
Course – 6
Gavrilut Dragos

Rust programming

rev 9

Agenda for today

1. OOP concepts in Rust

2. Traits

3. Super traits / inheritance

4. Special traits

5. Operators

OOP

Rust structures have both a role of a structure and C++ class. However, there are
several differences between how a class in C++ and its equivalent in Rust are
designed.

Maybe one of the most important one, is that methods for every object are
implemented separately (and not as part of that object definition). This techniques
allows rust to define traits (characteristics) that can be define for every object
(including the one that are already part of the standard library and basic types).

OOP

struct MyClass {
 // data members
}
impl MyClass {
 // methods of the class
}

Rust

To add a method to a class, use the impl keyword,
follow by the name of the class.

Methods are defined with the impl construct with the following format:
• [visibility] fn method_name ([params]) -> <return_type> {…}

• [visibility] fn method_name (self, [params]) -> <return_type> {…}

• [visibility] fn method_name (&self, [params]) -> <return_type> {…}

• [visibility] fn method_name (&mut self, [params]) -> <return_type> {…}

Where:

- [params] → is a list of parameters (similar to the one that can be added to a
regular Rust function)

- [visibility] → a set of keywords that explain the visibility of that method

- <return_type> → the return type of that method

- self, &self, &mut self → used if the method is applying to the object. If not
prezent, the method is considered static.

Methods

Let’s see a very simple example:

Methods

struct MyClass {
 value: i32
}
impl MyClass {
 fn inc(&mut self) { self.value += 1; }
 fn get(&self) -> i32 { return self.value; }
}

fn main() {
 let mut obj = MyClass{value:0};
 obj.inc();
 println!("{}",obj.get());
}

Rust

Output

1

Let’s see a very simple example:

Methods

struct MyClass {
 value: i32
}
impl MyClass {
 fn inc(&mut self) { self.value += 1; }
 fn get(&self) -> i32 { return self.value; }
}

fn main() {
 let mut obj = MyClass{value:0};
 obj.inc();
 println!("{}",obj.get());
}

Rust

Output

1

“self” is somehow similar to “this” pointer from C++.
For this method a mutable reference to the object is

required in order to be able to change its data members.

Let’s see a very simple example:

Methods

struct MyClass {
 value: i32
}
impl MyClass {
 fn inc(&mut self) { self.value += 1; }
 fn get(&self) -> i32 { return self.value; }
}

fn main() {
 let mut obj = MyClass{value:0};
 obj.inc();
 println!("{}",obj.get());
}

Rust

Output

1

In this case we only need an immutable reference
towards the object as we don’t need to modify its

content.

Let’s see a very simple example:

OBJ: Notice that methods in Rust that receive a &self are translated as const
methods in C++ (see method get)

Methods

struct MyClass {
 value: i32
}
impl MyClass {
 fn inc(&mut self) { self.value += 1; }
 fn get(&self) -> i32 { return self.value; }
}
fn main() {
 let mut obj = MyClass{value:0};
 obj.value = 5;
 obj.inc();
 println!("{}",obj.get());
}

Rust

class MyClass {
 public:
 int value;
 void inc() { value+=1; }
 int get() const { return value; }
};
void main() {
 MyClass obj;
 obj.value = 5;
 obj.inc();
 printf("%d\n",obj.get());
}

C++

Output

6

If the &self / &mut self or self are omitted when defining an object method, that
method is considered to be static. In this example, method print_name is static and
can only be access via the class/struct name specifier.

Static Methods

struct MyClass {
 value: i32
}
impl MyClass {
 fn print_name() {
 println!("MyClass");
 }
}
fn main() {
 MyClass::print_name();
}

Rust

class MyClass {
 public:
 int value;
 static void print_name() {
 printf("MyClass");
 }
};
void main() {
 MyClass::print_name();
}

C++

Output

MyClass

If you want to call a static method from a regular method you can use either “Self”
(with capital “S”) as a type, or the name of the type you are implementing a
method for.

Static Methods

struct MyClass {
 value: i32,
}
impl MyClass {
 fn print_name() {
 print!("MyClass");
 }
 fn print_me(&self) {
 Self::print_name();
 println!(" -> value: {}",self.value);
 }
}
fn main() {
 let x = MyClass{value:10};
 x.print_me();
}

Rust
Output

MyClass -> value: 10

If you want to call a static method from a regular method you can use either “Self”
(with capital “S”) as a type, or the name of the type you are implementing a
method for.

Static Methods

struct MyClass {
 value: i32,
}
impl MyClass {
 fn print_name() {
 print!("MyClass");
 }
 fn print_me(&self) {
 Self::print_name();
 println!(" -> value: {}",self.value);
 }
}
fn main() {
 let x = MyClass{value:10};
 x.print_me();
}

Rust
Output

MyClass -> value: 10

Alternatively, you can use
“MyClass::print_name()”

to obtain the same result.

There are also no static data members in Rust. However, we can use global variable
to achieve a similar result as a static data member in C++. When we are going to
talk about visibility, we will show how this global variables can be hidden.

Static data members

struct MyClass {
 value: i32,
}
static mut my_class_x: i32 = 10;
impl MyClass {
 fn inc() { unsafe { my_class_x += 1; } }
 fn get()->i32 {
 unsafe { return my_class_x; }
 }
}
fn main() {
 MyClass::inc();
 println!("{}",MyClass::get());
}

Rust

class MyClass {
 public:
 int value;
 static int x;
 static void inc() { x++; }
 static int get() { return x; }
};
int MyClass::x = 10;
void main() {
 MyClass::inc();
 printf("%d\n",MyClass::get());
}

C++

Output

11

There are also no static data members in Rust. However, we can use global variable
to achieve a similar result as a static data member in C++. When we are going to
talk about visibility, we will show how this global variables can be hidden.

Static data members

struct MyClass {
 value: i32,
}
static mut my_class_x: i32 = 10;
impl MyClass {
 fn inc() { unsafe { my_class_x += 1; } }
 fn get()->i32 {
 unsafe { return my_class_x; }
 }
}
fn main() {
 MyClass::inc();
 println!("{}",MyClass::get());
}

Rust

class MyClass {
 public:
 int value;
 static int x;
 static void inc() { x++; }
 static int get() { return x; }
};
int MyClass::x = 10;
void main() {
 MyClass::inc();
 printf("%d\n",MyClass::get());
}

C++

Notice the usage of a special keyword ->
unsafe. Global variables can be modified

by multiple threads and as such their
usage may lead to undefined behavior.

As a general rule, it is not recommended to create a global (mutable) variable to be
used as a static field for an object. However, since some designed patters (such as
Singleton) might require such an approach this is allowed but must be done in such
a way that access to that variable is limited (so that we reduce the chance of an
undefined behavior).

If such a construct is used without the unsafe keyword, the code will not compile.

Static data members

struct MyClass {
 value: i32,
}
static mut my_class_x: i32 = 10;
impl MyClass {
 fn inc() { my_class_x += 1; }
 fn get()->i32 { return my_class_x; }

Rust
error[E0133]: use of mutable static is unsafe and requires
unsafe function or block
 --> src\main.rs:6:17
 |
6 | fn inc() { my_class_x += 1; }
 | ^^^^^^^^^^^^^^^ use of mutable static
 |
 = note: mutable statics can be mutated by multiple threads:
 aliasing violations or data races will cause undefined
 behavior

Error

Another interesting thing is that (semantically) Rust has “self” (in different forms)
as the first parameter for methods that are associated/implemented for a struct.

This implies that a method is a little bit different than what we know from C++. In
C++ a method can only be called by the actual object, in Rust a method can be
called in two different ways:

• object.method (Param1, Param1,.. Paramn), where object is of type ObjectType

or
• ObjectType::method ([reference]object, Param1, Param1,.. Paramn)

Where [reference] refers to the fact that the first parameter should reflect its
definition (self , &self or &mut self)

Calling methods

Let’s see an example:

Notice that we have called print_a method in two different ways !

Calling methods

struct A { value: u32 }
impl A {
 fn print_a(&self) {
 println!("value = {}",self.value);
 }
}

fn main() {
 let a1 = A{value:10};
 let a2 = A{value:20};
 a1.print_a();
 A::print_a(&a2);
}

Rust

Output

value = 10
value = 20

Also, there is no difference between a regular function that is designed to take the
first parameter a reference or an object of type “A”, or a similar method
implemented for type “A”. In this example, we showcase this behavior. Method call
receives a pointer to a function that has a first parameter of type &mut A and the
second parameter of type u32. Both “g” and “A::f” qualify for this type of functions.

Calling methods

struct A {}
impl A {
 fn f(&mut self, x: u32) { println!("{}", x); }
}
fn g(_: &mut A, x: u32) { println!("{}", x + 10); }
fn call(fun: fn(&mut A, u32)) {
 let mut x = A {};
 fun(&mut x, 5);
}
fn main() {
 call(A::f);
 call(g);
}

Rust

Output

5
15

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
 value: i32
}
impl MyClass {
 fn create(val: i32)-> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}",m.value);
}

Rust

class MyClass {
 public:
 int value;
 MyClass(int v): value(v) {}
};
void main() {
 MyClass m(10);
 printf("%d\n",m.value);
}

C++

Output

10

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
 value: i32
}
impl MyClass {
 fn create(val: i32)-> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}",m.value);
}

Rust

class MyClass {
 public:
 int value;
 MyClass(int v): value(v) {}
};
void main() {
 MyClass m(10);
 printf("%d\n",m.value);
}

C++

Output

10

This static method acts as a constructor. It creates a new
MyClass object and returns it (this transfers the

ownership towards the variable “m”).

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
 value: i32
}
impl MyClass {
 fn create(val: i32)-> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}",m.value);
}

Rust

class MyClass {
 public:
 int value;
 MyClass(int v): value(v) {}
};
void main() {
 MyClass m(10);
 printf("%d\n",m.value);
}

C++

Output

10

mov ecx,10
call MyClass::create
mov dword ptr [m],eax

push rax
mov dword ptr [rsp],ecx
mov eax,dword ptr [rsp]
pop rcx
ret

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Constructors

struct MyClass {
 value: i32
}
impl MyClass {
 fn create(val: i32)-> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}",m.value);
}

Rust

class MyClass {
 public:
 int value;
 MyClass(int v): value(v) {}
};
void main() {
 MyClass m(10);
 printf("%d\n",m.value);
}

C++

Output

10

This means that in reality, what Rust does is to copy the
value that we get from parameter “val” to “m” variable

from the main function.

Rust also have a special type call Self that refers to the current type (not object). It
is often useful when returning an object of that type.

Constructors

struct MyClass {
 value: i32,
}
impl MyClass {
 fn create(val: i32) -> Self {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}", m.value);
}

Rust

struct MyClass {
 value: i32,
}
impl MyClass {
 fn create(val: i32) -> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}", m.value);
}

Rust

Output

10

Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
 value: i32,
 data: [u8;30]

}
impl MyClass {
 fn new(val: i32, d: u8)-> MyClass {
 return MyClass { value: val, data: [d;30] };
 }

}

fn main() {
 let m = MyClass::new(1,2);
 print!("{}",m.value);

}

Rust

Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
 value: i32,
 data: [u8;30]

}
impl MyClass {
 fn new(val: i32, d: u8)-> MyClass {
 return MyClass { value: val, data: [d;30] };
 }

}

fn main() {
 let m = MyClass::new(1,2);
 print!("{}",m.value);

}

Rust

lea rcx,[m]
mov edx,1
mov r8d,2
call MyClass::new

Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
 value: i32,
 data: [u8;30]

}
impl MyClass {
 fn new(val: i32, d: u8)-> MyClass {
 return MyClass { value: val, data: [d;30] };
 }

}

fn main() {
 let m = MyClass::new(1,2);
 print!("{}",m.value);

}

Rust mov byte ptr [rsp+2Bh],r8b
mov eax,edx // eax = 1
mov dl,byte ptr [rsp+2Bh] // edx = 2
mov dword ptr [rsp+2Ch],eax
mov qword ptr [rsp+30h],rcx
mov qword ptr [rsp+38h],rcx
mov dword ptr [rsp+60h],eax
mov byte ptr [rsp+67h],dl
lea rcx,[rsp+42h]
mov r8d,30
call memset
mov edx,dword ptr [rsp+2Ch]
mov rcx,qword ptr [rsp+30h]
mov rax,qword ptr [rsp+38h]
mov dword ptr [rcx],edx // m.value = 1
mov rdx,qword ptr [rsp+42h]
mov qword ptr [rcx+4],rdx
mov rdx,qword ptr [rsp+4Ah]
mov qword ptr [rcx+0Ch],rdx
mov rdx,qword ptr [rsp+52h]
mov qword ptr [rcx+14h],rdx
mov edx,dword ptr [rsp+5Ah]
mov dword ptr [rcx+1Ch],edx
mov dx,word ptr [rsp+5Eh]
mov word ptr [rcx+20h],dx

memcpy

Let’s try a more complex case (where the class has multiple members).

