: `base`
  --> src\main.rs:17:41
   |
13 |       let obj = Test {
   |  _______________-
14 | |         x: 10,
15 | |         ..base
16 | |     };
   | |_____- value partially moved here
17 |       println!("obj={:?}, base={:?}", obj,base);
   |                                           ^^^^ value borrowed here after partial move
   |
   = note: partial move occurs because `base.name` has type `String`, which does not 
implement the `Copy` trait

Error



Let’s analyze a little bit better what the next piece of code implies:

Steps:

1. Initialize obj with all fields that are provided (in our case → “x”)

2. Copy/Move all elements from base that are not needed by the current 
initialization (in our case, since we already initialized “x”, we will assign “y” and 
“name”). For “y” everything is ok, but “name” will be moved as it does not 
contain the Copy trait.

3. As such, trying to print base after this step is invalid (as it has a partially moved 
member – name).

Functional update syntax

  let obj = Test { x: 10, 
                     ..base 
                   };

struct Test {
  x: i32,
  y: i32,
  name: String,
}



Now the code works, but notice that we don’t print base.name that was moved !!!

Functional update syntax

#[derive(Debug)]
struct Test {
  x: i32,
  y: i32,
  name: String,
}
impl Test {
  fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
  let mut base = Test::new(5);
  base.x = 123;
  let obj = Test {
    x: 10,
    ..base    
  };
  println!("obj={:?}, base.x={}, base.y={}", obj,base.x, base.y);
}

Rust 
Output 

obj=Test { x: 10, y: 5, name: "123" }, base.x=123, base.y=5



Rust does not support method overloading (in the sense that there can not be two 
methods with the same name as part of the same implementation of one class).  We 
emphasize the word: “same implementation of one class” as methods with the same 
name are allowed with traits (we will discuss about this later) or with 
generics/templates.

One major advantage here is clarity (if you have multiple functions with the same 
name, its is not always clear how parameters must be converted to match one of the 
functions). If you only have one function with a specific name, this issue will NOT be 
encountered anymore.

Method overloading



Let’s see an example:

Method overloading

struct MyClass {
  value: i32,
}
impl MyClass {
  fn add(&mut self, v1: i32) {
    self.value+= v1;
  }
  fn add(&mut self, v1: i32, v2: i32) {
    self.value+= v1+v2;
  }
}
fn main() {
  let m = MyClass{value:0};
  m.add(10);
  m.add(10,20);
  println!("{}",m.value);
}

Rust

error[E0201]: duplicate definitions with name `add`:
  --> src\main.rs:8:5
   |
5  | /     fn add(&mut self, v1: i32) {
6  | |         self.value+= v1;
7  | |     }
   | |_____- previous definition of `add` here
8  | /     fn add(&mut self, v1: i32, v2: i32) {
9  | |         self.value+= v1+v2;
10 | |     }
   | |_____^ duplicate definition

Error



The solution in this case is to change the name of those two methods:

Method overloading

struct MyClass {
  value: i32,
}
impl MyClass {
  fn add_one(&mut self, v1: i32) {
    self.value+= v1;
  }
  fn add_two(&mut self, v1: i32, v2: i32) {
    self.value+= v1+v2;
  }
}
fn main() {
  let mut m = MyClass{value:0};
  m.add_one(10);
  m.add_two(10,20);
  println!("{}",m.value);
}

Rust

Output 

40



Rust does not have a destructor method (in the sense of a specific method with the 
same name as the class) as C++ does. However, there is a special trait called Drop that 
can be used to define a function with a similar scope.

Furthermore, the lifetime of one object or its transformation can be controlled via 
methods that receive self as an argument (notice that it is self and not &self or &mut 
self). 

This technique transfers the ownership and as a result one can convert that object into 
another one, or it can drop it.

We will discuss more about destructors when we talk about traits.

Destructors



Let’s see an example:

Destructors

struct MyClass {
  value: i32,
}
impl MyClass {
  fn destruct_me(self) {
    println!("Destruct object !");
  }
}
fn main() {
  let m = MyClass{value:0};
  m.destruct_me();
  println!("End program");
}

Rust

Output 

Destruct object !
End program

After this point, “m” lifetime is over and any data that it 
contains will be dropped.



Let’s see an example:

Destructors

struct MyClass {
  value: i32,
}
impl MyClass {
  fn destruct_me(self) {
    println!("Destruct object !");
  }
}
fn main() {
  let m = MyClass{value:0};
  m.destruct_me();
  println!("m.value = {}",m.value);
}

Rust

error[E0382]: borrow of moved value: `m`
  --> src\main.rs:12:29
   |
10 |     let m = MyClass{value:0};
   |         - move occurs because `m` has type `MyClass`, which does not 
   |           implement the `Copy` trait
11 |     m.destruct_me();
   |       ------------- `m` moved due to this method call
12 |     println!("m.value = {}",m.value);
   |                             ^^^^^^^ value borrowed here after move
   |
note: this function takes ownership of the receiver `self`, which moves `m`
  --> src\main.rs:5:20
   |
5  |     fn destruct_me(self) {
   |                    ^^^^

Error



Let’s see an example where we convert one object into another (by converting we 
refer to a transfer of ownership between object fields). This is often known as 
consuming one object and producing another one !

Consuming an object

#[derive(Debug)]
struct Student { math: i32, english: i32, name: String }
#[derive(Debug)]
struct StudentAverage { grade: i32, name: String }
impl Student {
  fn convert_to_student_average(self)->StudentAverage {
    StudentAverage{grade: (self.math+self.english)/2, name: self.name}
  }
}
fn main() {
  let s = Student{math:10, english:8, name: String::from("John")};
  println!("Student = {:?}",s);
  let sa = s.convert_to_student_average();
  println!("Average = {:?}",sa);
}

Rust

Output 

Student = Student { math: 10, english: 8, name: "John" }
Average = StudentAverage { grade: 9, name: "John" }



Let’s see an example where we convert one object into another (by converting we 
refer to a transfer of ownership between object fields). This is often known as 
consuming one object and producing another one !

Consuming an object

#[derive(Debug)]
struct Student { math: i32, english: i32, name: String }
#[derive(Debug)]
struct StudentAverage { grade: i32, name: String }
impl Student {
  fn convert_to_student_average(self)->StudentAverage {…}
}
fn main() {
  let s = Student{math:10, english:8, name: String::from("John")};
  println!("Student = {:?}",s);
  let sa = s.convert_to_student_average();
  println!("Average = {:?}",sa);
    println!("Student = {:?}",s);
}

Rust
error[E0382]: borrow of moved value: `s`
  --> src\main.rs:22:31
   |
18 |     let s = Student{math:10, english:8, name: String::from("John")};
   |         - move occurs because `s` has type `Student`, which does not 
implement the `Copy` trait
19 |     println!("Student = {:?}",s);
20 |     let sa = s.convert_to_student_average();
   |                --------------------------- `s` moved due to this method call
21 |     println!("Average = {:?}",sa);
22 |     println!("Student = {:?}",s);
   |                               ^ value borrowed here after move

Error



There are several conventions that are usually used in Rust when writing a method 
that consumes/converts an object:

1. use into_<type> if you want to consume current type and obtained a new object 
by transferring ownership. This type of method receives a self as a first argument.

2. use to_<type> if you want to create a new object and keep the original object 
(usually this means making a copy/clone of some of the data members of the 
original object). This type of method receives a &self as a first argument.

Consuming an object

struct ClassA { /* data members */ }
struct ClassB { /* data members */ }
impl ClassA { fn into_classB(self, /* other parameters */ ) -> ClassB {...} }

struct ClassA { /* data members */ }
struct ClassB { /* data members */ }
impl ClassA { fn to_classB(&self, /* other parameters */ ) -> ClassB {...} }



There are several conventions that are usually used in Rust when writing a method 
that consumes/converts an object:

3. use as_<type> if you want to convert an immutable reference of type “A” to an 
immutable reference of type “B”. This type of method receives a &self as a first 
argument. Usually this means that type “A” has a data member of type “B”.

Consuming an object

struct ClassA { /* data members */ }
struct ClassB { /* data members */ }
impl ClassA { fn as_classB(&self, /* other parameters */ ) -> &ClassB {...} }



Let’s see how these conversion will look like for our Student structure

Consuming an object

struct Student {
  math: i32,
  english: i32,
  name: String,
}
struct StudentAverage {
  grade: i32,
  name: String,
}
impl Student {
  fn into_student_average(self) -> StudentAverage {
    StudentAverage {
      grade: (self.math + self.english) / 2,
      name: self.name,
    }
  }
  fn to_student_average(&self) -> StudentAverage {
    StudentAverage {
      grade: (self.math + self.english) / 2,
      name: self.name.clone(),
    }
  }
}

Rust

Ownership of “Student::name” is transferred

A copy/clone of “Student::name” is made



Implementing methods (static and non-static) is not limited to structures, it works 
similar for enums. To access the enum value, use the self keyword

Enums

enum Value {
  Int(i32),
  Float(f32)
}
impl Value {
  fn is_int(&self)->bool { 
    match self {
      Value::Int(_) => { return true; }
      _ => { return false;}
    }
  }
}
fn main() {
  let x = Value::Int(10);
  let y = Value::Float(1.5);
  println!("x is int: {}",x.is_int());
  println!("y is int: {}",y.is_int());
}

Rust

Output 

x is int: true
y is int: false



The same logic could have been obtained via an “if let” statement, “while let” 
statement or “matches!” macro, instead of using a match.

Enums

enum Value {
  Int(i32),
  Float(f32)
}
impl Value {
  fn is_int(&self)->bool { 
    match self {
      Value::Int(_) => { return true; }
      _ => { return false;}
    }
  }
}
fn main() {
  let x = Value::Int(10);
  let y = Value::Float(1.5);
  println!("x is int: {}",x.is_int());
  println!("y is int: {}",y.is_int());
}

Rust

Output 

x is int: true
y is int: false

fn is_int(&self)->bool { 
  if let Value::Int(_) = self {
    return true;
  }
  return false;
}

Rust

fn is_int(&self)->bool { 
    return if let Value::Int(_)=self { true } else { false }
}

Rust



Static methods can also be implemented for an enum (they are in particular useful 
when creating enum objects).

Enums

#[derive(Debug)]
enum Value {
  Int(i32),
  Float(f32)
}
impl Value {
  fn from_i32(value: i32)->Value {
    return Value::Int(value);
  }
  fn from_f32(value: f32)->Value {
    return Value::Float(value);
  }  
}
fn main() {
  let x = Value::from_i32(10);
  let y = Value::from_f32(1.5);
  println!("{x:?},{y:?}");
}

Rust

Output 

Int(10),Float(1.5)



Traits



In Rust a trait is a set of characteristics that an object has. Formally, a trait is very 
similar to an interface. However, from a semantic point of view, it is closer to a C++ 
abstract class.

From the semantic point of view, a trait is a list of methods that can be 
implemented for an existing type (IMPORTANT: not necessarily a newly created 
type, but also types that are already defined).

Traits

trait MyTrait {
  // methods
}
impl MyTrait for MyClass {
  // implement methods
}

Rust

To implement a trait for an existing 
structure/enum, use the impl keyword.