Constructors

struct MyClass {
 value: i32,
 data: [u8;30]

}
impl MyClass {
 fn new(val: i32, d: u8)-> MyClass {
 return MyClass { value: val,

 data: [d;30]
 };
 }

}

fn main() {
 let m = MyClass::new(1,2);
 print!("{}",m.value);
}

Rust

class MyClass
{
 public:
 int value;
 uint8_t data[30];
 static void fn_new(MyClass * output, int val, uint8_t d)
 {
 MyClass local_obj;
 local_obj.value = val;
 memset(local_obj.data,d,30);
 memcpy(output,&local_obj,sizeof(MyClass));
 }
};
void main() {
 MyClass m;
 MyClass::fn_new(&m, 1, 2);
 printf("%d\n",m.value);
}

C++ (approximation)

In reality, there is no real difference on how Rust constructs an object (as opposite
on how C++ does it). Both of them receive the address where the actual object is
located and construct it there.

Usually, Rust uses names like:
• new(…)

• from(…)

• with_...(…)

to describe a constructor. However, any name can be used.

OBS: from is part of a trait and while it is used to construct an object it is usually
associated with that trait.

Constructors

Keep in mind that defining a function similar to a constructor does not imply than an
object can not be created in different ways. In the next example, we create an object
of type MyClass using two different methods (::create(…) and structure initialization).

Constructors

struct MyClass {
 value: i32
}
impl MyClass {
 fn create(val: i32)-> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass::create(10);
 print!("{}",m.value);
}

Rust (via create method)

struct MyClass {
 value: i32,
}
impl MyClass {
 fn create(val: i32) -> MyClass {
 return MyClass { value: val };
 }
}
fn main() {
 let m = MyClass{value:10};
 print!("{}", m.value);
}

Rust (via structure initialization).

Output

10

One advantage of construction an object like this, is that we can return an error when
trying to construct an object, while using the constructor concept in C++ makes this
task more complicated.

Let’s assume that we have an object (of type Student). For each student we have a
name and a grade → but the grade should be between 1 and 10.

Using a constructor (like in C++) you can not return an error (so in theory every object
is valid). In Rust, we can return an Option<> or a Result<> and only if the result is valid
(Some for Option or Ok for Result) we obtain an instance of a specific type.

Constructors

Let’s see an example:

Constructors

#[derive(Debug)]
struct Student {
 grade: i32,
 name: String
}
impl Student {
 fn new(stud_name: &str, stud_grade: i32) -> Option<Student> {
 if (stud_name.len()>0) && (stud_grade>=1) && (stud_grade<=10) {
 return Some(Student{grade: stud_grade, name: String::from(stud_name)});
 }
 return None;
 }
}
fn main() {
 let s1 = Student::new("Andrei",-5);
 let s2 = Student::new("Dragos",10);
 println!("s1={:?}",s1);
 println!("s2={:?}",s2);
}

Rust

Output

s1=None
s2=Some(Student { grade: 10, name: "Dragos" })

Keep in mind that static functions are possible in C++ as well. This means that the
same technique can be used there (create an object via a static function). The only
difference is if we need to allocate a class in the heap or if we need to create an array.
Since C++ builds a class directly in the allocated memory, there is a need of a
constructor method that can be called automatically when an object is created.

Rust works by creating a temporary object first and then assigned it to the actual
object (transfer the ownership). Because of this, any kind of static function will work
as we will need to provide that temporary object first , and then the assignment is
performed by Rust.

Constructors

Obviously, there is no implicit default constructor in Rust. However, it is a common
practice to name it new, while other constructors that imply creating from a specific
type prefer the prefix from (as a derivation from the trait From).

Constructors

#[derive(Debug)]
struct MyClass {
 value: i32,
}
impl MyClass {
 fn new() -> MyClass { MyClass{value:0} }
 fn from_i32(val: i32) -> MyClass { MyClass{value:val} }
}
fn main() {
 let m1 = MyClass::new();
 let m2 = MyClass::from_i32(10);
 println!("m1={:?}",m1);
 println!("m2={:?}",m2);
}

Rust

Output

m1=MyClass { value: 0 }
m2=MyClass { value: 10 }

The usage of .. operator is also called functional update syntax. It implies that you
can use this to call another initialization method (that will be called first) followed
by you own changes. Let’s see some example:

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: &'static str,
}
fn main() {
 let obj = Test {
 x: 1,
 ..Test { x: 5, y: 3, name: "abc" }
 };
 println!("obj={:?}", obj);
}

Rust

Output

obj=Test { x: 1, y: 3, name: "abc" }

In this case, first the
..Test { x: 5, y: 3, name: "abc" }

is called that instantiate obj with {x=5,y=3,name=“abc”};
Then, x is being overwritten with value 1.

The usage of .. operator is also called functional update syntax. It implies that you
can use this to call another initialization method (that will be called first) followed
by you own changes. Let’s see some example:

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: &'static str,
}
impl Test {
 fn new() -> Test { Test { x: 0, y: 0, name: "" } }
}
fn main() {
 let obj = Test {
 x: 1,
 name: "xyz",
 ..Test::new()
 };
 println!("obj={:?}", obj);
}

Rust

Output

obj=Test { x: 1, y: 0, name: "xyz" }

In this case, first the ..Test::new() is called that
instantiate obj with {x=0,y=0,name=“”}; Then, x is being

overwritten with value 1, and name with value “xyz”

The usage of .. operator is also called functional update syntax. It implies that you
can use this to call another initialization method (that will be called first) followed
by you own changes. Let’s see some example:

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: &'static str,
}
impl Test {
 fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
}
fn main() {
 let obj = Test {
 name: "xyz",
 ..Test::new(5)
 };
 println!("obj={:?}", obj);
}

Rust

Output

obj=Test { x: 5, y: 5, name: "xyz" }

In this case, first the ..Test::new(5) is called that
instantiate obj with {x=5,y=5,name=“”}; Then, name is

overwritten with value “xyz”

The .. operator has to be the last from the declaration.

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: &'static str,
}
impl Test {
 fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
}
fn main() {
 let obj = Test {
 name: "xyz",
 ..Test::new(5),
 x: 1
 };
 println!("obj={:?}", obj);
}

Rust

error: cannot use a comma after the base struct
 --> src\main.rs:13:9
 |
13 | ..Test::new(5),
 | ^^^^^^^^^^^^^^- help: remove this comma
 |
 = note: the base struct must always be the last field

Error

When using functional update syntax, you can also use another object (of the same
type) as your base:

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: &'static str,
}
impl Test {
 fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
}
fn main() {
 let base = Test::new(5);
 let obj = Test {
 name: "xyz",
 ..base
 };
 println!("obj={:?}, base={:?}", obj,base);
}

Rust

Output

obj=Test { x: 5, y: 5, name: "xyz" },
base=Test { x: 5, y: 5, name: "" }

However, there are a couple of pitfalls that we need to take into consideration:

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: String,
}
impl Test {
 fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
 let mut base = Test::new(5);
 base.x = 123;
 let obj = Test {
 name: String::from("abc"),
 ..base
 };
 println!("obj={:?}, base={:?}", obj,base);
}

Rust
Output

obj=Test { x: 123, y: 5, name: "abc" },
base=Test { x: 123, y: 5, name: "123" }

Notice tha this
snipped works as

expected !

However, there are a couple of pitfalls that we need to take into consideration:

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: String,
}
impl Test {
 fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
 let mut base = Test::new(5);
 base.x = 123;
 let obj = Test {
 x: 10,
 ..base
 };
 println!("obj={:?}, base={:?}", obj,base);
}

Rust

error[E0382]: borrow of partially moved value: `base`
 --> src\main.rs:17:41
 |
13 | let obj = Test {
 | _______________-
14 | | x: 10,
15 | | ..base
16 | | };
 | |_____- value partially moved here
17 | println!("obj={:?}, base={:?}", obj,base);
 | ^^^^ value borrowed here after partial move
 |
 = note: partial move occurs because `base.name` has type `String`, which does not
implement the `Copy` trait

Error

Let’s analyze a little bit better what the next piece of code implies:

Steps:

1. Initialize obj with all fields that are provided (in our case → “x”)

2. Copy/Move all elements from base that are not needed by the current
initialization (in our case, since we already initialized “x”, we will assign “y” and
“name”). For “y” everything is ok, but “name” will be moved as it does not
contain the Copy trait.

3. As such, trying to print base after this step is invalid (as it has a partially moved
member – name).

Functional update syntax

 let obj = Test { x: 10,
 ..base
 };

struct Test {
 x: i32,
 y: i32,
 name: String,
}

Now the code works, but notice that we don’t print base.name that was moved !!!

Functional update syntax

#[derive(Debug)]
struct Test {
 x: i32,
 y: i32,
 name: String,
}
impl Test {
 fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
 let mut base = Test::new(5);
 base.x = 123;
 let obj = Test {
 x: 10,
 ..base
 };
 println!("obj={:?}, base.x={}, base.y={}", obj,base.x, base.y);
}

Rust
Output

obj=Test { x: 10, y: 5, name: "123" }, base.x=123, base.y=5

Rust does not support method overloading (in the sense that there can not be two
methods with the same name as part of the same implementation of one class). We
emphasize the word: “same implementation of one class” as methods with the same
name are allowed with traits (we will discuss about this later) or with
generics/templates.

One major advantage here is clarity (if you have multiple functions with the same
name, its is not always clear how parameters must be converted to match one of the
functions). If you only have one function with a specific name, this issue will NOT be
encountered anymore.

Method overloading

Let’s see an example:

Method overloading

struct MyClass {
 value: i32,
}
impl MyClass {
 fn add(&mut self, v1: i32) {
 self.value+= v1;
 }
 fn add(&mut self, v1: i32, v2: i32) {
 self.value+= v1+v2;
 }
}
fn main() {
 let m = MyClass{value:0};
 m.add(10);
 m.add(10,20);
 println!("{}",m.value);
}

Rust

error[E0201]: duplicate definitions with name `add`:
 --> src\main.rs:8:5
 |
5 | / fn add(&mut self, v1: i32) {
6 | | self.value+= v1;
7 | | }
 | |_____- previous definition of `add` here
8 | / fn add(&mut self, v1: i32, v2: i32) {
9 | | self.value+= v1+v2;
10 | | }
 | |_____^ duplicate definition

Error

The solution in this case is to change the name of those two methods:

Method overloading

struct MyClass {
 value: i32,
}
impl MyClass {
 fn add_one(&mut self, v1: i32) {
 self.value+= v1;
 }
 fn add_two(&mut self, v1: i32, v2: i32) {
 self.value+= v1+v2;
 }
}
fn main() {
 let mut m = MyClass{value:0};
 m.add_one(10);
 m.add_two(10,20);
 println!("{}",m.value);
}

Rust

Output

40

Rust does not have a destructor method (in the sense of a specific method with the
same name as the class) as C++ does. However, there is a special trait called Drop that
can be used to define a function with a similar scope.

Furthermore, the lifetime of one object or its transformation can be controlled via
methods that receive self as an argument (notice that it is self and not &self or &mut
self).

This technique transfers the ownership and as a result one can convert that object into
another one, or it can drop it.

We will discuss more about destructors when we talk about traits.

Destructors

Let’s see an example:

Destructors

struct MyClass {
 value: i32,
}
impl MyClass {
 fn destruct_me(self) {
 println!("Destruct object !");
 }
}
fn main() {
 let m = MyClass{value:0};
 m.destruct_me();
 println!("End program");
}

Rust

Output

Destruct object !
End program

After this point, “m” lifetime is over and any data that it
contains will be dropped.

Let’s see an example:

Destructors

struct MyClass {
 value: i32,
}
impl MyClass {
 fn destruct_me(self) {
 println!("Destruct object !");
 }
}
fn main() {
 let m = MyClass{value:0};
 m.destruct_me();
 println!("m.value = {}",m.value);
}

Rust

error[E0382]: borrow of moved value: `m`
 --> src\main.rs:12:29
 |
10 | let m = MyClass{value:0};
 | - move occurs because `m` has type `MyClass`, which does not
 | implement the `Copy` trait
11 | m.destruct_me();
 | ------------- `m` moved due to this method call
12 | println!("m.value = {}",m.value);
 | ^^^^^^^ value borrowed here after move
 |
note: this function takes ownership of the receiver `self`, which moves `m`
 --> src\main.rs:5:20
 |
5 | fn destruct_me(self) {
 | ^^^^

Error

Let’s see an example where we convert one object into another (by converting we
refer to a transfer of ownership between object fields). This is often known as
consuming one object and producing another one !

Consuming an object

#[derive(Debug)]
struct Student { math: i32, english: i32, name: String }
#[derive(Debug)]
struct StudentAverage { grade: i32, name: String }
impl Student {
 fn convert_to_student_average(self)->StudentAverage {
 StudentAverage{grade: (self.math+self.english)/2, name: self.name}
 }
}
fn main() {
 let s = Student{math:10, english:8, name: String::from("John")};
 println!("Student = {:?}",s);
 let sa = s.convert_to_student_average();
 println!("Average = {:?}",sa);
}

Rust

Output

Student = Student { math: 10, english: 8, name: "John" }
Average = StudentAverage { grade: 9, name: "John" }

Let’s see an example where we convert one object into another (by converting we
refer to a transfer of ownership between object fields). This is often known as
consuming one object and producing another one !

Consuming an object

#[derive(Debug)]
struct Student { math: i32, english: i32, name: String }
#[derive(Debug)]
struct StudentAverage { grade: i32, name: String }
impl Student {
 fn convert_to_student_average(self)->StudentAverage {…}
}
fn main() {
 let s = Student{math:10, english:8, name: String::from("John")};
 println!("Student = {:?}",s);
 let sa = s.convert_to_student_average();
 println!("Average = {:?}",sa);
 println!("Student = {:?}",s);
}

Rust
error[E0382]: borrow of moved value: `s`
 --> src\main.rs:22:31
 |
18 | let s = Student{math:10, english:8, name: String::from("John")};
 | - move occurs because `s` has type `Student`, which does not
implement the `Copy` trait
19 | println!("Student = {:?}",s);
20 | let sa = s.convert_to_student_average();
 | --------------------------- `s` moved due to this method call
21 | println!("Average = {:?}",sa);
22 | println!("Student = {:?}",s);
 | ^ value borrowed here after move

Error

There are several conventions that are usually used in Rust when writing a method
that consumes/converts an object:

1. use into_<type> if you want to consume current type and obtained a new object
by transferring ownership. This type of method receives a self as a first argument.

2. use to_<type> if you want to create a new object and keep the original object
(usually this means making a copy/clone of some of the data members of the
original object). This type of method receives a &self as a first argument.

Consuming an object

struct ClassA { /* data members */ }
struct ClassB { /* data members */ }
impl ClassA { fn into_classB(self, /* other parameters */) -> ClassB {...} }

struct ClassA { /* data members */ }
struct ClassB { /* data members */ }
impl ClassA { fn to_classB(&self, /* other parameters */) -> ClassB {...} }

There are several conventions that are usually used in Rust when writing a method
that consumes/converts an object:

3. use as_<type> if you want to convert an immutable reference of type “A” to an
immutable reference of type “B”. This type of method receives a &self as a first
argument. Usually this means that type “A” has a data member of type “B”.

Consuming an object

struct ClassA { /* data members */ }
struct ClassB { /* data members */ }
impl ClassA { fn as_classB(&self, /* other parameters */) -> &ClassB {...} }

Let’s see how these conversion will look like for our Student structure

Consuming an object

struct Student {
 math: i32,
 english: i32,
 name: String,
}
struct StudentAverage {
 grade: i32,
 name: String,
}
impl Student {
 fn into_student_average(self) -> StudentAverage {
 StudentAverage {
 grade: (self.math + self.english) / 2,
 name: self.name,
 }
 }
 fn to_student_average(&self) -> StudentAverage {
 StudentAverage {
 grade: (self.math + self.english) / 2,
 name: self.name.clone(),
 }
 }
}

Rust

Ownership of “Student::name” is transferred

A copy/clone of “Student::name” is made

Implementing methods (static and non-static) is not limited to structures, it works
similar for enums. To access the enum value, use the self keyword

Enums

enum Value {
 Int(i32),
 Float(f32)
}
impl Value {
 fn is_int(&self)->bool {
 match self {
 Value::Int(_) => { return true; }
 _ => { return false;}
 }
 }
}
fn main() {
 let x = Value::Int(10);
 let y = Value::Float(1.5);
 println!("x is int: {}",x.is_int());
 println!("y is int: {}",y.is_int());
}

Rust

Output

x is int: true
y is int: false

The same logic could have been obtained via an “if let” statement, “while let”
statement or “matches!” macro, instead of using a match.

Enums

enum Value {
 Int(i32),
 Float(f32)
}
impl Value {
 fn is_int(&self)->bool {
 match self {
 Value::Int(_) => { return true; }
 _ => { return false;}
 }
 }
}
fn main() {
 let x = Value::Int(10);
 let y = Value::Float(1.5);
 println!("x is int: {}",x.is_int());
 println!("y is int: {}",y.is_int());
}

Rust

Output

x is int: true
y is int: false

fn is_int(&self)->bool {
 if let Value::Int(_) = self {
 return true;
 }
 return false;
}

Rust

fn is_int(&self)->bool {
 return if let Value::Int(_)=self { true } else { false }
}

Rust

Static methods can also be implemented for an enum (they are in particular useful
when creating enum objects).

Enums

#[derive(Debug)]
enum Value {
 Int(i32),
 Float(f32)
}
impl Value {
 fn from_i32(value: i32)->Value {
 return Value::Int(value);
 }
 fn from_f32(value: f32)->Value {
 return Value::Float(value);
 }
}
fn main() {
 let x = Value::from_i32(10);
 let y = Value::from_f32(1.5);
 println!("{x:?},{y:?}");
}

Rust

Output

Int(10),Float(1.5)

Traits

In Rust a trait is a set of characteristics that an object has. Formally, a trait is very
similar to an interface. However, from a semantic point of view, it is closer to a C++
abstract class.

From the semantic point of view, a trait is a list of methods that can be
implemented for an existing type (IMPORTANT: not necessarily a newly created
type, but also types that are already defined).

Traits

trait MyTrait {
 // methods
}
impl MyTrait for MyClass {
 // implement methods
}

Rust

To implement a trait for an existing
structure/enum, use the impl keyword.

Let’s see a simple example:

Traits

struct MyClass {
 x: i32
}
trait IncrementAndDecrement {
 fn inc(&mut self);
 fn dec(&mut self);
}
impl IncrementAndDecrement for MyClass {
 fn inc(&mut self) { self.x+=1; }
 fn dec(&mut self) { self.x-=1; }
}
fn main() {
 let mut m = MyClass{x:3};
 m.inc();m.inc();m.inc();
 m.dec();
 println!("X = {}",m.x);
}

Rust

Output

5

Let’s see a simple example:

Traits

struct MyClass {
 x: i32
}
trait IncrementAndDecrement {
 fn inc(&mut self);
 fn dec(&mut self);
}
impl IncrementAndDecrement for MyClass {
 fn inc(&mut self) { self.x+=1; }
 fn dec(&mut self) { self.x-=1; }
}
fn main() {
 let mut m = MyClass{x:3};
 m.inc();m.inc();m.inc();
 m.dec();
 println!("X = {}",m.x);
}

Rust
class IncrementAndDecrement {
 public:
 virtual void inc() = 0;
 virtual void dec() = 0;
};
class MyClass: public IncrementAndDecrement {
public:
 int x;
 virtual void inc() override { x++; };
 virtual void dec() override { x--; };
};
void main() {
 MyClass m;
 m.x = 3;
 m.inc();m.inc();m.inc();
 m.dec();
 printf("X = %d",m.x);
}

C++

Output

5

Let’s see a simple example:

Traits

struct MyClass {
 x: i32
}
trait IncrementAndDecrement {
 fn inc(&mut self);
 fn dec(&mut self);
}
impl IncrementAndDecrement for MyClass {
 fn inc(&mut self) { self.x+=1; }
 fn dec(&mut self) { self.x-=1; }
}
fn main() {
 let mut m = MyClass{x:3};
 m.inc();m.inc();m.inc();
 m.dec();
 println!("X = {}",m.x);
}

Rust

Output

5

mov dword ptr [m],3
lea rcx,[m]
call first::impl$0::inc
lea rcx,[m]
call first::impl$0::inc
lea rcx,[m]
call first::impl$0::inc
lea rcx,[m]
call first::impl$0::dec

Notice that the linkage is done statically
(even if inc and dec are equivalent to a

virtual method).

When implementing a trait, we can use the type Self to refer to the type where we
implement the trait. This allows to define a trait and be more generic (not needing to
specify the type of some parameters).

Traits

struct MyClass {
 x: i32
}
trait IsBigger {
 fn is_bigger(&self, object: &Self) -> bool;
}
impl IsBigger for MyClass {
 fn is_bigger(&self, object: &Self) -> bool {
 return if self.x>object.x { true } else { false };
 }
}
fn main() {
 let m1 = MyClass{x:3};
 let m2 = MyClass{x:2};
 println!("is m1 > m2 => {}",m1.is_bigger(&m2));
}

Rust

Output

is m1 > m2 => true

However, a virtual method (in C++) is interesting from the polymorphic point of view.
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
 fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
 fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
 println!("{}",obj.get_name());
}
fn main() {
 let obj_a = ClassA{};
 let obj_b = ClassB{};
 print_name(&obj_a);
 print_name(&obj_b);
}

Rust Output

ClassA
ClassB

However, a virtual method (in C++) is interesting from the polymorphic point of view.
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
 fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
 fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
 println!("{}",obj.get_name());
}
fn main() {
 let obj_a = ClassA{};
 let obj_b = ClassB{};
 print_name(&obj_a);
 print_name(&obj_b);
}

Rust Output

ClassA
ClassB

Notice the usage of &dyn Name as the type of obj. This
translates that obj is a reference to a type that
implements the trait Name.