Let’s see a simple example:

Traits

struct MyClass {
  x: i32
}
trait IncrementAndDecrement {
  fn inc(&mut self);
  fn dec(&mut self);
}
impl IncrementAndDecrement for MyClass {
  fn inc(&mut self) { self.x+=1; }
  fn dec(&mut self) { self.x-=1; }
}
fn main() {
  let mut m = MyClass{x:3};
  m.inc();m.inc();m.inc();
  m.dec();
  println!("X = {}",m.x);
}

Rust

Output 

5



Let’s see a simple example:

Traits

struct MyClass {
  x: i32
}
trait IncrementAndDecrement {
  fn inc(&mut self);
  fn dec(&mut self);
}
impl IncrementAndDecrement for MyClass {
  fn inc(&mut self) { self.x+=1; }
  fn dec(&mut self) { self.x-=1; }
}
fn main() {
  let mut m = MyClass{x:3};
  m.inc();m.inc();m.inc();
  m.dec();
  println!("X = {}",m.x);
}

Rust
class IncrementAndDecrement {
  public:
    virtual void inc() = 0;
    virtual void dec() = 0;
};
class MyClass: public IncrementAndDecrement {
public:
  int x;
  virtual void inc() override { x++; };
  virtual void dec() override { x--; };
};
void main() {
  MyClass m;
  m.x = 3;
  m.inc();m.inc();m.inc();
  m.dec();
  printf("X = %d",m.x);
}

C++

Output 

5



Let’s see a simple example:

Traits

struct MyClass {
  x: i32
}
trait IncrementAndDecrement {
  fn inc(&mut self);
  fn dec(&mut self);
}
impl IncrementAndDecrement for MyClass {
  fn inc(&mut self) { self.x+=1; }
  fn dec(&mut self) { self.x-=1; }
}
fn main() {
  let mut m = MyClass{x:3};
  m.inc();m.inc();m.inc();
  m.dec();
  println!("X = {}",m.x);
}

Rust

Output 

5

mov         dword ptr [m],3  
lea         rcx,[m]  
call        first::impl$0::inc   
lea         rcx,[m]  
call        first::impl$0::inc   
lea         rcx,[m]  
call        first::impl$0::inc   
lea         rcx,[m]  
call        first::impl$0::dec 

Notice that the linkage is done statically 
(even if inc and dec are equivalent to a 

virtual method).



When implementing a trait, we can use the type Self to refer to the type where we 
implement the trait. This allows to define a trait and be more generic (not needing to 
specify the type of some parameters).

Traits

struct MyClass {
  x: i32
}
trait IsBigger {
  fn is_bigger(&self, object: &Self) -> bool;
}
impl IsBigger for MyClass {
  fn is_bigger(&self, object: &Self) -> bool {
    return if self.x>object.x { true } else { false };
  }
}
fn main() {
  let m1 = MyClass{x:3};
  let m2 = MyClass{x:2};
  println!("is m1 > m2 => {}",m1.is_bigger(&m2));
}

Rust

Output 

is m1 > m2 => true



However, a virtual method (in C++) is interesting from the polymorphic point of view. 
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
  fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
  fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
  println!("{}",obj.get_name());
}
fn main() {
  let obj_a = ClassA{};
  let obj_b = ClassB{};
  print_name(&obj_a);
  print_name(&obj_b);
}

Rust Output 

ClassA
ClassB



However, a virtual method (in C++) is interesting from the polymorphic point of view. 
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
  fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
  fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
  println!("{}",obj.get_name());
}
fn main() {
  let obj_a = ClassA{};
  let obj_b = ClassB{};
  print_name(&obj_a);
  print_name(&obj_b);
}

Rust Output 

ClassA
ClassB

Notice the usage of &dyn Name as the type of obj. This 
translates that obj is a reference to a type that 
implements the trait Name.



However, a virtual method (in C++) is interesting from the polymorphic point of view. 
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
  fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
  fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
  println!("{}",obj.get_name());
}
fn main() {
  let obj_a = ClassA{};
  let obj_b = ClassB{};
  print_name(&obj_a);
  print_name(&obj_b);
}

Rust Output 

ClassA
ClassB

lea         rcx,[obj_a]  
lea         rdx,[impl$<first::ClassA, first::Name>::vtable$ (07FF60708D498h)]  
call        first::print_name

lea         rcx,[obj_b]  
lea         rdx,[impl$<first::ClassB, first::Name>::vtable$ (07FF60708D4B8h)]  
call        first::print_name

This actually translate in the following way: when 
sending a dynamic reference towards a trait, 
Rust send two parameters:
1. a pointer to the object (self) via register RCX
2. a pointer to a vfptr (similar like in C++) via 

register RDX



However, a virtual method (in C++) is interesting from the polymorphic point of view. 
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
  fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
  fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
  println!("{}",obj.get_name());
}
fn main() {
  let obj_a = ClassA{};
  let obj_b = ClassB{};
  print_name(&obj_a);
  print_name(&obj_b);
}

Rust Output 

ClassA
ClassB

sub         rsp,98h  
mov         qword ptr [self],rcx  
mov         qword ptr [vfptr],rdx  
mov         rax,qword ptr [vfptr+18h]  
call        rax // Name::get_name()

Similar to C++, all virtual/dynamic methods are 
kept in a list (that is referred by vfptr pointer).  As 
a difference from C++, there is no need for 
redirection (as vfptr pointer is provided directly 
via a register).



This means that the size of an object that implements some traits does not change in 
Rust. “ClassA” in both Rust and C++ has one member (“x”) that has 4 bytes. However, 
in C++ due to the virtual method get_name, an instance of ClassA also contains a 
pointer to a vfptr (and as such a size of 8 (for 32 bytes) or 12/16 for 64 bytes).

Traits

struct ClassA {
  x: i32,
}
trait Name {
  fn get_name(&self) -> &str;
}
impl Name for ClassA {
  fn get_name(&self) -> &str {
    "ClassA"
  }
}
fn main() {
  println!("{}", std::mem::size_of::<ClassA>())
}

Rust Output 

4 class Name {
  public:
    virtual const char * get_name() = 0;
};
class ClassA: public Name {
  int x;
public:
  virtual const char * get_name() override { 
    return "ClassA";
  }
};
void main() {
  printf("%d",sizeof(ClassA));
}

C++ Output 

8



Furthermore, the same logic applies for arrays (or for any kind of structure/enum that 
uses a structure that implements a trait that define a virtual method.

Traits

struct ClassA {
  x: i32,
}
trait Name {
  fn get_name(&self) -> &str;
}
impl Name for ClassA {
  fn get_name(&self) -> &str {
    "ClassA"
  }
}
fn main() {
  println!("{}", std::mem::size_of::<[ClassA;10]>());
}

Rust

Output 

40



So … let’s analyze and see how the classic polymorphism example works in Rust.

Traits

struct Figure {
  virtual const char * get_name() = 0;
};
struct Circle: public Figure {
  virtual const char * get_name() override { return "Circle";}  
};
struct Rectangle: public Figure {
  virtual const char * get_name() override { return "Rectangle";}  
};
struct Triangle: public Figure {
  virtual const char * get_name() override { return "Triangle";} 
};
void main() {
  Figure* fig[3];
  fig[0] = new Circle();
  fig[1] = new Rectangle();
  fig[2] = new Triangle();
  for (auto i = 0;i<2;i++) {
    printf("%s\n",fig[i]->get_name());
  }
}

C++ (classic polymorphism example)

Output 

Circle
Rectangle
Triangle



Let’s recreate the same example for polymorphism in Rust.

We will do this in 3 steps:

1. Write the Figure trait and implement it for Circle, Rectangle and Triangle

2. Write initialization methods for Circle, Rectangle and Triangle

3. Discuss how main function should be written in order to illustrate the 
polymorphism.

Traits



Step 1: Write the Figure trait and implement it for Circle, Rectangle and Triangle

 

Traits

trait Figure {
  fn get_name(&self) -> &str;
}

struct Circle { x: i32, y:i32, r: i32 }
struct Rectangle { x: i32, y:i32, w:i32, h:i32 }
struct Triangle { x: [i32;3], y:[i32;3] }

impl Figure for Circle {
  fn get_name(&self) -> &str { "Circle" }
}
impl Figure for Rectangle {
  fn get_name(&self) -> &str { "Rectangle" }
}
impl Figure for Triangle {
  fn get_name(&self) -> &str { "Triangle" }
}

Rust



Step 2: Write initialization methods for Circle, Rectangle and Triangle

 

Traits

impl Circle {
  fn new()->Circle {
    Circle{x:0,y:0,r:1}
  }
}
impl Rectangle {
  fn new()->Rectangle {
    Rectangle{x:0,y:0,w:100,h:20}
  }
}
impl Triangle {
  fn new()->Triangle {
    Triangle{x:[0,1,2],y:[0,1,0]}
  }
}

Rust



Step 3: Discuss how main function should be written in order to illustrate the 
polymorphism.

The fact is that we can not create an array with traits similar to how we do it in C++ 
(Rust assumes that the first item is the type of array and as such for this example, the 
code will not compile).

Traits

fn main() {
  let figuri = [
    Box::new(Circle::new()),
    Box::new(Rectangle::new()),
    Box::new(Triangle::new())
  ];  
  for fig in figuri.iter() {
    println!("{}",fig.get_name());
  }
}

Rust
error[E0308]: mismatched types
  --> src\main.rs:38:18
   |
38 |         Box::new(Rectangle::new()),
   |                  ^^^^^^^^^^^^^^^^ expected struct `Circle`, 
   |                                   found struct `Rectangle`

error[E0308]: mismatched types
  --> src\main.rs:39:18
   |
39 |         Box::new(Triangle::new())
   |                  ^^^^^^^^^^^^^^^ expected struct `Circle`, found 
   |                                  struct `Triangle`

Error



Step 3: Discuss how main function should be written in order to illustrate the 
polymorphism.

Now the code works and output a similar result as the code from C++;

Traits

fn main() {
  let figuri: [Box::<dyn Figure>;3] = [
    Box::new(Circle::new()),
    Box::new(Rectangle::new()),
    Box::new(Triangle::new())
  ];  
  for fig in figuri.iter() {
    println!("{}",fig.get_name());
  }
}

Rust

Output 

Circle
Rectangle
Triangle



Step 3: Discuss how main function should be written in order to illustrate the 
polymorphism.

Let’s see how “figure” is organized in memory. Notice that each element in the array 
consists out of two pointers (one towards the data (a Circle struct, a Rectangle struct 
or a Triangle struct) and the second one towards the vtable for trait Figure that was 
implemented for Circle, Rectangle and Triangle.

Traits

fn main() {
  let figuri: [Box::<dyn Figure>;3] = [
    Box::new(Circle::new()),
    Box::new(Rectangle::new()),
    Box::new(Triangle::new())
  ];  
  for fig in figuri.iter() {
    println!("{}",fig.get_name());
  }
}

Rust “figure” layout

[0] ptr to a Circle object

ptr to vtable of trait Figure for Circle object

[1] ptr to a Rectangle object

ptr to vtable of trait Figure for Rectangle object

[2] ptr to a Triangle object

ptr to vtable of trait Figure for Triangle object



Step 3: Discuss how main function should be written in order to illustrate the 
polymorphism.

Keep in mind that we can not use a “dyn Figure type” outside of a box as we can not 
know at compile time the size of an object that implements Figure trait.

Traits

fn main() {
  let figuri: [dyn Figure;3] = [
    Circle::new(),
    Rectangle::new(),
    Triangle::new()
  ];  
  for fig in figuri.iter() {
    println!("{}",fig.get_name());
  }
}

Rust

error[E0277]: the size for values of type `dyn Figure` cannot be known at compilation time
  --> src\main.rs:36:17
   |
36 |     let figuri: [dyn Figure;3] = [
   |                 ^^^^^^^^^^^^^^ doesn't have a size known at compile-time
   |
   = help: the trait `Sized` is not implemented for `dyn Figure`
   = note: slice and array elements must have `Sized` type

Error



Step 3: Discuss how main function should be written in order to illustrate the 
polymorphism.

The same can be done with a vector (instead of an array) with similar results.

 

Traits

fn main() {
  let mut figuri = Vec::<Box<dyn Figure>>::new();
  figuri.push(Box::new(Circle::new()));
  figuri.push(Box::new(Rectangle::new()));
  figuri.push(Box::new(Triangle::new()));
  for fig in figuri.iter() {
    println!("{}",fig.get_name());
  }
}

Rust

Output 

Circle
Rectangle
Triangle



The previous code can be adjusted so that we can returned a boxed trait from a 
function. Let’s see how get_a_figure looks like in assembly:

Traits

fn get_a_figure(id: i32) -> Box<dyn Figure> {
  if id == 0 { return Box::new(Circle::new()); }
  if id == 1 { return Box::new(Rectangle::new()); }
  Box::new(Triangle::new())
}
fn main() {
  let mut figuri = Vec::<Box<dyn Figure>>::new();
  for i in 0..3 {
    figuri.push(get_a_figure(i));
  }
  for fig in figuri.iter() {
    println!("{}", fig.get_name());
  }
}

Rust

Output 

Circle
Rectangle
Triangle



The previous code can be adjusted so that we can returned a boxed trait from a 
function. Let’s see how get_a_figure looks like in assembly:

Traits

fn get_a_figure(id: i32) -> Box<dyn Figure> {
  if id == 0 { return Box::new(Circle::new()); }
  if id == 1 { return Box::new(Rectangle::new()); }
  Box::new(Triangle::new())
}
fn main() {
  let mut figuri = Vec::<Box<dyn Figure>>::new();
  for i in 0..3 {
    figuri.push(get_a_figure(i));
  }
  for fig in figuri.iter() {
    println!("{}", fig.get_name());
  }
}

Rust

lea         rcx,[temp_stack_circle]  
 call        first::Circle::new 
 mov         ecx,12 // size of a circle  
 mov         edx,4  
 call        alloc::alloc::exchange_malloc  
 mov         qword ptr [ptr_to_circle],rax  
 jmp         RETURN_FIGURE_FROM_CIRCLE
 ...

RETURN_FIGURE_FROM_CIRCLE:
 mov         rcx,qword ptr [ptr_to_circle]  
 mov         rax,rcx  
 mov         rdx,qword ptr [temp_stack_circle]  
 mov         qword ptr [rcx],rdx  
 mov         edx,dword ptr [temp_stack_circle.r]  
 mov         dword ptr [ptr_to_circle.r],edx  
 mov         qword ptr [res.data_pointer],rax  
 lea         rax,[impl<Circle, Figure>::vtable]  
 mov         qword ptr [res.vtable],rax 
 jmp         RETURN_FROM_FUNCTION 
 ...

RETURN_FROM_FUNCTION:
 mov         rax,qword ptr [res.data_pointer]  
 mov         rdx,qword ptr [res.vtable]  
 add         rsp,0A0h  
 pop         rbp  
 ret



The previous code can be adjusted so that we can returned a boxed trait from a 
function. Let’s see how get_a_figure looks like in assembly:

Traits

fn get_a_figure(id: i32) -> Box<dyn Figure> {
  if id == 0 { return Box::new(Circle::new()); }
  if id == 1 { return Box::new(Rectangle::new()); }
  Box::new(Triangle::new())
}
fn main() {
  let mut figuri = Vec::<Box<dyn Figure>>::new();
  for i in 0..3 {
    figuri.push(get_a_figure(i));
  }
  for fig in figuri.iter() {
    println!("{}", fig.get_name());
  }
}

Rust
struct Figure_result {
  void* ptr_to_data;
  void* ptr_to_vtable;
};
Figure_result get_a_figure(int idx) {
  if (idx == 0) {
    Circle temp_stack_circle = Circle::new();
    Circle* ptr_to_circle = new Circle();
    memcpy(ptr_to_circle, 
               temp_stack_circle, 
               sizeof(Circle));
    Figure_result res;
    res.ptr_to_data = ptr_to_circle;
    res.ptr_to_vtable = 0xFF1122....;
    return res;
  }
  ...
}

C++ (approximation)

A hardcoded address in process memory 
where the vtable for Circle is located.



Keep in mind that returning a boxed (dynamic) type is different than returning an 
implementation of a trait . The next code will not compile as Rust will assume that all 
return branches must return the same thing (a circle) just like the first return branch 
does.

Traits

fn get_a_figure(id: i32) -> impl Figure {
  if id == 0 {
    return Circle::new();
  }
  if id == 1 {
    return Rectangle::new();
  }
  return Triangle::new();
}

Rust

error[E0308]: mismatched types
  --> src\main.rs:75:16
   |
70 | fn get_a_figure(id: i32) -> impl Figure {
   |                             ----------- expected `_` because of return type
...
75 |         return Rectangle::new();
   |                ^^^^^^^^^^^^^^^^ expected struct `Circle`, found struct `Rectangle`

Error



If we return the exact same type from all branches of the get_a_figure function, the 
code compiles.

Let’s see what happens when we create the “a” variable.

Traits

fn get_a_figure(id: i32) -> impl Figure {
  if id == 0 {
    return Circle::new();
  }
  return Circle::new();
}
fn main() {
  let a = get_a_figure(0);
  println!("{}",a.get_name());
}

Rust

Output 

Circle



If we return the exact same type from all branches of the get_a_figure function, the 
code compiles.

Let’s see what happens when we create the “a” variable.

Traits

fn get_a_figure(id: i32) -> impl Figure {
  if id == 0 {
    return Circle::new();
  }
  return Circle::new();
}
fn main() {
  let a = get_a_figure(0);
  println!("{}",a.get_name());
}

Rust

lea         rcx,[a]  
xor         edx,edx // edx = 0 (first parameter: id = 0)  
call        first::get_a_figure



If we return the exact same type from all branches of the get_a_figure function, the 
code compiles.

Let’s see what happens when we create the “a” variable.

Traits

fn get_a_figure(id: i32) -> impl Figure {
  if id == 0 {
    return Circle::new();
  }
  return Circle::new();
}
fn main() {
  let a = get_a_figure(0);
  println!("{}",a.get_name());
}

Rust

sub         rsp,38h  
 mov         qword ptr [address_of_a],rcx  

 cmp         edx,0  
 jne         IDX_IS_NOT_ZERO  
 mov         rcx,qword ptr [address_of_a]  
 call        Circle::new  
 jmp         RETURN_FROM_FUNCTION 

IDX_IS_NOT_ZERO:
 mov         rcx,qword ptr [address_of_a]  
 call        Circle::new 

RETURN_FROM_FUNCTION:
 mov         rax,qword ptr [address_of_a]  
 add         rsp,38h  
 ret 



If we return the exact same type from all branches of the get_a_figure function, the 
code compiles.

Traits

fn get_a_figure(id: i32) -> impl Figure {
  if id == 0 {
    return Circle::new();
  }
  return Circle::new();
}
fn main() {
  let a = get_a_figure(0);
  println!("{}",a.get_name());
}

Rust

void get_a_figure(void* result, int idx) {
  if (idx == 0) {
    Circle temp = Circle::new();
    memcpy(result, temp, sizeof(Circle));
    return;
  }
  Circle temp = Circle::new();
  memcpy(result, temp, sizeof(Circle));
  return;
}
void main() {
  uint8_t data[sizeof(Circle)];
  get_a_figure(data,0);
  Figure* figure = reinterpret_cast<Figure*>(data);
}

C++ (approximation)

This means that even if semantically “a” is of 
type “impl Figure”, in reality “a” is a Circle 

object (with the exception that we can only 
access Figure related methods).



If we return the exact same type from all branches of the get_a_figure function, the 
code compiles.

As such → these two pieces of code are similar (in terms on how the compiler 
generates code). The assembly code (for x64) is actually identical for both cases (even 
if from the semantic point of view, “a” has a different type).

Traits

fn get_a_figure(id: i32) -> impl Figure {
  if id == 0 {
    return Circle::new();
  }
  return Circle::new();
}
fn main() {
  let a = get_a_figure(0);
  println!("{}",a.get_name());
}

Rust

fn get_a_figure(id: i32) -> Circle {
  if id == 0 {
    return Circle::new();
  }
  return Circle::new();
}
fn main() {
  let a = get_a_figure(0);
  println!("{}",a.get_name());
}

Rust 



Methods from a trait can have a default implementation (much like a virtual method 
from C++). This means that if that method is not overridden, the default implementation 
will be used. To implement a trait without override its method, use:
 impl <trait_name> for <type> { }
Keep in mind that this is possible only if all method from the trait have a default 
implementation !

Traits

struct ClassA {}
struct ClassB {}
trait Name { fn get_name(&self) -> &str { "Default name“ } }
impl Name for ClassA {}
impl Name for ClassB { fn get_name(&self) -> &str { "ClassB" } }
fn main() {
  let a = ClassA{};
  let b = ClassB{};
  println!("a = {}",a.get_name());
  println!("b = {}",b.get_name());
}

Rust



A trait can have both default (implemented methods) and unimplemented method and 
they can use one each other.

Traits

struct ClassA {}
trait Message {
  fn get_name(&self) -> &str {
    "Default name"
  }
  fn print_message(&self);
}
impl Message for ClassA {
  fn print_message(&self) {
    println!("Hello from '{}'",self.get_name());    
  }
}
fn main() {
  let a = ClassA{};
  a.print_message();
}

Rust

Notice that print_message is implemented in 
ClassA and uses get_name that has a default 

implementation in trait Message.



What’s different in Rust in terms of how a trait work, is that a trait can be implemented 
for other types as well (even if they are not defined in that program → e.g. for example a 
system type).

In this case, we create a new trait, called
BitCount that can be implemented for
type u32.

As a result, every variable or constant of
type u32 will have a function called
compute_bit_count that counts how
many bits with value 1 a value has.

Traits

trait BitCount {
  fn compute_bit_count(&self) -> u32;
}
impl BitCount for u32 {
  fn compute_bit_count(&self) -> u32 {
    let mut value = *self;
    let mut count = 0u32;
    while value>0 {
      count = count + (value % 2);
      value = value / 2;
    }
    return count;
  }
}
fn main() {
  let x = 24u32; // 24 = 11000
  println!("Bits in x = {}",x.compute_bit_count());
}

Rust
Output 

2



Notice that you have to implement this trait for every type in order to work. The 
following code will not compile as i32 does not implement the trait.

Traits

trait BitCount {
  fn compute_bit_count(&self) -> u32;
}
impl BitCount for u32 {
  fn compute_bit_count(&self) -> u32 {
    let mut value = *self;
    let mut count = 0u32;
    while value>0 {
      count = count + (value % 2);
      value = value / 2;
    }
    return count;
  }
}
fn main() {
  println!("Bits in 24u32 = {}",24u32.compute_bit_count());
  println!("Bits in 24i32 = {}",24i32.compute_bit_count());
}

Rust

error[E0599]: no method named `compute_bit_count` found for type `i32` in the current 
scope
  --> src\main.rs:17:41
   |
17 |     println!("Bits in 24i32 = {}",24i32.compute_bit_count());
   |                                         ^^^^^^^^^^^^^^^^^ method not found in `i32`
   |
   = help: items from traits can only be used if the trait is implemented and in scope
note: `BitCount` defines an item `compute_bit_count`, perhaps you need to implement it
  --> src\main.rs:1:1
   |
1  | trait BitCount {
   | ^

Error



Another interesting example is the following. There is no method in class String that 
can be used to set/change the existing string with a different one. You can obviously 
run a .clear() followed by a .push_str(…) to do this, but you can also do it using traits ☺

Traits

trait StringSetter {
  fn set(&mut self, text: &str);
}
impl StringSetter for String {
  fn set(&mut self, text: &str) {
    self.clear();
    self.push_str(text);
  }
}
fn main() {
  let mut s = String::from("abc");
  println!("S = {}",s);
  s.set("123456");
  println!("S = {}",s);
}

Rust

Output 

S = abc
S = 123456



A trait can also have constants defined as part of the trait. That constant should be 
seen as a static variable (it does not affect in any way the size of the structure that 
implements that trait).

Traits

struct RON {
  amount: i32
}
trait Currency {
  const DEFAULT:i32 = 100;
  fn set(&mut self, value: i32);
}
impl Currency for RON { fn set(&mut self, value: i32) { self.amount = value; } }
fn main() {
  let mut m = RON{amount:0};
  println!("m = {}",m.amount);
  m.set(RON::DEFAULT);
  println!("m = {}",m.amount);
  println!("size of RON = {}",std::mem::size_of::<RON>());
}

Rust

Output 

m = 0
m = 100
size of RON = 4



A constant value defined in a trait does not necessarily need to be instantiated as part 
of the trait definition. However, that constant needs to be initialized in implementation.