However, a virtual method (in C++) is interesting from the polymorphic point of view.
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
 fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
 fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
 println!("{}",obj.get_name());
}
fn main() {
 let obj_a = ClassA{};
 let obj_b = ClassB{};
 print_name(&obj_a);
 print_name(&obj_b);
}

Rust Output

ClassA
ClassB

lea rcx,[obj_a]
lea rdx,[impl$<first::ClassA, first::Name>::vtable$ (07FF60708D498h)]
call first::print_name

lea rcx,[obj_b]
lea rdx,[impl$<first::ClassB, first::Name>::vtable$ (07FF60708D4B8h)]
call first::print_name

This actually translate in the following way: when
sending a dynamic reference towards a trait,
Rust send two parameters:
1. a pointer to the object (self) via register RCX
2. a pointer to a vfptr (similar like in C++) via

register RDX

However, a virtual method (in C++) is interesting from the polymorphic point of view.
This behavior can be modeled Rust using the dyn keyword:

Traits

struct ClassA { }
struct ClassB { }
trait Name { fn get_name(&self) -> &str; }
impl Name for ClassA {
 fn get_name(&self) -> &str { "ClassA" }
}
impl Name for ClassB {
 fn get_name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
 println!("{}",obj.get_name());
}
fn main() {
 let obj_a = ClassA{};
 let obj_b = ClassB{};
 print_name(&obj_a);
 print_name(&obj_b);
}

Rust Output

ClassA
ClassB

sub rsp,98h
mov qword ptr [self],rcx
mov qword ptr [vfptr],rdx
mov rax,qword ptr [vfptr+18h]
call rax // Name::get_name()

Similar to C++, all virtual/dynamic methods are
kept in a list (that is referred by vfptr pointer). As
a difference from C++, there is no need for
redirection (as vfptr pointer is provided directly
via a register).

This means that the size of an object that implements some traits does not change in
Rust. “ClassA” in both Rust and C++ has one member (“x”) that has 4 bytes. However,
in C++ due to the virtual method get_name, an instance of ClassA also contains a
pointer to a vfptr (and as such a size of 8 (for 32 bytes) or 12/16 for 64 bytes).

Traits

struct ClassA {
 x: i32,
}
trait Name {
 fn get_name(&self) -> &str;
}
impl Name for ClassA {
 fn get_name(&self) -> &str {
 "ClassA"
 }
}
fn main() {
 println!("{}", std::mem::size_of::<ClassA>())
}

Rust Output

4 class Name {
 public:
 virtual const char * get_name() = 0;
};
class ClassA: public Name {
 int x;
public:
 virtual const char * get_name() override {
 return "ClassA";
 }
};
void main() {
 printf("%d",sizeof(ClassA));
}

C++ Output

8

Furthermore, the same logic applies for arrays (or for any kind of structure/enum that
uses a structure that implements a trait that define a virtual method.

Traits

struct ClassA {
 x: i32,
}
trait Name {
 fn get_name(&self) -> &str;
}
impl Name for ClassA {
 fn get_name(&self) -> &str {
 "ClassA"
 }
}
fn main() {
 println!("{}", std::mem::size_of::<[ClassA;10]>());
}

Rust

Output

40

So … let’s analyze and see how the classic polymorphism example works in Rust.

Traits

struct Figure {
 virtual const char * get_name() = 0;
};
struct Circle: public Figure {
 virtual const char * get_name() override { return "Circle";}
};
struct Rectangle: public Figure {
 virtual const char * get_name() override { return "Rectangle";}
};
struct Triangle: public Figure {
 virtual const char * get_name() override { return "Triangle";}
};
void main() {
 Figure* fig[3];
 fig[0] = new Circle();
 fig[1] = new Rectangle();
 fig[2] = new Triangle();
 for (auto i = 0;i<2;i++) {
 printf("%s\n",fig[i]->get_name());
 }
}

C++ (classic polymorphism example)

Output

Circle
Rectangle
Triangle

Let’s recreate the same example for polymorphism in Rust.

We will do this in 3 steps:

1. Write the Figure trait and implement it for Circle, Rectangle and Triangle

2. Write initialization methods for Circle, Rectangle and Triangle

3. Discuss how main function should be written in order to illustrate the
polymorphism.

Traits

Step 1: Write the Figure trait and implement it for Circle, Rectangle and Triangle

Traits

trait Figure {
 fn get_name(&self) -> &str;
}

struct Circle { x: i32, y:i32, r: i32 }
struct Rectangle { x: i32, y:i32, w:i32, h:i32 }
struct Triangle { x: [i32;3], y:[i32;3] }

impl Figure for Circle {
 fn get_name(&self) -> &str { "Circle" }
}
impl Figure for Rectangle {
 fn get_name(&self) -> &str { "Rectangle" }
}
impl Figure for Triangle {
 fn get_name(&self) -> &str { "Triangle" }
}

Rust

Step 2: Write initialization methods for Circle, Rectangle and Triangle

Traits

impl Circle {
 fn new()->Circle {
 Circle{x:0,y:0,r:1}
 }
}
impl Rectangle {
 fn new()->Rectangle {
 Rectangle{x:0,y:0,w:100,h:20}
 }
}
impl Triangle {
 fn new()->Triangle {
 Triangle{x:[0,1,2],y:[0,1,0]}
 }
}

Rust

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

The fact is that we can not create an array with traits similar to how we do it in C++
(Rust assumes that the first item is the type of array and as such for this example, the
code will not compile).

Traits

fn main() {
 let figuri = [
 Box::new(Circle::new()),
 Box::new(Rectangle::new()),
 Box::new(Triangle::new())
];
 for fig in figuri.iter() {
 println!("{}",fig.get_name());
 }
}

Rust
error[E0308]: mismatched types
 --> src\main.rs:38:18
 |
38 | Box::new(Rectangle::new()),
 | ^^^^^^^^^^^^^^^^ expected struct `Circle`,
 | found struct `Rectangle`

error[E0308]: mismatched types
 --> src\main.rs:39:18
 |
39 | Box::new(Triangle::new())
 | ^^^^^^^^^^^^^^^ expected struct `Circle`, found
 | struct `Triangle`

Error

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Now the code works and output a similar result as the code from C++;

Traits

fn main() {
 let figuri: [Box::<dyn Figure>;3] = [
 Box::new(Circle::new()),
 Box::new(Rectangle::new()),
 Box::new(Triangle::new())
];
 for fig in figuri.iter() {
 println!("{}",fig.get_name());
 }
}

Rust

Output

Circle
Rectangle
Triangle

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Let’s see how “figure” is organized in memory. Notice that each element in the array
consists out of two pointers (one towards the data (a Circle struct, a Rectangle struct
or a Triangle struct) and the second one towards the vtable for trait Figure that was
implemented for Circle, Rectangle and Triangle.

Traits

fn main() {
 let figuri: [Box::<dyn Figure>;3] = [
 Box::new(Circle::new()),
 Box::new(Rectangle::new()),
 Box::new(Triangle::new())
];
 for fig in figuri.iter() {
 println!("{}",fig.get_name());
 }
}

Rust “figure” layout

[0] ptr to a Circle object

ptr to vtable of trait Figure for Circle object

[1] ptr to a Rectangle object

ptr to vtable of trait Figure for Rectangle object

[2] ptr to a Triangle object

ptr to vtable of trait Figure for Triangle object

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Keep in mind that we can not use a “dyn Figure type” outside of a box as we can not
know at compile time the size of an object that implements Figure trait.

Traits

fn main() {
 let figuri: [dyn Figure;3] = [
 Circle::new(),
 Rectangle::new(),
 Triangle::new()
];
 for fig in figuri.iter() {
 println!("{}",fig.get_name());
 }
}

Rust

error[E0277]: the size for values of type `dyn Figure` cannot be known at compilation time
 --> src\main.rs:36:17
 |
36 | let figuri: [dyn Figure;3] = [
 | ^^^^^^^^^^^^^^ doesn't have a size known at compile-time
 |
 = help: the trait `Sized` is not implemented for `dyn Figure`
 = note: slice and array elements must have `Sized` type

Error

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

The same can be done with a vector (instead of an array) with similar results.

Traits

fn main() {
 let mut figuri = Vec::<Box<dyn Figure>>::new();
 figuri.push(Box::new(Circle::new()));
 figuri.push(Box::new(Rectangle::new()));
 figuri.push(Box::new(Triangle::new()));
 for fig in figuri.iter() {
 println!("{}",fig.get_name());
 }
}

Rust

Output

Circle
Rectangle
Triangle

The previous code can be adjusted so that we can returned a boxed trait from a
function. Let’s see how get_a_figure looks like in assembly:

Traits

fn get_a_figure(id: i32) -> Box<dyn Figure> {
 if id == 0 { return Box::new(Circle::new()); }
 if id == 1 { return Box::new(Rectangle::new()); }
 Box::new(Triangle::new())
}
fn main() {
 let mut figuri = Vec::<Box<dyn Figure>>::new();
 for i in 0..3 {
 figuri.push(get_a_figure(i));
 }
 for fig in figuri.iter() {
 println!("{}", fig.get_name());
 }
}

Rust

Output

Circle
Rectangle
Triangle

The previous code can be adjusted so that we can returned a boxed trait from a
function. Let’s see how get_a_figure looks like in assembly:

Traits

fn get_a_figure(id: i32) -> Box<dyn Figure> {
 if id == 0 { return Box::new(Circle::new()); }
 if id == 1 { return Box::new(Rectangle::new()); }
 Box::new(Triangle::new())
}
fn main() {
 let mut figuri = Vec::<Box<dyn Figure>>::new();
 for i in 0..3 {
 figuri.push(get_a_figure(i));
 }
 for fig in figuri.iter() {
 println!("{}", fig.get_name());
 }
}

Rust

lea rcx,[temp_stack_circle]
 call first::Circle::new
 mov ecx,12 // size of a circle
 mov edx,4
 call alloc::alloc::exchange_malloc
 mov qword ptr [ptr_to_circle],rax
 jmp RETURN_FIGURE_FROM_CIRCLE
 ...

RETURN_FIGURE_FROM_CIRCLE:
 mov rcx,qword ptr [ptr_to_circle]
 mov rax,rcx
 mov rdx,qword ptr [temp_stack_circle]
 mov qword ptr [rcx],rdx
 mov edx,dword ptr [temp_stack_circle.r]
 mov dword ptr [ptr_to_circle.r],edx
 mov qword ptr [res.data_pointer],rax
 lea rax,[impl<Circle, Figure>::vtable]
 mov qword ptr [res.vtable],rax
 jmp RETURN_FROM_FUNCTION
 ...

RETURN_FROM_FUNCTION:
 mov rax,qword ptr [res.data_pointer]
 mov rdx,qword ptr [res.vtable]
 add rsp,0A0h
 pop rbp
 ret

The previous code can be adjusted so that we can returned a boxed trait from a
function. Let’s see how get_a_figure looks like in assembly:

Traits

fn get_a_figure(id: i32) -> Box<dyn Figure> {
 if id == 0 { return Box::new(Circle::new()); }
 if id == 1 { return Box::new(Rectangle::new()); }
 Box::new(Triangle::new())
}
fn main() {
 let mut figuri = Vec::<Box<dyn Figure>>::new();
 for i in 0..3 {
 figuri.push(get_a_figure(i));
 }
 for fig in figuri.iter() {
 println!("{}", fig.get_name());
 }
}

Rust
struct Figure_result {
 void* ptr_to_data;
 void* ptr_to_vtable;
};
Figure_result get_a_figure(int idx) {
 if (idx == 0) {
 Circle temp_stack_circle = Circle::new();
 Circle* ptr_to_circle = new Circle();
 memcpy(ptr_to_circle,
 temp_stack_circle,
 sizeof(Circle));
 Figure_result res;
 res.ptr_to_data = ptr_to_circle;
 res.ptr_to_vtable = 0xFF1122....;
 return res;
 }
 ...
}

C++ (approximation)

A hardcoded address in process memory
where the vtable for Circle is located.

Keep in mind that returning a boxed (dynamic) type is different than returning an
implementation of a trait . The next code will not compile as Rust will assume that all
return branches must return the same thing (a circle) just like the first return branch
does.

Traits

fn get_a_figure(id: i32) -> impl Figure {
 if id == 0 {
 return Circle::new();
 }
 if id == 1 {
 return Rectangle::new();
 }
 return Triangle::new();
}

Rust

error[E0308]: mismatched types
 --> src\main.rs:75:16
 |
70 | fn get_a_figure(id: i32) -> impl Figure {
 | ----------- expected `_` because of return type
...
75 | return Rectangle::new();
 | ^^^^^^^^^^^^^^^^ expected struct `Circle`, found struct `Rectangle`

Error

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.

Let’s see what happens when we create the “a” variable.

Traits

fn get_a_figure(id: i32) -> impl Figure {
 if id == 0 {
 return Circle::new();
 }
 return Circle::new();
}
fn main() {
 let a = get_a_figure(0);
 println!("{}",a.get_name());
}

Rust

Output

Circle

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.

Let’s see what happens when we create the “a” variable.

Traits

fn get_a_figure(id: i32) -> impl Figure {
 if id == 0 {
 return Circle::new();
 }
 return Circle::new();
}
fn main() {
 let a = get_a_figure(0);
 println!("{}",a.get_name());
}

Rust

lea rcx,[a]
xor edx,edx // edx = 0 (first parameter: id = 0)
call first::get_a_figure

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.

Let’s see what happens when we create the “a” variable.

Traits

fn get_a_figure(id: i32) -> impl Figure {
 if id == 0 {
 return Circle::new();
 }
 return Circle::new();
}
fn main() {
 let a = get_a_figure(0);
 println!("{}",a.get_name());
}

Rust

sub rsp,38h
 mov qword ptr [address_of_a],rcx

 cmp edx,0
 jne IDX_IS_NOT_ZERO
 mov rcx,qword ptr [address_of_a]
 call Circle::new
 jmp RETURN_FROM_FUNCTION

IDX_IS_NOT_ZERO:
 mov rcx,qword ptr [address_of_a]
 call Circle::new

RETURN_FROM_FUNCTION:
 mov rax,qword ptr [address_of_a]
 add rsp,38h
 ret

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.

Traits

fn get_a_figure(id: i32) -> impl Figure {
 if id == 0 {
 return Circle::new();
 }
 return Circle::new();
}
fn main() {
 let a = get_a_figure(0);
 println!("{}",a.get_name());
}

Rust

void get_a_figure(void* result, int idx) {
 if (idx == 0) {
 Circle temp = Circle::new();
 memcpy(result, temp, sizeof(Circle));
 return;
 }
 Circle temp = Circle::new();
 memcpy(result, temp, sizeof(Circle));
 return;
}
void main() {
 uint8_t data[sizeof(Circle)];
 get_a_figure(data,0);
 Figure* figure = reinterpret_cast<Figure*>(data);
}

C++ (approximation)

This means that even if semantically “a” is of
type “impl Figure”, in reality “a” is a Circle

object (with the exception that we can only
access Figure related methods).

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.

As such → these two pieces of code are similar (in terms on how the compiler
generates code). The assembly code (for x64) is actually identical for both cases (even
if from the semantic point of view, “a” has a different type).

Traits

fn get_a_figure(id: i32) -> impl Figure {
 if id == 0 {
 return Circle::new();
 }
 return Circle::new();
}
fn main() {
 let a = get_a_figure(0);
 println!("{}",a.get_name());
}

Rust

fn get_a_figure(id: i32) -> Circle {
 if id == 0 {
 return Circle::new();
 }
 return Circle::new();
}
fn main() {
 let a = get_a_figure(0);
 println!("{}",a.get_name());
}

Rust

Methods from a trait can have a default implementation (much like a virtual method
from C++). This means that if that method is not overridden, the default implementation
will be used. To implement a trait without override its method, use:
 impl <trait_name> for <type> { }
Keep in mind that this is possible only if all method from the trait have a default
implementation !

Traits

struct ClassA {}
struct ClassB {}
trait Name { fn get_name(&self) -> &str { "Default name“ } }
impl Name for ClassA {}
impl Name for ClassB { fn get_name(&self) -> &str { "ClassB" } }
fn main() {
 let a = ClassA{};
 let b = ClassB{};
 println!("a = {}",a.get_name());
 println!("b = {}",b.get_name());
}

Rust

A trait can have both default (implemented methods) and unimplemented method and
they can use one each other.

Traits

struct ClassA {}
trait Message {
 fn get_name(&self) -> &str {
 "Default name"
 }
 fn print_message(&self);
}
impl Message for ClassA {
 fn print_message(&self) {
 println!("Hello from '{}'",self.get_name());
 }
}
fn main() {
 let a = ClassA{};
 a.print_message();
}

Rust

Notice that print_message is implemented in
ClassA and uses get_name that has a default

implementation in trait Message.

What’s different in Rust in terms of how a trait work, is that a trait can be implemented
for other types as well (even if they are not defined in that program → e.g. for example a
system type).

In this case, we create a new trait, called
BitCount that can be implemented for
type u32.

As a result, every variable or constant of
type u32 will have a function called
compute_bit_count that counts how
many bits with value 1 a value has.

Traits

trait BitCount {
 fn compute_bit_count(&self) -> u32;
}
impl BitCount for u32 {
 fn compute_bit_count(&self) -> u32 {
 let mut value = *self;
 let mut count = 0u32;
 while value>0 {
 count = count + (value % 2);
 value = value / 2;
 }
 return count;
 }
}
fn main() {
 let x = 24u32; // 24 = 11000
 println!("Bits in x = {}",x.compute_bit_count());
}

Rust
Output

2

Notice that you have to implement this trait for every type in order to work. The
following code will not compile as i32 does not implement the trait.

Traits

trait BitCount {
 fn compute_bit_count(&self) -> u32;
}
impl BitCount for u32 {
 fn compute_bit_count(&self) -> u32 {
 let mut value = *self;
 let mut count = 0u32;
 while value>0 {
 count = count + (value % 2);
 value = value / 2;
 }
 return count;
 }
}
fn main() {
 println!("Bits in 24u32 = {}",24u32.compute_bit_count());
 println!("Bits in 24i32 = {}",24i32.compute_bit_count());
}

Rust

error[E0599]: no method named `compute_bit_count` found for type `i32` in the current
scope
 --> src\main.rs:17:41
 |
17 | println!("Bits in 24i32 = {}",24i32.compute_bit_count());
 | ^^^^^^^^^^^^^^^^^ method not found in `i32`
 |
 = help: items from traits can only be used if the trait is implemented and in scope
note: `BitCount` defines an item `compute_bit_count`, perhaps you need to implement it
 --> src\main.rs:1:1
 |
1 | trait BitCount {
 | ^

Error

Another interesting example is the following. There is no method in class String that
can be used to set/change the existing string with a different one. You can obviously
run a .clear() followed by a .push_str(…) to do this, but you can also do it using traits ☺

Traits

trait StringSetter {
 fn set(&mut self, text: &str);
}
impl StringSetter for String {
 fn set(&mut self, text: &str) {
 self.clear();
 self.push_str(text);
 }
}
fn main() {
 let mut s = String::from("abc");
 println!("S = {}",s);
 s.set("123456");
 println!("S = {}",s);
}

Rust

Output

S = abc
S = 123456

A trait can also have constants defined as part of the trait. That constant should be
seen as a static variable (it does not affect in any way the size of the structure that
implements that trait).

Traits

struct RON {
 amount: i32
}
trait Currency {
 const DEFAULT:i32 = 100;
 fn set(&mut self, value: i32);
}
impl Currency for RON { fn set(&mut self, value: i32) { self.amount = value; } }
fn main() {
 let mut m = RON{amount:0};
 println!("m = {}",m.amount);
 m.set(RON::DEFAULT);
 println!("m = {}",m.amount);
 println!("size of RON = {}",std::mem::size_of::<RON>());
}

Rust

Output

m = 0
m = 100
size of RON = 4

A constant value defined in a trait does not necessarily need to be instantiated as part
of the trait definition. However, that constant needs to be initialized in implementation.

Traits

struct RON {
 amount: i32
}
trait Currency {
 const DEFAULT:i32;
 fn set(&mut self, value: i32);
}
impl Currency for RON {
 fn set(&mut self, value: i32) { self.amount = value; }
}
fn main() {
 let mut m = RON{amount:0};
 println!("m = {}",m.amount);
 m.set(RON::DEFAULT);
 println!("m = {}",m.amount);
 println!("size of RON = {}",std::mem::size_of::<RON>());
}

Rust

error[E0046]: not all trait items implemented, missing: `DEFAULT`
 --> src\main.rs:8:1
 |
5 | const DEFAULT:i32;
 | ------------------ `DEFAULT` from trait
...
8 | impl Currency for RON {
 | ^^^^^^^^^^^^^^^^^^^^^ missing `DEFAULT` in implementation

Error

A constant value defined in a trait does not necessarily need to be instantiated as part
of the trait definition. However, that constant needs to be initialize in implementation.

Traits

struct RON {
 amount: i32
}
trait Currency {
 const DEFAULT:i32;
 fn set(&mut self, value: i32);
}
impl Currency for RON {
 const DEFAULT:i32 = 1234;
 fn set(&mut self, value: i32) { self.amount = value; }
}
fn main() {
 let mut m = RON{amount:0};
 println!("m = {}",m.amount);
 m.set(RON::DEFAULT);
 println!("m = {}",m.amount);
 println!("size of RON = {}",std::mem::size_of::<RON>());
}

Rust

Output

m = 0
m = 1234
size of RON = 4

Similar to constant values, a trait can have types defined within the trait. And just like
constant values, the actual type of a defined type within a trait can be set up at the
trait or implementation level.

Let’s analyze the following problem:

• We need to convert from both Celsius and Fahrenheit to Kelvin

• Let’s also consider that Celsius is represented as an i32, while Fahrenheit is stored in
an f32 value.

• To do this, we will define two types (Celsius and Fahrenheit) and a trait (that describe
how the conversion to Kelvin is performed.

• We will also define a third type (Kelvin) that just returns its value. We will use it for a
different discussion.

Traits

Step 1: Define structures for Celsius, Fahrenheit and Kelvin as well as the conversion
trait.

Notice that trait TemperatureConverter has an inner type (ConversionOutput) that is
not yet defined !

Traits

struct Celsius {
 value: i32,
}
struct Fahrenheit {
 value: f32,
}
struct Kelvin {
 value: f32
}
trait TemperatureConverter {
 type ConversionOutput;
 fn to_kelvin(&self) -> Self::ConversionOutput;
}

Rust

Step 2: Implement TemperatureConverter for both Celsius, Fahrenheit and Kelvin types.

Notice that we have different formulas for those three types, and that we define
ConversionOutput for all implementations (i32 for Celsius and f32 for Fahrenheit and
Kelvin).

Traits

impl TemperatureConverter for Celsius {
 type ConversionOutput = i32;
 fn to_kelvin(&self) -> Self::ConversionOutput { return self.value + 273; }
}

impl TemperatureConverter for Fahrenheit {
 type ConversionOutput = f32;
 fn to_kelvin(&self) -> Self::ConversionOutput { return ((self.value - 32.0) / 1.8) + 273.15; }
}

impl TemperatureConverter for Kelvin {
 type ConversionOutput = f32;
 fn to_kelvin(&self) -> Self::ConversionOutput { self.value }
}

Rust

Step 3: Write a main function that showcase how the trait works.

OBS: This technique is similar to the usage of templates / generics. We will however
discuss about templates/generics and their usage with structs/enums and traits in
another course.