Traits

struct RON {
  amount: i32
}
trait Currency {
  const DEFAULT:i32;
  fn set(&mut self, value: i32);
}
impl Currency for RON { 
    fn set(&mut self, value: i32) { self.amount = value; } 
}
fn main() {
  let mut m = RON{amount:0};
  println!("m = {}",m.amount);
  m.set(RON::DEFAULT);
  println!("m = {}",m.amount);
  println!("size of RON = {}",std::mem::size_of::<RON>());
}

Rust

error[E0046]: not all trait items implemented, missing: `DEFAULT`
 --> src\main.rs:8:1
  |
5 |     const DEFAULT:i32;
  |     ------------------ `DEFAULT` from trait
...
8 | impl Currency for RON {
  | ^^^^^^^^^^^^^^^^^^^^^ missing `DEFAULT` in implementation

Error



A constant value defined in a trait does not necessarily need to be instantiated as part 
of the trait definition. However, that constant needs to be initialize in implementation.

Traits

struct RON {
  amount: i32
}
trait Currency {
  const DEFAULT:i32;
  fn set(&mut self, value: i32);
}
impl Currency for RON {
  const DEFAULT:i32 = 1234;
  fn set(&mut self, value: i32) { self.amount = value; }
}
fn main() {
  let mut m = RON{amount:0};
  println!("m = {}",m.amount);
  m.set(RON::DEFAULT);
  println!("m = {}",m.amount);
  println!("size of RON = {}",std::mem::size_of::<RON>());
}

Rust

Output 

m = 0
m = 1234
size of RON = 4



Similar to constant values, a trait can have types defined within the trait. And just like 
constant values, the actual type of a defined type within a trait can be set up at the 
trait or implementation level.

Let’s analyze the following problem:

• We need to convert from both Celsius and Fahrenheit to Kelvin

• Let’s also consider that Celsius is represented as an i32, while Fahrenheit is stored in 
an f32 value.

• To do this, we will define two types (Celsius and Fahrenheit) and a trait (that describe 
how the conversion to Kelvin is performed.

• We will also define a third type (Kelvin) that just returns its value. We will use it for a 
different discussion.

Traits



Step 1: Define structures for Celsius, Fahrenheit and Kelvin as well as the conversion 
trait.

Notice that trait TemperatureConverter has an inner type (ConversionOutput) that is 
not yet defined !

Traits

struct Celsius {
  value: i32,
}
struct Fahrenheit {
  value: f32,
}
struct Kelvin {
  value: f32
}
trait TemperatureConverter {
  type ConversionOutput;
  fn to_kelvin(&self) -> Self::ConversionOutput;
}

Rust



Step 2: Implement TemperatureConverter for both Celsius, Fahrenheit and Kelvin types.

Notice that we have different formulas for those three types, and that we define 
ConversionOutput for all implementations (i32 for Celsius and f32 for Fahrenheit and 
Kelvin).

Traits

impl TemperatureConverter for Celsius {
  type ConversionOutput = i32;
  fn to_kelvin(&self) -> Self::ConversionOutput { return self.value + 273; }
}

impl TemperatureConverter for Fahrenheit {
  type ConversionOutput = f32;
  fn to_kelvin(&self) -> Self::ConversionOutput { return ((self.value - 32.0) / 1.8) + 273.15; }
}

impl TemperatureConverter for Kelvin {
  type ConversionOutput = f32;
  fn to_kelvin(&self) -> Self::ConversionOutput { self.value }
}

Rust



Step 3: Write a main function that showcase how the trait works.

OBS: This technique is similar to the usage of templates / generics. We will however 
discuss about templates/generics and their usage with structs/enums and traits in 
another course.

Traits

fn main() {
  let c = Celsius { value: 24 };
  println!("Celsius({}) = Kelvin({})", c.value, c.to_kelvin());
  let f = Fahrenheit { value: 100.5 };
  println!("Fahrenheit({}) = Kelvin({})", f.value, f.to_kelvin());
  let k = Kelvin { value: 50.2 };
  println!("Kelvin({}) = Kelvin({})", k.value, k.to_kelvin());
}

Rust

Output 

Celsius(24) = Kelvin(297)
Fahrenheit(100.5) = Kelvin(311.20557)
Kelvin(50.2) = Kelvin(50.2)



Keep in mind that using this technique (an inner type that is defined in the 
implementation of the trait) will not allow any kind of polymorphism as there is no 
similar definition for the trait methods.

Traits

fn main() {
  let a:[Box<dyn TemperatureConverter>;2] = [
    Box::new(Celsius { value: 24 }),
    Box::new(Fahrenheit { value: 100.5 })
  ];
  for i in a.iter() {
    println!("{}",i.to_kelvin());
  }
}

Rust

error[E0191]: the value of the associated type `ConversionOutput` (from trait 
`TemperatureConverter`) must be specified
  --> src\main.rs:24:20
   |
8  |     type ConversionOutput;
   |     ---------------------- `ConversionOutput` defined here
...
24 |     let a:[Box<dyn TemperatureConverter>;2] = [
   |                    ^^^^^^^^^^^^^^^^^^^^ help: specify the associated type: 
   |                    `TemperatureConverter<ConversionOutput = Type>`

Error



Keep in mind that even if we modify the way we define the Box (by adding an explicit 
request for the ConversionOutput type, all elements from the list MUST have the same 
ConversionOutputType !

Traits

fn main() {
  let a: [Box<dyn TemperatureConverter<ConversionOutput = f32>>; 3] = [
    Box::new(Celsius { value: 24 }),
    Box::new(Kelvin { value: 150.2 }),
    Box::new(Fahrenheit { value: 100.5 }),
  ];
  for i in a.iter() { println!("{}", i.to_kelvin()) }
}

Rust

error[E0271]: type mismatch resolving `<Celsius as TemperatureConverter>::ConversionOutput == f32`
  --> src\main.rs:35:9
   |
35 |         Box::new(Celsius { value: 24 }),
   |         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ type mismatch resolving `<Celsius as 
   |                                         TemperatureConverter>::ConversionOutput == f32`
note: expected this to be `f32`
  --> src\main.rs:16:29
16 |     type ConversionOutput = i32;

Error



Now it works. Keep in mind that both Kelvin and Fahrenheit type have the same type 
for the ConversionOutput (f32).

OBS: While this technique is working, it is not usually used for polymorphism (as it 
implies to make sure that types that have a super-trait have the same internal type – 
thus making the concept of internal type less relevant as it can be hardcoded).

Traits

fn main() {
  let a: [Box<dyn TemperatureConverter<ConversionOutput = f32>>; 2] = [
    Box::new(Kelvin { value: 150.2 }),
    Box::new(Fahrenheit { value: 100.5 }),
  ];
  for i in a.iter() {
    println!("{}", i.to_kelvin());
  }
}

Rust
Output 

150.2
311.20557



A trait can also contain static methods, that can have a default behavior or not, and 
in the last case, those methods should be implemented for types that implement 
the trait. Obviously, since a static method in a trait is not linked to an instance of the 
type that implements that trait, things like polymorphism can not be achieved with 
these methods.

Traits

trait Addition {
  fn compute(v1:i32, v2:i32) -> i32;
}
struct ClassA { }
impl Addition for ClassA {
  fn compute(v1:i32, v2:i32) -> i32 { 
        v1+v2 
    }
}

fn main() {
  println!("{}",ClassA::compute(10, 20));
}

Rust
Output 

30



A structure/enum can implement multiple traits. What happens if there are two traits 
that define a method with the same name ?

Traits

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: i32 }
impl TraitA for ClassA {
  fn compute(&self, value:i32) -> i32 {
    return self.value * value;
  }
}
impl TraitB for ClassA {
  fn compute(&self, value:i32) -> i32 {
    return self.value / value;
  }
}
fn main() {
  let x = ClassA{value:10};
  println!("{}",x.compute(5));
}

Rust
error[E0034]: multiple applicable items in scope
  --> src\main.rs:23:21
   |
23 |     println!("{}",x.compute(5));
   |                     ^^^^^^^ multiple `compute` found
   |
note: candidate #1 is defined in an impl of the trait `TraitA` 
for the type `ClassA`
  --> src\main.rs:11:5
   |
11 |     fn compute(&self, value:i32) -> i32 {
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: candidate #2 is defined in an impl of the trait `TraitB` 
for the type `ClassA`
  --> src\main.rs:16:5
   |
16 |     fn compute(&self, value:i32) -> i32 {
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: disambiguate the associated function for candidate #1
   |
23 |     println!("{}",TraitA::compute(&x, 5));
   |                   ~~~~~~~~~~~~~~~~~~~~~~
help: disambiguate the associated function for candidate #2
   |
23 |     println!("{}",TraitB::compute(&x, 5));

Error



The solution is to specifically explain Rust that, it needs to call a function defined from 
a specific trait. The format for this call is:

<type-name as trait-name>::method(&obj, Param1, Param2, … Paramn)

Where obj is on object of type type-name that implements trait-name

Traits

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: i32 }
impl TraitA for ClassA {…}
impl TraitB for ClassA {…}

fn main() {
  let x = ClassA{value:10};

println!("{}",<ClassA as TraitA>::compute(&x,5));
println!("{}",<ClassA as TraitB>::compute(&x,5));

}

Rust
Output 

50
2



The solution is to specifically explain Rust that, it needs to call a function defined from 
a specific trait. The format for this call is:

<type-name as trait-name>::method(&obj, Param1, Param2, … Paramn)

Where obj is on object of type type-name that implements trait-name

Traits

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: i32 }
impl TraitA for ClassA {…}
impl TraitB for ClassA {…}

fn main() {
  let x = ClassA{value:10};

println!("{}",<ClassA as TraitA>::compute(&x,5));
println!("{}",<ClassA as TraitB>::compute(&x,5));

}

Rust
Output 

50
2

fn main() {
  let x = ClassA{value:10};

println!("{}", TraitA::compute(&x,5));
println!("{}", TraitB::compute(&x,5));

}

Rust

Alternatively, the following 
format can be used:



Super traits



Rust does not have an inheritance model , similar to what other languages have 
where a type can be derived from another type and as such inherits all of its parent 
properties, data members and methods.

However, Rust allows a certain type of inheritance by providing the concept of a 
super trait. If “A” is a super trait for “B” , then any structure or enum that 
implements “B” must also implement “A”

Super traits

trait MyTrait : MySuperTrait {
  // methods
}
impl MyTrait for MyClass {
  // implement methods
}

RustThe format is similar to the way inheritance is 
done in C++ (name of the trait, followed by ‘:’ and 

the name of the super trait).



Let’s see an example:

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Car: Vehicle {
  fn get_max_speed(&self) -> u32;
}
struct Dacia { }
impl Car for Dacia {
  fn get_max_speed(&self) -> u32 {
    return 140;
  }
}

fn main() {
  let d = Dacia{};
  println!("max_speed = {}",d.get_max_speed());
}

Rust

error[E0277]: the trait bound `Dacia: Vehicle` is not satisfied
 --> src\main.rs:8:6
  |
8 | impl Car for Dacia {
  |      ^^^ the trait `Vehicle` is not implemented for `Dacia`
  |
note: required by a bound in `Car`
 --> src\main.rs:4:12
  |
4 | trait Car: Vehicle {
  |            ^^^^^^^ required by this bound in `Car`

Error

The code will not compile because we haven’t 
implemented the trait Vehicle for structure Dacia. This is 
required because Vehicle is a super trait for the trait Car.



Let’s see an example:

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Car: Vehicle {
  fn get_max_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia {
  fn get_max_speed(&self) -> u32 { return 140; }
}
impl Vehicle for Dacia {
  fn get_name(&self) -> &str { return "Dacia"; }
}

fn main() {
  let d = Dacia {};
  println!("max_speed = {}", d.get_max_speed());
  println!("name= {}", d.get_name());
}

Rust

Output 

max_speed = 140
name= Dacia



Any trait derived from another trait has access to all of the methods defined in the 
super trait. Similar, via Self type, it can access any constant defined in the super trait 
and instantiated in the struct or current trait.