Traits

fn main() {
 let c = Celsius { value: 24 };
 println!("Celsius({}) = Kelvin({})", c.value, c.to_kelvin());
 let f = Fahrenheit { value: 100.5 };
 println!("Fahrenheit({}) = Kelvin({})", f.value, f.to_kelvin());
 let k = Kelvin { value: 50.2 };
 println!("Kelvin({}) = Kelvin({})", k.value, k.to_kelvin());
}

Rust

Output

Celsius(24) = Kelvin(297)
Fahrenheit(100.5) = Kelvin(311.20557)
Kelvin(50.2) = Kelvin(50.2)

Keep in mind that using this technique (an inner type that is defined in the
implementation of the trait) will not allow any kind of polymorphism as there is no
similar definition for the trait methods.

Traits

fn main() {
 let a:[Box<dyn TemperatureConverter>;2] = [
 Box::new(Celsius { value: 24 }),
 Box::new(Fahrenheit { value: 100.5 })
];
 for i in a.iter() {
 println!("{}",i.to_kelvin());
 }
}

Rust

error[E0191]: the value of the associated type `ConversionOutput` (from trait
`TemperatureConverter`) must be specified
 --> src\main.rs:24:20
 |
8 | type ConversionOutput;
 | ---------------------- `ConversionOutput` defined here
...
24 | let a:[Box<dyn TemperatureConverter>;2] = [
 | ^^^^^^^^^^^^^^^^^^^^ help: specify the associated type:
 | `TemperatureConverter<ConversionOutput = Type>`

Error

Keep in mind that even if we modify the way we define the Box (by adding an explicit
request for the ConversionOutput type, all elements from the list MUST have the same
ConversionOutputType !

Traits

fn main() {
 let a: [Box<dyn TemperatureConverter<ConversionOutput = f32>>; 3] = [
 Box::new(Celsius { value: 24 }),
 Box::new(Kelvin { value: 150.2 }),
 Box::new(Fahrenheit { value: 100.5 }),
];
 for i in a.iter() { println!("{}", i.to_kelvin()) }
}

Rust

error[E0271]: type mismatch resolving `<Celsius as TemperatureConverter>::ConversionOutput == f32`
 --> src\main.rs:35:9
 |
35 | Box::new(Celsius { value: 24 }),
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ type mismatch resolving `<Celsius as
 | TemperatureConverter>::ConversionOutput == f32`
note: expected this to be `f32`
 --> src\main.rs:16:29
16 | type ConversionOutput = i32;

Error

Now it works. Keep in mind that both Kelvin and Fahrenheit type have the same type
for the ConversionOutput (f32).

OBS: While this technique is working, it is not usually used for polymorphism (as it
implies to make sure that types that have a super-trait have the same internal type –
thus making the concept of internal type less relevant as it can be hardcoded).

Traits

fn main() {
 let a: [Box<dyn TemperatureConverter<ConversionOutput = f32>>; 2] = [
 Box::new(Kelvin { value: 150.2 }),
 Box::new(Fahrenheit { value: 100.5 }),
];
 for i in a.iter() {
 println!("{}", i.to_kelvin());
 }
}

Rust
Output

150.2
311.20557

A trait can also contain static methods, that can have a default behavior or not, and
in the last case, those methods should be implemented for types that implement
the trait. Obviously, since a static method in a trait is not linked to an instance of the
type that implements that trait, things like polymorphism can not be achieved with
these methods.

Traits

trait Addition {
 fn compute(v1:i32, v2:i32) -> i32;
}
struct ClassA { }
impl Addition for ClassA {
 fn compute(v1:i32, v2:i32) -> i32 {
 v1+v2
 }
}

fn main() {
 println!("{}",ClassA::compute(10, 20));
}

Rust
Output

30

A structure/enum can implement multiple traits. What happens if there are two traits
that define a method with the same name ?

Traits

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: i32 }
impl TraitA for ClassA {
 fn compute(&self, value:i32) -> i32 {
 return self.value * value;
 }
}
impl TraitB for ClassA {
 fn compute(&self, value:i32) -> i32 {
 return self.value / value;
 }
}
fn main() {
 let x = ClassA{value:10};
 println!("{}",x.compute(5));
}

Rust
error[E0034]: multiple applicable items in scope
 --> src\main.rs:23:21
 |
23 | println!("{}",x.compute(5));
 | ^^^^^^^ multiple `compute` found
 |
note: candidate #1 is defined in an impl of the trait `TraitA`
for the type `ClassA`
 --> src\main.rs:11:5
 |
11 | fn compute(&self, value:i32) -> i32 {
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: candidate #2 is defined in an impl of the trait `TraitB`
for the type `ClassA`
 --> src\main.rs:16:5
 |
16 | fn compute(&self, value:i32) -> i32 {
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: disambiguate the associated function for candidate #1
 |
23 | println!("{}",TraitA::compute(&x, 5));
 | ~~~~~~~~~~~~~~~~~~~~~~
help: disambiguate the associated function for candidate #2
 |
23 | println!("{}",TraitB::compute(&x, 5));

Error

The solution is to specifically explain Rust that, it needs to call a function defined from
a specific trait. The format for this call is:

<type-name as trait-name>::method(&obj, Param1, Param2, … Paramn)

Where obj is on object of type type-name that implements trait-name

Traits

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: i32 }
impl TraitA for ClassA {…}
impl TraitB for ClassA {…}

fn main() {
 let x = ClassA{value:10};

println!("{}",<ClassA as TraitA>::compute(&x,5));
println!("{}",<ClassA as TraitB>::compute(&x,5));

}

Rust
Output

50
2

The solution is to specifically explain Rust that, it needs to call a function defined from
a specific trait. The format for this call is:

<type-name as trait-name>::method(&obj, Param1, Param2, … Paramn)

Where obj is on object of type type-name that implements trait-name

Traits

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: i32 }
impl TraitA for ClassA {…}
impl TraitB for ClassA {…}

fn main() {
 let x = ClassA{value:10};

println!("{}",<ClassA as TraitA>::compute(&x,5));
println!("{}",<ClassA as TraitB>::compute(&x,5));

}

Rust
Output

50
2

fn main() {
 let x = ClassA{value:10};

println!("{}", TraitA::compute(&x,5));
println!("{}", TraitB::compute(&x,5));

}

Rust

Alternatively, the following
format can be used:

Super traits

Rust does not have an inheritance model , similar to what other languages have
where a type can be derived from another type and as such inherits all of its parent
properties, data members and methods.

However, Rust allows a certain type of inheritance by providing the concept of a
super trait. If “A” is a super trait for “B” , then any structure or enum that
implements “B” must also implement “A”

Super traits

trait MyTrait : MySuperTrait {
 // methods
}
impl MyTrait for MyClass {
 // implement methods
}

RustThe format is similar to the way inheritance is
done in C++ (name of the trait, followed by ‘:’ and

the name of the super trait).

Let’s see an example:

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Car: Vehicle {
 fn get_max_speed(&self) -> u32;
}
struct Dacia { }
impl Car for Dacia {
 fn get_max_speed(&self) -> u32 {
 return 140;
 }
}

fn main() {
 let d = Dacia{};
 println!("max_speed = {}",d.get_max_speed());
}

Rust

error[E0277]: the trait bound `Dacia: Vehicle` is not satisfied
 --> src\main.rs:8:6
 |
8 | impl Car for Dacia {
 | ^^^ the trait `Vehicle` is not implemented for `Dacia`
 |
note: required by a bound in `Car`
 --> src\main.rs:4:12
 |
4 | trait Car: Vehicle {
 | ^^^^^^^ required by this bound in `Car`

Error

The code will not compile because we haven’t
implemented the trait Vehicle for structure Dacia. This is
required because Vehicle is a super trait for the trait Car.

Let’s see an example:

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Car: Vehicle {
 fn get_max_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia {
 fn get_max_speed(&self) -> u32 { return 140; }
}
impl Vehicle for Dacia {
 fn get_name(&self) -> &str { return "Dacia"; }
}

fn main() {
 let d = Dacia {};
 println!("max_speed = {}", d.get_max_speed());
 println!("name= {}", d.get_name());
}

Rust

Output

max_speed = 140
name= Dacia

Any trait derived from another trait has access to all of the methods defined in the
super trait. Similar, via Self type, it can access any constant defined in the super trait
and instantiated in the struct or current trait.

Super traits

trait Vehicle {
 const MAX_SPEED: u32;
 fn get_name(&self) -> &str;
}
trait Car: Vehicle {
 fn print_speed(&self) { println!("Max speed for {} is {}", self.get_name(),Self::MAX_SPEED); }
}
struct Dacia {}
impl Car for Dacia { }
impl Vehicle for Dacia {
 const MAX_SPEED: u32 = 140;
 fn get_name(&self) -> &str { return "Dacia"; }
}
fn main() {
 let d = Dacia {};
 d.print_speed();
}

Rust
Output

Max speed for Dacia is 140

Multiple inheritance is also possible as a trait can be a super trait for multiple traits.

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Car: Vehicle {
 fn get_speed(&self) -> u32;
}
trait Color: Vehicle {
 fn get_color(&self) -> &str;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
 let d = Dacia {};
 println!("Name = {}",d.get_name());
 println!("Speed = {}",d.get_speed());
 println!("Color = {}",d.get_color());
}

Rust

Output

Name = Dacia
Speed = 140
Color = Blue

Multiple inheritance is also possible as a trait can be a super trait for multiple traits.

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Car: Vehicle {
 fn get_speed(&self) -> u32;
}
trait Color: Vehicle {
 fn get_color(&self) -> &str;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
 let d = Dacia {};
 println!("Name = {}",d.get_name());
 println!("Speed = {}",d.get_speed());
 println!("Color = {}",d.get_color());
}

Rust

Vehicle

Car Color

Dacia

This approach solves and the fact that a
trait does not have any data members

solves the diamond problem associated
with multiple inheritance.

A similar code in C++ would look like this.

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Car: Vehicle {
 fn get_speed(&self) -> u32;
}
trait Color: Vehicle {
 fn get_color(&self) -> &str;
}
struct Dacia {}
impl Car for Dacia { … }
impl Color for Dacia { … }
impl Vehicle for Dacia { … }
fn main() {
 let d = Dacia {};
 println!("Name = {}",d.get_name());
 println!("Speed = {}",d.get_speed());
 println!("Color = {}",d.get_color());
}

Rust
class Vehicle {
 virtual const char * get_name() = 0;
};
class Car: public Vehicle {
 virtual unsigned int get_speed() = 0;
};
class Color: public Vehicle {
 virtual const char * get_color() = 0;
};
class Dacia: public Car,public Color {
 virtual const char * get_name() override {...}
 virtual unsigned int get_speed() override {...}
 virtual const char * get_color() override {...}
};
void main() {
 Dacia d;
 printf("Name = {}",d.get_name());
 printf("Speed = {}",d.get_speed());
 printf("Color = {}",d.get_color());
}

C++

At the same time, multiple traits can be super trait for another trait. Semantically
this is explained in the following way:

trait <name>: SuperTrait1 + SuperTrait2 + … SuperTraitn {…}

This is in particular useful when using templates/generics as it can be used to explain certain type of
limitations (e.g. the type used in a generic must implement Trait1 , Trait2, …).
This format is often referred as trait combos.

Super traits

trait MyTrait : MySuperTrait + MySecondarySuperTrait + MyThirdSuperTrait {
 // methods
}
impl MyTrait for MyClass {
 // implement methods
}

Rust

The same example → but with trait combos.

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Color {
 fn get_color(&self) -> &str;
}
trait Car: Vehicle + Color {
 fn get_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
 let d = Dacia {};
 println!("Name = {}",d.get_name());
 println!("Speed = {}",d.get_speed());
 println!("Color = {}",d.get_color());
}

Rust

Output

Name = Dacia
Speed = 140
Color = Blue

The same example → but with trait combos.