Super traits

trait Vehicle {
  const MAX_SPEED: u32;
  fn get_name(&self) -> &str;
}
trait Car: Vehicle {
  fn print_speed(&self) { println!("Max speed for {} is {}", self.get_name(),Self::MAX_SPEED); }
}
struct Dacia {}
impl Car for Dacia { }
impl Vehicle for Dacia {
  const MAX_SPEED: u32 = 140;
  fn get_name(&self) -> &str { return "Dacia"; }
}
fn main() {
  let d = Dacia {};
  d.print_speed();
}

Rust
Output 

Max speed for Dacia is 140



Multiple inheritance is also possible as a trait can be a super trait for multiple traits.

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Car: Vehicle {
  fn get_speed(&self) -> u32;
}
trait Color: Vehicle {
  fn get_color(&self) -> &str;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
  let d = Dacia {};
  println!("Name = {}",d.get_name());
  println!("Speed = {}",d.get_speed());
  println!("Color = {}",d.get_color());
}

Rust

Output 

Name  = Dacia 
Speed = 140
Color = Blue



Multiple inheritance is also possible as a trait can be a super trait for multiple traits.

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Car: Vehicle {
  fn get_speed(&self) -> u32;
}
trait Color: Vehicle {
  fn get_color(&self) -> &str;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
  let d = Dacia {};
  println!("Name = {}",d.get_name());
  println!("Speed = {}",d.get_speed());
  println!("Color = {}",d.get_color());
}

Rust

Vehicle

Car Color

Dacia

This approach solves and the fact that a 
trait does not have any data members 

solves the diamond problem associated 
with multiple inheritance.



A similar code in C++ would look like this.

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Car: Vehicle {
  fn get_speed(&self) -> u32;
}
trait Color: Vehicle {
  fn get_color(&self) -> &str;
}
struct Dacia {}
impl Car for Dacia { … }
impl Color for Dacia { … }
impl Vehicle for Dacia { … }
fn main() {
  let d = Dacia {};
  println!("Name = {}",d.get_name());
  println!("Speed = {}",d.get_speed());
  println!("Color = {}",d.get_color());
}

Rust
class Vehicle {
  virtual const char * get_name() = 0;
};
class Car: public Vehicle {
  virtual unsigned int get_speed() = 0;
};
class Color: public Vehicle {
  virtual const char * get_color() = 0;
};
class Dacia: public Car,public Color {
  virtual const char * get_name() override {...}
  virtual unsigned int get_speed() override {...}
  virtual const char * get_color() override {...}
};
void main() {
  Dacia d;
  printf("Name = {}",d.get_name());
  printf("Speed = {}",d.get_speed());
  printf("Color = {}",d.get_color());
}

C++



At the same time, multiple traits can be super trait for another trait. Semantically 
this is explained in the following way:

trait <name>: SuperTrait1 + SuperTrait2 + … SuperTraitn {…}

This is in particular useful when using templates/generics as it can be used to explain certain type of 
limitations (e.g. the type used in a generic must implement Trait1 , Trait2, … ). 
This format is often referred as trait combos.

Super traits

trait MyTrait : MySuperTrait + MySecondarySuperTrait + MyThirdSuperTrait {
  // methods
}
impl MyTrait for MyClass {
  // implement methods
}

Rust



The same example → but with trait combos.

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Color {
  fn get_color(&self) -> &str;
}
trait Car: Vehicle + Color {
  fn get_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
  let d = Dacia {};
  println!("Name = {}",d.get_name());
  println!("Speed = {}",d.get_speed());
  println!("Color = {}",d.get_color());
}

Rust

Output 

Name  = Dacia 
Speed = 140
Color = Blue



The same example → but with trait combos.

Super traits

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Color {
  fn get_color(&self) -> &str;
}
trait Car: Vehicle + Color {
  fn get_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
  let d = Dacia {};
  println!("Name = {}",d.get_name());
  println!("Speed = {}",d.get_speed());
  println!("Color = {}",d.get_color());
}

Rust

trait Vehicle {
  fn get_name(&self) -> &str;
}
trait Color {
  fn get_color(&self) -> &str;
}
trait Car: Vehicle + Color {
  fn get_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
  let d = Dacia {};
  println!("Name = {}",d.get_name());
  println!("Speed = {}",d.get_speed());
  println!("Color = {}",d.get_color());
}

Rust

Vehicle

Car

Dacia

Color



Special Traits



Rust has some special traits that can be used to improve certain operations or how 
some types behave:

- Traits that reflect certain properties (Copy, Clone, Debug, etc)

- Traits that reflects operators (addition, substraction, etc)

- Traits that reflects comparations between types

- Traits that reflect casts and/or conversions between types

These traits can be overridden. In some cases, Rust can automatically implement 
some special traits via #[derive(…)] attribute.

Special Traits



To automatically tell Rust that it needs to implement a trait for a specific class, use  
#[derive(…)] attribute. The general format is:

 #[derive(Trait1, Trait2, … Traitn)]

List of these traits (that are also called derivable traits):

Special Traits

Trait Usage

Copy Support for Copy Semantics

Clone Add support to clone an object

Debug Debug information for an object

Hash Provide a way to compute a hash for a reference (Compiler controlled)

Default Default value for an object

Eq Comparation support ( equal )

PartialEq Comparation support ( equal and not equal )

Ord Set an object to be comparable (can be ordered)

PartialOrd Set an object to be partial comparable (can be ordered)



Copy trait indicates “Copy semantics” for a specify trait. Clone is a super trait for 
Copy trait (so any implementation of Copy trait implies Clone traits as well).

Notice that Copy trait has no defined method. This is because this trait implies 
byte-wise copy for any object upon assignment. Clone imply Sized (a trait that 
indicates that the size of the object that has this trait, must be known at compile 
time). This is to be expected if Copy implies a byte-wise copy (a memcpy).

Special Traits (Copy & Clone)

pub trait Copy: Clone {
  // Empty.
}

Rust (Copy trait definition)
pub trait Clone: Sized {
  fn clone(&self) -> Self;
  fn clone_from(&mut self, source: &Self) {…}
}

Rust (Clone trait definition)



Clone trait, however, can be implemented

Special Traits (Copy & Clone)

struct MyNumber {
  value: i32,
}
impl Copy for MyNumber {}
impl Clone for MyNumber {
  fn clone(&self) -> Self {
    MyNumber {
      value: self.value + 1,
    }
  }
}
fn main() {
  let x = MyNumber { value: 1 };
  let y = x.clone();
  let z = x;
  println!("{},{},{}", x.value, y.value, z.value);
}

Rust 

Output 

1,2,1

Notice that y.value is 2 (this is to be expected as 
x.clone() increases the value of MyNumber.



Clone trait, however, can be implemented

OBS: Notice that the default implementation (obtained via #[derive(Copy,Clone)] uses byte wise copy 
for both clone and assignment.

Special Traits (Copy & Clone)

#[derive(Copy,Clone)]
struct MyNumber {
  value: i32,
}
fn main() {
  let x = MyNumber { value: 1 };
  let y = x.clone();
  let z = x;
  println!("{},{},{}", x.value, y.value, z.value);
}

Rust 

Output 

1,1,1



A newly create struct can implement Copy trait only if all of its fields implement 
Copy trait.

In this case, one of the fields (name) does not implement Copy trait and as such the entire structure 
can not implemented it.

Special Traits (Copy & Clone)

#[derive(Copy,Clone)]
struct MyNumber {
  value: i32,
  name:String
}
fn main() {
  let x = MyNumber { value: 1, name: "123".to_string() };
}

Rust 

error[E0204]: the trait `Copy` may not be implemented for this type
 --> src\main.rs:1:10
  |
1 | #[derive(Copy,Clone)]
  |          ^^^^
...
4 |     name:String
  |     ----------- this field does not implement `Copy`
  |

Error



Rust has two traits (Display and Debug) that should be used to display an object. 
Both Debug and Display traits have the same methods, however there are some 
differences between them:

• Debug trait can be used with #[derive(…)], Display can’t

• Display is designed for user-facing, while Debug is merely a developer way of 
validating information about an object.

• Debug requires a special format {:?}

Special Traits (Display & Debug)

pub trait Display 
{
 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

Rust (Display trait definition)
pub trait Debug 
{
 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

Rust (Debug trait definition)



Let’s see some examples:

Notice that it is fairly easy to print any kind of object if we implement (via 
#[derive(Debug)] ) the Debug trait for it. Rust will create a default implementation 
for this trait that will print each field from that structure.

Special Traits (Display & Debug)

#[derive(Debug)]
struct MyNumber {
  value: i32,
}
fn main() {
  let x = MyNumber { value: 1 };
  println!("{:?}",x);
}

Rust 

Output 

MyNumber { value: 1 }



Let’s see some examples:

Special Traits (Display & Debug)

use std::fmt::Display;
use std::fmt;
struct MyNumber {
  value: i32,
}
impl Display for MyNumber {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
    f.write_str("MyNumber => with value = ")?;
    f.write_fmt(format_args!("{}",self.value))?;
    Ok(())
  } 
}
fn main() {
  let x = MyNumber { value: 1 };
  println!("{}",x);
}

Rust 

Output 

MyNumber => with value = 1



Let’s see some examples:

Special Traits (Display & Debug)

use std::fmt::Display;
use std::fmt;
struct MyNumber {
  value: i32,
}
impl Display for MyNumber {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
    f.write_str("MyNumber => with value = ")?;
    f.write_fmt(format_args!("{}",self.value))?;
    Ok(())
  } 
}
fn main() {
  let x = MyNumber { value: 1 };
  println!("{}",x);
}

Rust 

Output 

MyNumber => with value = 1

fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
  write!(f, "MyNumber => with value = {}",self.value)?;
  Ok(())
} 

Rust  

Alternatively, the write! macro 
can be used !



Default trait is used to describe a default initialization value for an object. It works 
like a static (constructor) method that creates an object. All basic types implement 
that trait. Furthermore, Default trait can be defined via #[derive(…)].

Besides basic types, more than 150 types in Rust implement default.

Usage:

let x = Type::default();

let x: Type = Default::default()

Special Traits (Default)

pub trait Default: Sized {
{
  fn default() -> Self;
}

Rust (Default trait definition)



Let’s see some examples:

Special Traits (Default)

struct MyNumber {
  value: i32,
}
impl Default for MyNumber {
  fn default() -> Self {
    Self { value: 100 }
  }
}
fn main() {
  let x = MyNumber::default();
  let y = i32::default();   // 0 value
  let z = String::default(); // Empty string
  println!("{}",x.value);
  println!("{}",y);
  println!("[{}]",z);
}

Rust 

Output 

100
0
[]



Default trait can be automatically implemented via #[derive(…)] attribute. All of the 
structure members MUST implement Default trait as well.

Special Traits (Default)

#[derive(Default,Debug)]
struct MyNumber {
  value: i32,
  float: f32,
  flag: bool
}
fn main() {
  let x = MyNumber::default();
  let y: MyNumber = Default::default();
  println!("{:?}",x);
  println!("{:?}",y);
}

Rust Output 

MyNumber { value: 0, float: 0.0, flag: false }
MyNumber { value: 0, float: 0.0, flag: false }



Default trait can be automatically implemented via #[derive(…)] attribute. All of the 
structure members MUST implement Default trait as well.