Super traits

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Color {
 fn get_color(&self) -> &str;
}
trait Car: Vehicle + Color {
 fn get_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
 let d = Dacia {};
 println!("Name = {}",d.get_name());
 println!("Speed = {}",d.get_speed());
 println!("Color = {}",d.get_color());
}

Rust

trait Vehicle {
 fn get_name(&self) -> &str;
}
trait Color {
 fn get_color(&self) -> &str;
}
trait Car: Vehicle + Color {
 fn get_speed(&self) -> u32;
}
struct Dacia {}
impl Car for Dacia { fn get_speed(&self) -> u32 { 140 } }
impl Color for Dacia { fn get_color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get_name(&self) -> &str { "Dacia "} }
fn main() {
 let d = Dacia {};
 println!("Name = {}",d.get_name());
 println!("Speed = {}",d.get_speed());
 println!("Color = {}",d.get_color());
}

Rust

Vehicle

Car

Dacia

Color

Special Traits

Rust has some special traits that can be used to improve certain operations or how
some types behave:

- Traits that reflect certain properties (Copy, Clone, Debug, etc)

- Traits that reflects operators (addition, substraction, etc)

- Traits that reflects comparations between types

- Traits that reflect casts and/or conversions between types

These traits can be overridden. In some cases, Rust can automatically implement
some special traits via #[derive(…)] attribute.

Special Traits

To automatically tell Rust that it needs to implement a trait for a specific class, use
#[derive(…)] attribute. The general format is:

 #[derive(Trait1, Trait2, … Traitn)]

List of these traits (that are also called derivable traits):

Special Traits

Trait Usage

Copy Support for Copy Semantics

Clone Add support to clone an object

Debug Debug information for an object

Hash Provide a way to compute a hash for a reference (Compiler controlled)

Default Default value for an object

Eq Comparation support (equal)

PartialEq Comparation support (equal and not equal)

Ord Set an object to be comparable (can be ordered)

PartialOrd Set an object to be partial comparable (can be ordered)

Copy trait indicates “Copy semantics” for a specify trait. Clone is a super trait for
Copy trait (so any implementation of Copy trait implies Clone traits as well).

Notice that Copy trait has no defined method. This is because this trait implies
byte-wise copy for any object upon assignment. Clone imply Sized (a trait that
indicates that the size of the object that has this trait, must be known at compile
time). This is to be expected if Copy implies a byte-wise copy (a memcpy).

Special Traits (Copy & Clone)

pub trait Copy: Clone {
 // Empty.
}

Rust (Copy trait definition)
pub trait Clone: Sized {
 fn clone(&self) -> Self;
 fn clone_from(&mut self, source: &Self) {…}
}

Rust (Clone trait definition)

Clone trait, however, can be implemented

Special Traits (Copy & Clone)

struct MyNumber {
 value: i32,
}
impl Copy for MyNumber {}
impl Clone for MyNumber {
 fn clone(&self) -> Self {
 MyNumber {
 value: self.value + 1,
 }
 }
}
fn main() {
 let x = MyNumber { value: 1 };
 let y = x.clone();
 let z = x;
 println!("{},{},{}", x.value, y.value, z.value);
}

Rust

Output

1,2,1

Notice that y.value is 2 (this is to be expected as
x.clone() increases the value of MyNumber.

Clone trait, however, can be implemented

OBS: Notice that the default implementation (obtained via #[derive(Copy,Clone)] uses byte wise copy
for both clone and assignment.

Special Traits (Copy & Clone)

#[derive(Copy,Clone)]
struct MyNumber {
 value: i32,
}
fn main() {
 let x = MyNumber { value: 1 };
 let y = x.clone();
 let z = x;
 println!("{},{},{}", x.value, y.value, z.value);
}

Rust

Output

1,1,1

A newly create struct can implement Copy trait only if all of its fields implement
Copy trait.

In this case, one of the fields (name) does not implement Copy trait and as such the entire structure
can not implemented it.

Special Traits (Copy & Clone)

#[derive(Copy,Clone)]
struct MyNumber {
 value: i32,
 name:String
}
fn main() {
 let x = MyNumber { value: 1, name: "123".to_string() };
}

Rust

error[E0204]: the trait `Copy` may not be implemented for this type
 --> src\main.rs:1:10
 |
1 | #[derive(Copy,Clone)]
 | ^^^^
...
4 | name:String
 | ----------- this field does not implement `Copy`
 |

Error

Rust has two traits (Display and Debug) that should be used to display an object.
Both Debug and Display traits have the same methods, however there are some
differences between them:

• Debug trait can be used with #[derive(…)], Display can’t

• Display is designed for user-facing, while Debug is merely a developer way of
validating information about an object.

• Debug requires a special format {:?}

Special Traits (Display & Debug)

pub trait Display
{
 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

Rust (Display trait definition)
pub trait Debug
{
 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

Rust (Debug trait definition)

Let’s see some examples:

Notice that it is fairly easy to print any kind of object if we implement (via
#[derive(Debug)]) the Debug trait for it. Rust will create a default implementation
for this trait that will print each field from that structure.

Special Traits (Display & Debug)

#[derive(Debug)]
struct MyNumber {
 value: i32,
}
fn main() {
 let x = MyNumber { value: 1 };
 println!("{:?}",x);
}

Rust

Output

MyNumber { value: 1 }

Let’s see some examples:

Special Traits (Display & Debug)

use std::fmt::Display;
use std::fmt;
struct MyNumber {
 value: i32,
}
impl Display for MyNumber {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
 f.write_str("MyNumber => with value = ")?;
 f.write_fmt(format_args!("{}",self.value))?;
 Ok(())
 }
}
fn main() {
 let x = MyNumber { value: 1 };
 println!("{}",x);
}

Rust

Output

MyNumber => with value = 1

Let’s see some examples:

Special Traits (Display & Debug)

use std::fmt::Display;
use std::fmt;
struct MyNumber {
 value: i32,
}
impl Display for MyNumber {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
 f.write_str("MyNumber => with value = ")?;
 f.write_fmt(format_args!("{}",self.value))?;
 Ok(())
 }
}
fn main() {
 let x = MyNumber { value: 1 };
 println!("{}",x);
}

Rust

Output

MyNumber => with value = 1

fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "MyNumber => with value = {}",self.value)?;
 Ok(())
}

Rust

Alternatively, the write! macro
can be used !

Default trait is used to describe a default initialization value for an object. It works
like a static (constructor) method that creates an object. All basic types implement
that trait. Furthermore, Default trait can be defined via #[derive(…)].

Besides basic types, more than 150 types in Rust implement default.

Usage:

let x = Type::default();

let x: Type = Default::default()

Special Traits (Default)

pub trait Default: Sized {
{
 fn default() -> Self;
}

Rust (Default trait definition)

Let’s see some examples:

Special Traits (Default)

struct MyNumber {
 value: i32,
}
impl Default for MyNumber {
 fn default() -> Self {
 Self { value: 100 }
 }
}
fn main() {
 let x = MyNumber::default();
 let y = i32::default(); // 0 value
 let z = String::default(); // Empty string
 println!("{}",x.value);
 println!("{}",y);
 println!("[{}]",z);
}

Rust

Output

100
0
[]

Default trait can be automatically implemented via #[derive(…)] attribute. All of the
structure members MUST implement Default trait as well.

Special Traits (Default)

#[derive(Default,Debug)]
struct MyNumber {
 value: i32,
 float: f32,
 flag: bool
}
fn main() {
 let x = MyNumber::default();
 let y: MyNumber = Default::default();
 println!("{:?}",x);
 println!("{:?}",y);
}

Rust Output

MyNumber { value: 0, float: 0.0, flag: false }
MyNumber { value: 0, float: 0.0, flag: false }

Default trait can be automatically implemented via #[derive(…)] attribute. All of the
structure members MUST implement Default trait as well.

Special Traits (Default)

struct MyStructWithoutDefault {
 value: i32
}

#[derive(Default,Debug)]
struct MyNumber {
 value: i32,
 float: f32,
 flag: bool,
 extra: MyStructWithoutDefault
}

fn main() {
 let x = MyNumber::default();
 println!("{:?}",x);
}

Rust

error[E0277]: the trait bound `MyStructWithoutDefault: Default` is not satisfied
 --> src\main.rs:10:5
 |
5 | #[derive(Default,Debug)]
 | ------- in this derive macro expansion
...
10 | extra: MyStructWithoutDefault
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not implemented for
 | `MyStructWithoutDefault`

Error

When #[derive(…)] attribute is used to automatically implement the Default trait
for an enum, you MUST also specify the default variant (to do this add #[default]
before the e default variant in the enum).

Special Traits (Default)

use std::default;

#[derive(Debug, Default)]
enum Color {
 Red,
 #[default]
 Green,
 Blue,
 White
}
fn main() {
 let x = Color::default();
 println!("{:?}",x);
}

Rust
Output

Green

You can also overwrite some default value and keep the rest of them by using the
following syntax ..Default::default() when constructing an object (this is in fact
another usage of functional update syntax in Rust):

Special Traits (Default)

#[derive(Debug, Default)]
struct MyStruct {
 x: i32,
 y: bool,
 z: f32,
 name: String
}
fn main() {
 let x = MyStruct::default();
 let y = MyStruct { x: 10, ..Default::default()};
 let z = MyStruct { name: "10".to_string(), y:true, ..Default::default()};
 println!("x = {:?}",x);
 println!("y = {:?}",y);
 println!("z = {:?}",z);
}

Rust

Output

x = MyStruct { x: 0, y: false, z: 0.0, name: "" }
y = MyStruct { x: 10, y: false, z: 0.0, name: "" }
z = MyStruct { x: 0, y: true, z: 0.0, name: "10" }

Eq and PartialEq traits are used to describe if how to check the equality or
difference between two object. PartialEq is the super trait of Eq.

Notice that “ne” (not-equal) method has a default implementation. This mean that
normally, a type that implements this trait only needs to overwrite the eq method.

The “ne” is useful for types (e.g. floating values) that have special cases (such as
NaN) where different values (in term of bit comparation) might have the same
interpretation.

Special Traits (Eq and PartialEq)

pub trait PartialEq<Rhs: ?Sized = Self> {
 fn eq(&self, other: &Rhs) -> bool;

 fn ne(&self, other: &Rhs) -> bool {
 !self.eq(other)
 }
}

Rust (PartialEq trait definition)

pub trait Eq: PartialEq<Self> {
}

Rust (Eq trait definition)

Let’s see a simple example on how to use PartialEq:

Special Traits (Eq and PartialEq)

struct MyStruct {
 value: i32
}
impl PartialEq for MyStruct {
 fn eq(&self, other: &Self) -> bool {
 self.value == other.value
 }
}
fn main() {
 let x = MyStruct{value: 10};
 let y = MyStruct{value: 10};
 if x == y {
 println!("x an y are equals !");
 }
}

Rust

Output

x an y are equals !

PartialEq and Eq traits can be automatically implemented via #[derive(…)] attribute.
Keep in mind that PartialEq is a super trait of Eq and as such if you derive from Eq
you must derive from PartialEq as well. All of the members from that structure
MUST implement PartialEq and/or Eq.

Special Traits (Eq and PartialEq)

#[derive(PartialEq)]
struct MyStruct {
 value: i32
}
fn main() {
 let x = MyStruct{value: 10};
 let y = MyStruct{value: 10};
 if x == y {
 println!("x an y are equals !");
 }
}

Rust Output

x an y are equals !

PartialEq and Eq traits can be automatically implemented via #[derive(…)] attribute.
Keep in mind that PartialEq is a super trait of Eq and as such if you derive from Eq
you must derive from PartialEq as well. All of the members from that structure
MUST implement PartialEq and/Oor Eq.