Special Traits (Default)

struct MyStructWithoutDefault {
  value: i32
}

#[derive(Default,Debug)]
struct MyNumber {
  value: i32,
  float: f32,
  flag: bool,
  extra: MyStructWithoutDefault
}

fn main() {
  let x = MyNumber::default();
  println!("{:?}",x);
}

Rust 

error[E0277]: the trait bound `MyStructWithoutDefault: Default` is not satisfied
  --> src\main.rs:10:5
   |
5  | #[derive(Default,Debug)]
   |          ------- in this derive macro expansion
...
10 |     extra: MyStructWithoutDefault
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not implemented for 
   |                                   `MyStructWithoutDefault`

Error



When #[derive(…)] attribute is used to automatically implement the Default trait 
for an enum, you MUST also specify the default variant (to do this add #[default] 
before the e default variant in the enum).

Special Traits (Default)

use std::default;

#[derive(Debug, Default)]
enum Color {
  Red,
  #[default]
  Green,
  Blue,
  White
}
fn main() {
  let x = Color::default();
  println!("{:?}",x);
}

Rust 
Output 

Green



You can also overwrite some default value and keep the rest of them by using the 
following syntax ..Default::default() when constructing an object (this is in fact 
another usage of functional update syntax in Rust):

Special Traits (Default)

#[derive(Debug, Default)]
struct MyStruct {
  x: i32,
  y: bool,
  z: f32,
  name: String
}
fn main() {
  let x = MyStruct::default();
  let y = MyStruct { x: 10, ..Default::default()};
  let z = MyStruct { name: "10".to_string(), y:true, ..Default::default()};
  println!("x = {:?}",x);
  println!("y = {:?}",y);
  println!("z = {:?}",z);
}

Rust 

Output 

x = MyStruct { x: 0, y: false, z: 0.0, name: "" }
y = MyStruct { x: 10, y: false, z: 0.0, name: "" }
z = MyStruct { x: 0, y: true, z: 0.0, name: "10" }



Eq and PartialEq traits are used to describe if how to check the equality or 
difference between two object. PartialEq is the super trait of Eq.

Notice that “ne” (not-equal) method has a default implementation. This mean that 
normally, a type that implements this trait only needs to overwrite the eq method.

The “ne” is useful for types (e.g. floating values) that have special cases (such as 
NaN) where different values (in term of bit comparation) might have the same 
interpretation.

Special Traits (Eq and PartialEq)

pub trait PartialEq<Rhs: ?Sized = Self> {
    fn eq(&self, other: &Rhs) -> bool;

  fn ne(&self, other: &Rhs) -> bool {
    !self.eq(other)
  }
}

Rust (PartialEq trait definition)

pub trait Eq: PartialEq<Self> {
}

Rust (Eq trait definition)



Let’s see a simple example on how to use PartialEq:

Special Traits (Eq and PartialEq)

struct MyStruct {
  value: i32
}
impl PartialEq for MyStruct {
  fn eq(&self, other: &Self) -> bool {
    self.value == other.value
  }
}
fn main() {
  let x = MyStruct{value: 10};
  let y = MyStruct{value: 10};
  if x == y {
    println!("x an y are equals !");
  }
}

Rust 

Output 

x an y are equals !



PartialEq and Eq traits can be automatically implemented via #[derive(…)] attribute. 
Keep in mind that PartialEq is a super trait of Eq and as such if you derive from Eq 
you must derive from PartialEq as well. All of the members from that structure 
MUST implement PartialEq and/or Eq.

Special Traits (Eq and PartialEq)

#[derive(PartialEq)]
struct MyStruct {
  value: i32
}
fn main() {
  let x = MyStruct{value: 10};
  let y = MyStruct{value: 10};
  if x == y {
    println!("x an y are equals !");
  }
}

Rust Output 

x an y are equals !



PartialEq and Eq traits can be automatically implemented via #[derive(…)] attribute. 
Keep in mind that PartialEq is a super trait of Eq and as such if you derive from Eq 
you must derive from PartialEq as well. All of the members from that structure 
MUST implement PartialEq and/Oor Eq.

Special Traits (Eq and PartialEq)

struct MyNonComparableStruct {
  field:i32
}
#[derive(Eq,PartialEq)]
struct MyStruct {
  value: i32,
  extra: MyNonComparableStruct
}
fn main() {
  let x = MyStruct{value: 10, extra: MyNonComparableStruct { field: 10 }};
  let y = MyStruct{value: 10, extra: MyNonComparableStruct { field: 10 }};
  if x == y {
    println!("x an y are equals !");
  }
}

Rust 
error[E0369]: binary operation `==` cannot be applied to type `MyNonComparableStruct`
 --> src\main.rs:7:5
  |
4 | #[derive(PartialEq)]
  |          --------- in this derive macro expansion
...
7 |     extra: MyNonComparableStruct
  |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  |
note: an implementation of `PartialEq<_>` might be missing for `MyNonComparableStruct`

Error



Ord and PartialOrd traits describe a way to compare two objects. PartialOrd is a 
super trait of Ord, and PartialEq is a super trait of PartialOrd

Special Traits (Ord and PartialOrd)

pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs> 
{
  fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;

  fn lt(&self, other: &Rhs) -> bool {
    matches!(self.partial_cmp(other), Some(Less))
  }
  fn le(&self, other: &Rhs) -> bool {
    !matches!(self.partial_cmp(other), None | Some(Greater))
  }
  fn gt(&self, other: &Rhs) -> bool {
    matches!(self.partial_cmp(other), Some(Greater))
  }
  fn ge(&self, other: &Rhs) -> bool {
    matches!(self.partial_cmp(other), Some(Greater | Equal))
  }
}

Rust (PartialOrd trait definition)

pub enum Ordering {
  Less = -1,
  Equal = 0,
  Greater = 1,
}

Rust (Ordering)

Notice that the only method that needs 
to be implemented is partial_cmp !

By default, PartialOrd implements:
• lt ➔ lower then
• le ➔ lower or equal
• gt ➔ greater then
• ge ➔ greater or equal



As PartialEq is a super trait of PartialOrd, “eq” and “ne” methods are inherited from 
PartialEq. Ord trait also implements method like min, max and clamp.

Special Traits (Ord and PartialOrd)

pub trait Ord: Eq + PartialOrd<Self> {
  fn cmp(&self, other: &Self) -> Ordering;
  fn max(self, other: Self) -> Self where Self: Sized, 
    {
    max_by(self, other, Ord::cmp)
  }
  fn min(self, other: Self) -> Self where Self: Sized, 
    {
    min_by(self, other, Ord::cmp)
  }
  fn clamp(self, min: Self, max: Self) -> Self where Self: Sized,
  {
    assert!(min <= max);
    if self < min { min } 
        else if self > max { max } 
        else { self }
  }
}

Rust (Ord trait definition)



Let’s see an example to understand how max, min and clamp methods work.

.clamp(…) method keeps a value within an interval. If it is lower than its lower 
bound, the value returned will the lower bound of the interval. If it is greater than 
the upper bound, the value return will be the upper bound of the interval. 
Otherwise, the value will remained unchanged.

Special Traits (Ord and PartialOrd)

fn main() {
  println!("5.max(10)  = {}",5.max(10));
  println!("5.max(2)   = {}",5.max(2));
  println!("5.min(10)  = {}",5.min(10));
  println!("5.min(2)   = {}",5.min(2)); 
  println!("5.clamp(2,8) = {}",5.clamp(2,8));
  println!("5.clamp(7,9) = {}",5.clamp(7,9));
  println!("5.clamp(1,4) = {}",5.clamp(1,4));
}

Rust Output 

5.max(10)    = 10
5.max(2)     = 5
5.min(10)    = 5
5.min(2)     = 2
5.clamp(2,8) = 5
5.clamp(7,9) = 7
5.clamp(1,4) = 4



Let’s see a simple example that illustrates how to manually implement PartialOrd.

Special Traits (Ord and PartialOrd)

use std::cmp::Ordering;
struct MyStruct { value: i32 }
impl PartialEq for MyStruct {
  fn eq(&self, other: &Self) -> bool { self.value == other.value }
}
impl PartialOrd for MyStruct {
  fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    if self.value>other.value { return Some(Ordering::Greater); }
    if self.value<other.value { return Some(Ordering::Less); }
    return Some(Ordering::Equal);
  }
}
fn main() {
  let x = MyStruct{value:10};
  let y = MyStruct{value:20};
  if y>x {
    println!("y is bigger than x");
  }
}

Rust 

Output 

y is bigger than x



When #[derive(…)] attribute is used to automatically implement the PartialOrd, 
keep in mind that the automatic logic is to compare each variable in the order they 
were added in the structure. 

Special Traits (Ord and PartialOrd)

#[derive(PartialEq, PartialOrd)]
struct MyStruct {
  v1: i32,
  v2: i32,
  v3: i32
}
fn main() {
  let x = MyStruct { v1: 10, v2:20, v3:10 };
  let y = MyStruct { v1: 20, v2:10, v3:100 };
  let z = MyStruct { v1: 10, v2:20, v3:100 };
  let t = MyStruct { v1: 10, v2:10, v3:100 };
  println!("CMP(x,y) = {:?}",x.partial_cmp(&y));
  println!("CMP(x,z) = {:?}",x.partial_cmp(&z));
  println!("CMP(x,t) = {:?}",x.partial_cmp(&t));
  println!("CMP(x,x) = {:?}",x.partial_cmp(&x));
}

Rust 

Output 

CMP(x,y) = Some(Less)
CMP(x,z) = Some(Less)
CMP(x,t) = Some(Greater)
CMP(x,x) = Some(Equal)



Rust does not have a destructor (in a traditional, descriptive, manually defined C++ 
way). However, there is a trait called Drop that serves a similar purpose (it contains 
a method that is being called when the scope of an object ends).

While in most cases, you don’t really need to implement this trait (as Rust will 
automatically destroy object), there are some scenarios (e.g. when managing an 
external resource, a socket, etc) when this trait might be required.

Drop can not be automatically implemented via #[derive(…)] attribute. 

OBS: Keep in mind that Rust will not allow you to call .drop() explicitly.

Special Traits (Drop)

pub trait Drop {
  fn drop(&mut self);
}

Rust (Drop trait definition)



Let’s see an example:

Special Traits (Drop)

struct MyStruct {
  v: i32
}
impl Drop for MyStruct {
  fn drop(&mut self) {
    println!("Dropping (v={})",self.v);
  }
}
fn main() {
  let x = MyStruct{v:10};
  {
    let y = MyStruct{v:20};
    println!("Inner block scope will end right now !");
  }
  println!("Main block scope will end right now !");
}

Rust

Output 

Inner block scope will end right now !
Dropping (v=20)
Main block scope will end right now !
Dropping (v=10)

y.drop()

x.drop()



As previously stated, explicit destructor calls (via .drop() ) method are not allowed.

OBS: If allowed, these calls could lead to the wrong behavior of some objects (e.g. if 
the destructor closes some handles) if the object is being used after the call to 
.drop().

Special Traits (Drop)

struct MyStruct {
  v: i32
}
impl Drop for MyStruct {
  fn drop(&mut self) {
    println!("Dropping (v={})",self.v);
  }
}
fn main() {
  let x = MyStruct{v:10};
  x.drop();
}

Rust

error[E0040]: explicit use of destructor method
  --> src\main.rs:13:7
   |
13 |     x.drop();
   |     --^^^^--
   |     | |
   |     | explicit destructor calls not allowed
   |     help: consider using `drop` function: `drop(x)`

Error



The order .drop() method is called is also different how C++ is doing. First it is called 
for the main object, then for every field from that object in the order of the 
declaration.

Special Traits (Drop)

struct ClassA { v: i32 }
struct ClassB { v: i32 }
struct MyStruct { a: ClassA, b: ClassB }
impl Drop for MyStruct {
  fn drop(&mut self) { println!("Dropping MyStruct"); }
}
impl Drop for ClassA {
  fn drop(&mut self) { println!("Dropping ClassA"); }
}
impl Drop for ClassB {
  fn drop(&mut self) { println!("Dropping ClassB"); }
}
fn main() {
  let x = MyStruct { a: ClassA { v: 0 }, b: ClassB { v: 0 } };
}

Rust

Output 

Dropping MyStruct
Dropping ClassA
Dropping ClassB



Another observation is that Drop trait can not be implemented for object that have 
Copy semantics. This is because object that implement Copy trait are normally 
copied (via a memcpy method) and as such memory deallocation can be handled 
automatically.

Special Traits (Drop)

#[derive(Copy,Clone)]
struct MyStruct {
  v: i32,
}
impl Drop for MyStruct {
  fn drop(&mut self) {
    println!("Dropping MyStruct");
  }
}

fn main() {
  let x = MyStruct { v: 0 };
}

Rust
error[E0184]: the trait `Copy` may not be implemented for this type; the type has a destructor
 --> src\main.rs:1:10
  |
1 | #[derive(Copy,Clone)]
  |          ^^^^ Copy not allowed on types with destructors

Error



Another observation is that implementing Drop trait for a struct will disable the 
partial move ability. Let’s analyze the following example:

Notice that let _s = t.name; moves the value of field name from structure Test. 
But this is a partial move as the structure Test (through its member “x”) is still 
available (we can actually print t.x). 

Special Traits (Drop)

struct Test {
  x: i32,
  name: String
}
fn main() {
  let t = Test{x:1, name: String::from("ABC") };
  let _s = t.name;
  println!("x={}",t.x);
}

Rust
Output 

x=1



Now let’s implement Drop trait for the same structure. We will notice that the 
same example does not work anymore (meaning that you can not move individual 
fields from a structure anymore – as the new Drop implementation implies the 
entire structure is being moved).

Special Traits (Drop)

struct Test {
  x: i32,
  name: String
}
impl Drop for Test {
  fn drop(&mut self) { }
}
fn main() {
  let t = Test{x:1, name: String::from("ABC") };
  let _s = t.name;
  println!("x={}",t.x);
}

Rust error[E0509]: cannot move out of type `Test`, which implements the `Drop` trait
  --> src\main.rs:10:14
   |
10 |     let _s = t.name;
   |              ^^^^^^
   |              |
   |              cannot move out of here
   |              move occurs because `t.name` has type `String`, which does 
   |              not implement the `Copy` trait

Error



Sized trait is a special trait that indicates that current type has a know size at 
compile time.

This purpose is controlled by the compiler. You cand not implicitly implement it but 
it is very useful for bounds (in generics) where this trait might be required. It is also 
possible to relax the bounds that request a Sized object by adding ‘?’ in front of it 
(?Sized). This removes the bound for an object to be Sized.

Special Traits (Sized)

pub trait Sized {
  // Empty.
}

Rust (Sized trait definition)



Explicit implementation of Sized trait is not allowed:

Special Traits (Sized)

struct MyStruct {
  v: i32,
}
impl Sized for MyStruct {

}

fn main() {
  let x = MyStruct { v: 0 };
}

Rust 

error[E0322]: explicit impls for the `Sized` trait are not permitted
 --> src\main.rs:4:1
  |
4 | impl Sized for MyStruct {
  | ^^^^^^^^^^^^^^^^^^^^^^^ impl of 'Sized' not allowed

Error



Notice that even if Sized can be a super trait for another trait, that trait can not be 
used to instantiate a dynamic object.

Special Traits (Sized)

trait A: Sized {
}
struct S {
}
impl A for S {
}
fn main() {
  let y: Box<dyn A> = Box::new(S{});
}

Rust
error[E0038]: the trait `A` cannot be made into an object
 --> src\main.rs:5:12
  |
5 |     let y: Box<dyn A> = Box::new(S {});
  |            ^^^^^^^^^^ `A` cannot be made into an object
  |
note: for a trait to be "object safe" it needs to allow building a vtable to allow the 
call to be resolvable dynamically; 
 --> src\main.rs:1:10
  |
1 | trait A: Sized {}
  |       -  ^^^^^ ...because it requires `Self: Sized`
  |       |
  |       this trait cannot be made into an object...

Error



Deref and DerefMut traits are used to explicit dereferencing operations (an equivalent 
to operator*/operator-> from C++). This mechanism is called Deref coercion.

If a type A implements Deref (with Target type set to type B) then:

• &A can be coerced to  &B

• A implicitly implements all methods from B

OBS: Deref and DerefMut simulate the concept of inheritance (in the sense that 
methods and data member from another type (e.g. parent class) are accessible 
via the child object.

Special Traits (Deref and DerefMut)

pub trait Deref {
  type Target: ?Sized;
  fn deref(&self) -> &Self::Target;
}

Rust (Deref trait definition)

pub trait DerefMut: Deref {
    fn deref_mut(&mut self) -> &mut Self::Target;
}

Rust (DerefMut trait definition)



Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
  type Target = B;
  fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
  fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
  let mut a = A::new();
  a.x = 10;
  increment_y(&mut a);
  println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output 

From B: x=10, y=1, From A: a=0



Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
  type Target = B;
  fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
  fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
  let mut a = A::new();
  a.x = 10;
  increment_y(&mut a);
  println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output 

From B: x=10, y=1, From A: a=0

“A” type does not have any .x or .y 
fields. However, due to the Deref 

implementation, you can automatically 
access fields .x and .y from field b of 

type A



Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
  type Target = B;
  fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
  fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
  let mut a = A::new();
  a.x = 10;
  increment_y(&mut a);
  println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output 

From B: x=10, y=1, From A: a=0

Due to the DerefMut implementation, 
you can automatically obtain a mutable 

reference to field .x field b of type A



Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
  type Target = B;
  fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
  fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
  let mut a = A::new();
  a.x = 10;
  increment_y(&mut a);
  println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output 

From B: x=10, y=1, From A: a=0

Notice that increment_y expects a mutable reference 
to an object of type B. However, it can be called with 

a mutable reference of type A that can be coerced 
due to DerefMut to a mutable reference of type B.



From and Into traits are used to perform value-to-value conversion. 

It is recommended to avoid implemented Into but rather implement From. Implementing 
From will trigger the creation of Into as well due to the blanket implementation in the 
standard library.

Special Traits (From and Into)

pub trait From<T>: Sized {
  fn from(_: T) -> Self;
}

Rust (From trait definition)
pub trait Into<T>: Sized {
  fn into(self) -> T;
}

Rust (Into trait definition)

impl<T, U> Into<U> for T
where
  U: From<T>,
{
  fn into(self) -> U {
    U::from(self)
  }
}

Rust (blanket implementation for Into)



Let’s see an example:

Special Traits (From and Into)

struct Test {
  value: i32,
}
impl From<i32> for Test {
  fn from(v: i32) -> Test {
    Test { value: v }
  }
}

fn main() {
  let a = Test::from(10);
  println!("a.value = {}", a.value);
  let b: Test = 11.into();
  println!("b.value = {}", b.value);
}

Rust
Output 

a.value = 10
b.value = 11



Let’s see an example:

Special Traits (From and Into)

struct Test { value: i32 }
impl From<Test> for i32 {
  fn from(t: Test) -> i32 {
    t.value
  }
}
impl From<&Test> for i32 {
  fn from(t: &Test) -> i32 {
    t.value
  }
}
fn main() {
  let a = Test { value: 10 };
  let x: i32 = (&a).into();
  let b = Test { value: 20 };
  let y: i32 = b.into();
  println!("{x},{y}");
}

Rust
Output 

10
20

When implementing From (if possible) consider 
implementing both for an object (with 
ownership transfer) and for a reference 



From and Into traits also have a try version (TryFrom and TryInto).

The difference from the From and Into forms is that these traits return a Result (allowing 
someone to validate if something can be converted into another object or not). 

Special Traits (From and Into)

pub trait TryFrom<T>: Sized {
  type Error;
  fn try_from(value: T) -> Result<Self, Self::Error>;
}

Rust (From trait definition)
pub trait TryInto<T>: Sized {
  type Error;

  fn try_into(self) -> Result<T, Self::Error>;
}

Rust (Into trait definition)



AsRef and AsMut traits are used to perform cheap reference-to-reference conversion. 
Keep in mind that similar result can be obtained if using From or Into traits (but 
implemented over/for a reference or mutable reference).

Rust also has two very similar traits (Borrow and BorrowMut) that resembles in terms of 
definition with AsRef and AsMut.

Special Traits (AsRef and AsMut)

pub trait AsRef<T: ?Sized> {
  fn as_ref(&self) -> &T;
}

Rust (AsRef trait definition)
pub trait AsMut<T: ?Sized>
 fn as_mut(&mut self) -> &mut T;
}

Rust (AsMut trait definition)

pub trait Borrow<Borrowed: ?Sized> {
  fn borrow(&self) -> &Borrowed;
}

Rust (Borrow trait definition)
pub trait BorrowMut<Borrowed: ?Sized>: Borrow<Borrowed> {
  fn borrow_mut(&mut self) -> &mut Borrowed;
}

Rust (BorrowMut trait definition)



Let’s see an example:

Special Traits (AsRef and AsMut)

#[derive(Debug)]
struct Test { x: i32 }
impl AsRef<i32> for Test {
  fn as_ref(&self) -> &i32 {
    return &self.x;
  }
}
impl AsMut<i32> for Test {
  fn as_mut(&mut self) -> &mut i32 {
    return &mut self.x;
  }
}
fn main() {
  let mut a = Test{x:10};
  let a_mut: &mut i32 = a.as_mut();
  *a_mut = 20;
  let a_ref: &i32 = a.as_ref();
  println!("{:?},{}", a, a_ref);
}

Rust
Output 

Test { x: 20 },20



Let’s see an example (this time using borrow/borrow_mut):

Special Traits (AsRef and AsMut)

use std::borrow::{Borrow,BorrowMut};

#[derive(Debug)]
struct Test { 
    x: i32 
}
impl Borrow<i32> for Test {
  fn borrow(&self) -> &i32 { return &self.x; }
}
impl BorrowMut<i32> for Test {
  fn borrow_mut(&mut self) -> &mut i32 { return &mut self.x; }
}
fn main() {
  let mut a = Test{x:10};
  let a_mut: &mut i32 = a.borrow_mut();
  *a_mut = 20;
  let a_ref: &i32 = a.borrow();
  println!("{:?},{}",a,a_ref);
}

Rust
Output 

Test { x: 20 },20



The main difference between AsRef/AsMut and Borrow/BorrowMut is that Borrow and 
BorrowMut have several blanket implementations that allows one to used them directly 
in a generic (e.g. in a where clause) without the need to actually implement them for a 
specific type.

Let’s consider the following problem → we want to write a generic function that 
consumes an object but before it consumes it, it uses its reference to print it.

Let’s see how we can implement such a function using both Borrow/BorrowMut and 
AsRef/AsMut.

Special Traits (AsRef and AsMut)



Solution (using borrow/borrow_mut):

Special Traits (AsRef and AsMut)

use core::fmt;
use std::{borrow::Borrow, fmt::Display};
struct Point { x: i32, y: i32}
impl Display for Point {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    write!(f, "Point object => (x={}, y={})", self.x, self.y)
  } 
}
fn print_value<T>(object: T)
where
  T: Borrow<T> + Display,
{
  let x = object.borrow();
  println!("obj = {}", x);
}
fn main() {
  let p = Point { x: 10, y: 20 }; print_value(p);
  let x = 10; print_value(x);
}

Rust
Output 

obj = Point object => (x=10, y=20)
obj = 10



Solution (using borrow/borrow_mut):

Special Traits (AsRef and AsMut)

use core::fmt;
use std::{borrow::Borrow, fmt::Display};
struct Point { x: i32, y: i32}
impl Display for Point {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    write!(f, "Point object => (x={}, y={})", self.x, self.y)
  } 
}
fn print_value<T>(object: T)
where
  T: Borrow<T> + Display,
{
  let x = object.borrow();
  println!("obj = {}", x);
}
fn main() {
  let p = Point { x: 10, y: 20 }; print_value(p);
  let x = 10; print_value(x);
}

Rust
Output 

obj = Point object => (x=10, y=20)
obj = 10

Notice that we require Borrow to be implemented for 
T but we haven’t actually implemented it (this is 
because blanket implementation does it for us).



Let’s try the same code with AsRef:

Special Traits (AsRef and AsMut)

use core::fmt;
use std::{borrow::Borrow, fmt::Display};
struct Point { x: i32, y: i32}
impl Display for Point {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    write!(f, "Point object => (x={}, y={})", self.x, self.y)
  } 
}
fn print_value<T>(object: T)
where

T: AsRef<T> + Display
{

let x = object.as_ref();
  println!("obj = {}", x);
}
fn main() {
  let p = Point { x: 10, y: 20 }; print_value(p);
  let x = 10; print_value(x);
}

Rust

error[E0277]: the trait bound `Point: AsRef<Point>` is not satisfied
  --> src\main.rs:22:17
   |
22 |     print_value(p);
   |     ----------- ^ the trait `AsRef<Point>` is not implemented for `Point`
   |     |
   |     required by a bound introduced by this call
   |

Error

Notice that without the blanket implementation, we 
can not use AsRef/AsMut in a generic !



Operators



When creating different types, it is often required to overwrite how some 
mathematical operations work for them. In C++ this is accomplished by using the 
keyword “operator” and being able to write specific methods that describe how 
certain operation should behave.

In Rust, there are a set of traits that if implemented will result in a similar behavior. 
Keep in mind that there has to be a resemblance on how an operator should 
behave. Some operators like (&& and ||) use lazy evaluation and require bool 
parameters and as such can not be overwritten.

Operators



Most of the arithmetic (binary) operators have two possible forms:

A) Expr Ꚛ Expr (binary operation)

 
Notice that the method receives a self. This means that 
ownership will be transferred if Copy trait is not 
implemented !

B) Variable Ꚛ= Expr (assignment)

Operators

pub trait OperationName<Rhs = Self> {
  type Output;

  fn operationname(self, rhs: Rhs) -> Self::Output;
}

pub trait OperationNameAssign<Rhs = Self> {

  fn operationname_assign(&mut self, rhs: Rhs);
}

With OperationName (sentence case) being 
the name assigned for the operation Ꚛ and 
operationname (lowercased) the name of the 
method that needs to be implemented to 
overwrite that operation.



The next table contains a list of all binary operations that follow the previous 
described template:

Operators

Operator Trait Method

+ std::ops::Add add

- std::ops::Sub sub

* std::ops::Mul mul

/ std::ops::Div div

% std::ops::Rem rem

& std::ops::BitAnd bitand

| std::ops::BitOr bitor

^ std::ops::BitXor bitxor

<< std::ops::Shl shl

>> std::ops::Shr shr

Operator Trait Method

+= std::ops::AddAssign add_assign

-= std::ops::SubAssign sub_assign

*= std::ops::MulAssign mul_assign

/= std::ops::DivAssign div_assign

%= std::ops::RemAssign rem_assign

&= std::ops::BitAndAssign bitand_assign

|= std::ops::BitOrAssign bitor_assign

^= std::ops::BitXorAssign bitxor_assign

<<= std::ops::ShlAssign shl_assign

>>= std::ops::ShrAssign shr_assign



Let’s see a very simple example:

Operators

use std::ops::Add;

struct Test {
  value: i32,
}
impl Add<i32> for Test {
  type Output = i32;

  fn add(self, rhs: i32) -> Self::Output {
    self.value + rhs
  }
}
fn main() {
  let a = Test { value: 10 };
  let x = a + 10;
  println!("{x}");
}

Rust 

Output 

20



Notice that add method receives a self (meaning that the ownership of the object 
is transferred and as such, “a” will no longer be available after the addition.

Operators

use std::ops::Add;

struct Test { value: i32 }
impl Add<i32> for Test {
  type Output = i32;
  fn add(self, rhs: i32) -> Self::Output { 
        self.value + rhs 
    }
}
fn main() {
  let a = Test { value: 10 };
  let x = a + 10;
  println!("{x}");
  println!("{}",a.value);
}

Rust 

error[E0382]: borrow of moved value: `a`
   --> src\main.rs:17:19
    |
14  |     let a = Test { value: 10 };
    |         - move occurs because `a` has type `Test`, which 
    |           does not implement the `Copy` trait
15  |     let x = a + 10;
    |             ------ `a` moved due to usage in operator
16  |     println!("{x}");
17  |     println!("{}",a.value);
    |                   ^^^^^^^ value borrowed here after move

Error



You can, however, implement Add for a reference (in this case for &Test) and avoid 
transferring ownership.

Operators

use std::ops::Add;
struct Test {
  value: i32,
}
impl Add<i32> for &Test {
  type Output = i32;
  fn add(self, rhs: i32) -> Self::Output {
    self.value + rhs
  }
}
fn main() {
  let a = Test { value: 10 };
  let x = (&a) + 10;
  println!("{x}");
  println!("{}", a.value);
}

Rust 
Output 

20
10



You can, however, implement Add for a reference (in this case for &Test) and avoid 
transferring ownership.

Operators

use std::ops::Add;
struct Test {
  value: i32,
}
impl Add<i32> for &Test {
  type Output = i32;
  fn add(self, rhs: i32) -> Self::Output {
    self.value + rhs
  }
}
fn main() {
  let a = Test { value: 10 };
  let x = (&a) + 10;
  println!("{x}");
  println!("{}", a.value);
}

Rust 
Output 

20
10

Notice that the syntax is not the clear (you need to explicitly say 
that you want to add a reference (&a) with a number.



Notice that if Add is not implemented for self, adding an object with a number (for 
our case) will fail.

Operators

use std::ops::Add;
struct Test {
  value: i32,
}
impl Add<i32> for &Test {
  type Output = i32;
  fn add(self, rhs: i32) -> Self::Output {
    self.value + rhs
  }
}
fn main() {
  let a = Test { value: 10 };
  let x = a + 10;
  println!("{x}");
  println!("{}", a.value);
}

Rust 

error[E0369]: cannot add `{integer}` to `Test`
   --> src\main.rs:13:14
    |
13  |     let x = a+10;
    |             -^-- {integer}
    |             |
    |             Test
    |
note: an implementation of `Add<_>` might be missing for `Test`

Error



You can however call the method .add(…) directly (this is different than the 
operator + as it will try to match the parameters and since Add trait is implemented 
for &Test, the code will compile !

Operators

use std::ops::Add;
struct Test {
  value: i32,
}
impl Add<i32> for &Test {
  type Output = i32;
  fn add(self, rhs: i32) -> Self::Output {
    self.value + rhs
  }
}
fn main() {
  let a = Test { value: 10 };
  let x = a.add(10);
  println!("{x}");
  println!("{}", a.value);
}

Rust 
Output 

20
10



You can implement multiple Add operations:

Operators

struct Test { value: i32 }
impl Add<i32> for Test {
  type Output = i32;
  fn add(self, rhs: i32) -> Self::Output { self.value + rhs }
}
impl Add<Test> for Test {
  type Output = Test;
  fn add(self, rhs: Test) -> Self::Output {
    Test { value: self.value + rhs.value }
  }
}
fn main() {
  let a = Test { value: 10 };
  let b = Test { value: 20 };
  let c = Test { value: 30 };
  let x = a + 10;
  let d = b + c;
  println!("{},{}", x, d.value);
}

Rust 

Output 

20,50

In this case we have two forms of Add:
1) Test + i32 => i32
2) Test + Test => Test



Let’s see an example that uses an assignment.

Operators

use std::ops::SubAssign;

#[derive(Debug)]
struct Test {
  value: i32
}
impl SubAssign<i32> for Test {
  fn sub_assign(&mut self, rhs: i32) {
    self.value -= rhs;
  }
}
fn main() {
  let mut a = Test { value: 10 };
  a -= 5;
  println!("{:?}",a);
}

Rust 

Output 

5



Rust also allows overwriting two unary operators (Neg and Not) that corresponds to 
the operator – (minus) and operator ! (exclamation mark) in front of an expression.

OBS: Keep in mind that this operator receives self (implying a transfer of ownership). 
This means that if you implement this for a type that does not have the Copy trait, 
that object will not be available after calling Neg or Not operators.  

Operators

pub trait Neg {
  type Output;

  fn neg(self) -> Self::Output;
}

Rust (Neg trait definition) 

pub trait Not {
  type Output;

  fn not(self) -> Self::Output;
}

Rust (Not trait definition) 



Let’s see an example that uses unary operators:

Operators

use std::ops::{Neg,Not};
#[derive(Debug)]
struct Test {
  value: i32
}
impl Neg for Test {
  type Output = i32;
  fn neg(self)->Self::Output { -self.value }
}
impl Not for Test {
  type Output = i32;
  fn not(self)->Self::Output { 100-self.value }
}
fn main() {
  let a = Test { value: 10 };
  let x = -a;
  let b = Test { value: 10 };
  let y = !b; 
  println!("{x},{y}");
}

Rust 

Output 

-10,90



Index and IndexMut traits are design to allow index operator overwriting in Rust, with 
Index being a super-trait for IndexMut.

Keep in mind the indexing operation in Rust return a reference or a mutable reference. 
This is a limitation as you can not create and return an object (except for the case 
where that object is part of the type). 

OBS: As a rule, in cases where index is out of range, you should panic !

OBS2: container[idx] is pretty much the syntax sugar for container.index(idx)

Operators

pub Index<Idx: ?Sized>
{
  type Target: ?Sized;
  fn index(&self, index: Idx)->&Self::Output;
}

Rust (Index trait definition)

pub trait IndexMut<Idx: ?Sized>: Index<Idx>
{
  fn index_mut(&mut self, index: Idx)->&mut Self::Output;
}

Rust (IndexMut trait definition)



Let’s see an example that uses index operators:

Operators

use std::ops::{Index,IndexMut};

#[derive(Debug)]
struct IPv4 { 
    values: [u8;4] 
}
impl Index<usize> for IPv4 {
  type Output = u8;
  fn index(&self, index: usize) -> &Self::Output {
    if index<4 { return &(self.values[index]); } 
    panic!("Out of bounds !");
  }
}
impl IndexMut<usize> for IPv4 {
  fn index_mut(&mut self, index: usize) -> &mut Self::Output {
    if index<4 { return &mut (self.values[index]); } 
    panic!("Out of bounds !");
  }
}

Rust 

Output 

IP = 0.0.0.0
IP = 192.168.0.1

fn main() {
  let mut ip = IPv4{values: [0u8;4]};
  println!("IP = {}.{}.{}.{}",ip[0],ip[1],ip[2],ip[3]);
  ip[0] = 192;
  ip[1] = 168;
  ip[2] = 0;
  ip[3] = 1;
  println!("IP = {}.{}.{}.{}",ip[0],ip[1],ip[2],ip[3]);

}

Main function



You can also add multiple indexes:

Operators

use std::ops::Index;
struct IPv4 {
  values: [u8;4]
}
impl Index<usize> for IPv4 {
  type Output = u8;
  fn index(&self, index: usize) -> &Self::Output {
    if index<4 { return &(self.values[index]); } 
    panic!("Out of bounds !");
  }
}
impl Index<&str> for IPv4 {
  type Output = u8;
  fn index(&self, index: &str) -> &Self::Output {
    match index {
      "first" => { return &(self.values[0]); }
      "second" => { return &(self.values[1]); }
      "third" => { return &(self.values[2]); }
      "forth" => { return &(self.values[3]); }
      _ => { panic!("Invalid index"); }
    }    
  }
}

Rust 

Output 

IP = 192.168.1.123
192
168

fn main() {
  let ip = IPv4{values: [192u8,168,1,123]};
  println!("IP = {}.{}.{}.{}",ip[0],ip[1],ip[2],ip[3]);
  println!("{}",ip["first"]);
  println!("{}",ip["second"]);

}

Main function



Finally, keep in mind that assignment (‘=‘) can not be overwritten. 

This is because assignment is used for ownership transfer or Copy semantics 
(pending on what trait is present).

As such, this operator has to be handled by the compiler itself (as it is part of the 
move/copy semantics logic that Rust uses internally).

Operators



Q
A&
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