Special Traits (Eq and PartialEq)

struct MyNonComparableStruct {
 field:i32
}
#[derive(Eq,PartialEq)]
struct MyStruct {
 value: i32,
 extra: MyNonComparableStruct
}
fn main() {
 let x = MyStruct{value: 10, extra: MyNonComparableStruct { field: 10 }};
 let y = MyStruct{value: 10, extra: MyNonComparableStruct { field: 10 }};
 if x == y {
 println!("x an y are equals !");
 }
}

Rust
error[E0369]: binary operation `==` cannot be applied to type `MyNonComparableStruct`
 --> src\main.rs:7:5
 |
4 | #[derive(PartialEq)]
 | --------- in this derive macro expansion
...
7 | extra: MyNonComparableStruct
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
note: an implementation of `PartialEq<_>` might be missing for `MyNonComparableStruct`

Error

Ord and PartialOrd traits describe a way to compare two objects. PartialOrd is a
super trait of Ord, and PartialEq is a super trait of PartialOrd

Special Traits (Ord and PartialOrd)

pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs>
{
 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;

 fn lt(&self, other: &Rhs) -> bool {
 matches!(self.partial_cmp(other), Some(Less))
 }
 fn le(&self, other: &Rhs) -> bool {
 !matches!(self.partial_cmp(other), None | Some(Greater))
 }
 fn gt(&self, other: &Rhs) -> bool {
 matches!(self.partial_cmp(other), Some(Greater))
 }
 fn ge(&self, other: &Rhs) -> bool {
 matches!(self.partial_cmp(other), Some(Greater | Equal))
 }
}

Rust (PartialOrd trait definition)

pub enum Ordering {
 Less = -1,
 Equal = 0,
 Greater = 1,
}

Rust (Ordering)

Notice that the only method that needs
to be implemented is partial_cmp !

By default, PartialOrd implements:
• lt ➔ lower then
• le ➔ lower or equal
• gt ➔ greater then
• ge ➔ greater or equal

As PartialEq is a super trait of PartialOrd, “eq” and “ne” methods are inherited from
PartialEq. Ord trait also implements method like min, max and clamp.

Special Traits (Ord and PartialOrd)

pub trait Ord: Eq + PartialOrd<Self> {
 fn cmp(&self, other: &Self) -> Ordering;
 fn max(self, other: Self) -> Self where Self: Sized,
 {
 max_by(self, other, Ord::cmp)
 }
 fn min(self, other: Self) -> Self where Self: Sized,
 {
 min_by(self, other, Ord::cmp)
 }
 fn clamp(self, min: Self, max: Self) -> Self where Self: Sized,
 {
 assert!(min <= max);
 if self < min { min }
 else if self > max { max }
 else { self }
 }
}

Rust (Ord trait definition)

Let’s see an example to understand how max, min and clamp methods work.

.clamp(…) method keeps a value within an interval. If it is lower than its lower
bound, the value returned will the lower bound of the interval. If it is greater than
the upper bound, the value return will be the upper bound of the interval.
Otherwise, the value will remained unchanged.

Special Traits (Ord and PartialOrd)

fn main() {
 println!("5.max(10) = {}",5.max(10));
 println!("5.max(2) = {}",5.max(2));
 println!("5.min(10) = {}",5.min(10));
 println!("5.min(2) = {}",5.min(2));
 println!("5.clamp(2,8) = {}",5.clamp(2,8));
 println!("5.clamp(7,9) = {}",5.clamp(7,9));
 println!("5.clamp(1,4) = {}",5.clamp(1,4));
}

Rust Output

5.max(10) = 10
5.max(2) = 5
5.min(10) = 5
5.min(2) = 2
5.clamp(2,8) = 5
5.clamp(7,9) = 7
5.clamp(1,4) = 4

Let’s see a simple example that illustrates how to manually implement PartialOrd.

Special Traits (Ord and PartialOrd)

use std::cmp::Ordering;
struct MyStruct { value: i32 }
impl PartialEq for MyStruct {
 fn eq(&self, other: &Self) -> bool { self.value == other.value }
}
impl PartialOrd for MyStruct {
 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
 if self.value>other.value { return Some(Ordering::Greater); }
 if self.value<other.value { return Some(Ordering::Less); }
 return Some(Ordering::Equal);
 }
}
fn main() {
 let x = MyStruct{value:10};
 let y = MyStruct{value:20};
 if y>x {
 println!("y is bigger than x");
 }
}

Rust

Output

y is bigger than x

When #[derive(…)] attribute is used to automatically implement the PartialOrd,
keep in mind that the automatic logic is to compare each variable in the order they
were added in the structure.

Special Traits (Ord and PartialOrd)

#[derive(PartialEq, PartialOrd)]
struct MyStruct {
 v1: i32,
 v2: i32,
 v3: i32
}
fn main() {
 let x = MyStruct { v1: 10, v2:20, v3:10 };
 let y = MyStruct { v1: 20, v2:10, v3:100 };
 let z = MyStruct { v1: 10, v2:20, v3:100 };
 let t = MyStruct { v1: 10, v2:10, v3:100 };
 println!("CMP(x,y) = {:?}",x.partial_cmp(&y));
 println!("CMP(x,z) = {:?}",x.partial_cmp(&z));
 println!("CMP(x,t) = {:?}",x.partial_cmp(&t));
 println!("CMP(x,x) = {:?}",x.partial_cmp(&x));
}

Rust

Output

CMP(x,y) = Some(Less)
CMP(x,z) = Some(Less)
CMP(x,t) = Some(Greater)
CMP(x,x) = Some(Equal)

Rust does not have a destructor (in a traditional, descriptive, manually defined C++
way). However, there is a trait called Drop that serves a similar purpose (it contains
a method that is being called when the scope of an object ends).

While in most cases, you don’t really need to implement this trait (as Rust will
automatically destroy object), there are some scenarios (e.g. when managing an
external resource, a socket, etc) when this trait might be required.

Drop can not be automatically implemented via #[derive(…)] attribute.

OBS: Keep in mind that Rust will not allow you to call .drop() explicitly.

Special Traits (Drop)

pub trait Drop {
 fn drop(&mut self);
}

Rust (Drop trait definition)

Let’s see an example:

Special Traits (Drop)

struct MyStruct {
 v: i32
}
impl Drop for MyStruct {
 fn drop(&mut self) {
 println!("Dropping (v={})",self.v);
 }
}
fn main() {
 let x = MyStruct{v:10};
 {
 let y = MyStruct{v:20};
 println!("Inner block scope will end right now !");
 }
 println!("Main block scope will end right now !");
}

Rust

Output

Inner block scope will end right now !
Dropping (v=20)
Main block scope will end right now !
Dropping (v=10)

y.drop()

x.drop()

As previously stated, explicit destructor calls (via .drop()) method are not allowed.

OBS: If allowed, these calls could lead to the wrong behavior of some objects (e.g. if
the destructor closes some handles) if the object is being used after the call to
.drop().

Special Traits (Drop)

struct MyStruct {
 v: i32
}
impl Drop for MyStruct {
 fn drop(&mut self) {
 println!("Dropping (v={})",self.v);
 }
}
fn main() {
 let x = MyStruct{v:10};
 x.drop();
}

Rust

error[E0040]: explicit use of destructor method
 --> src\main.rs:13:7
 |
13 | x.drop();
 | --^^^^--
 | | |
 | | explicit destructor calls not allowed
 | help: consider using `drop` function: `drop(x)`

Error

The order .drop() method is called is also different how C++ is doing. First it is called
for the main object, then for every field from that object in the order of the
declaration.

Special Traits (Drop)

struct ClassA { v: i32 }
struct ClassB { v: i32 }
struct MyStruct { a: ClassA, b: ClassB }
impl Drop for MyStruct {
 fn drop(&mut self) { println!("Dropping MyStruct"); }
}
impl Drop for ClassA {
 fn drop(&mut self) { println!("Dropping ClassA"); }
}
impl Drop for ClassB {
 fn drop(&mut self) { println!("Dropping ClassB"); }
}
fn main() {
 let x = MyStruct { a: ClassA { v: 0 }, b: ClassB { v: 0 } };
}

Rust

Output

Dropping MyStruct
Dropping ClassA
Dropping ClassB

Another observation is that Drop trait can not be implemented for object that have
Copy semantics. This is because object that implement Copy trait are normally
copied (via a memcpy method) and as such memory deallocation can be handled
automatically.

Special Traits (Drop)

#[derive(Copy,Clone)]
struct MyStruct {
 v: i32,
}
impl Drop for MyStruct {
 fn drop(&mut self) {
 println!("Dropping MyStruct");
 }
}

fn main() {
 let x = MyStruct { v: 0 };
}

Rust
error[E0184]: the trait `Copy` may not be implemented for this type; the type has a destructor
 --> src\main.rs:1:10
 |
1 | #[derive(Copy,Clone)]
 | ^^^^ Copy not allowed on types with destructors

Error

Another observation is that implementing Drop trait for a struct will disable the
partial move ability. Let’s analyze the following example:

Notice that let _s = t.name; moves the value of field name from structure Test.
But this is a partial move as the structure Test (through its member “x”) is still
available (we can actually print t.x).

Special Traits (Drop)

struct Test {
 x: i32,
 name: String
}
fn main() {
 let t = Test{x:1, name: String::from("ABC") };
 let _s = t.name;
 println!("x={}",t.x);
}

Rust
Output

x=1

Now let’s implement Drop trait for the same structure. We will notice that the
same example does not work anymore (meaning that you can not move individual
fields from a structure anymore – as the new Drop implementation implies the
entire structure is being moved).

Special Traits (Drop)

struct Test {
 x: i32,
 name: String
}
impl Drop for Test {
 fn drop(&mut self) { }
}
fn main() {
 let t = Test{x:1, name: String::from("ABC") };
 let _s = t.name;
 println!("x={}",t.x);
}

Rust error[E0509]: cannot move out of type `Test`, which implements the `Drop` trait
 --> src\main.rs:10:14
 |
10 | let _s = t.name;
 | ^^^^^^
 | |
 | cannot move out of here
 | move occurs because `t.name` has type `String`, which does
 | not implement the `Copy` trait

Error

Sized trait is a special trait that indicates that current type has a know size at
compile time.

This purpose is controlled by the compiler. You cand not implicitly implement it but
it is very useful for bounds (in generics) where this trait might be required. It is also
possible to relax the bounds that request a Sized object by adding ‘?’ in front of it
(?Sized). This removes the bound for an object to be Sized.

Special Traits (Sized)

pub trait Sized {
 // Empty.
}

Rust (Sized trait definition)

Explicit implementation of Sized trait is not allowed:

Special Traits (Sized)

struct MyStruct {
 v: i32,
}
impl Sized for MyStruct {

}

fn main() {
 let x = MyStruct { v: 0 };
}

Rust

error[E0322]: explicit impls for the `Sized` trait are not permitted
 --> src\main.rs:4:1
 |
4 | impl Sized for MyStruct {
 | ^^^^^^^^^^^^^^^^^^^^^^^ impl of 'Sized' not allowed

Error

Notice that even if Sized can be a super trait for another trait, that trait can not be
used to instantiate a dynamic object.

Special Traits (Sized)

trait A: Sized {
}
struct S {
}
impl A for S {
}
fn main() {
 let y: Box<dyn A> = Box::new(S{});
}

Rust
error[E0038]: the trait `A` cannot be made into an object
 --> src\main.rs:5:12
 |
5 | let y: Box<dyn A> = Box::new(S {});
 | ^^^^^^^^^^ `A` cannot be made into an object
 |
note: for a trait to be "object safe" it needs to allow building a vtable to allow the
call to be resolvable dynamically;
 --> src\main.rs:1:10
 |
1 | trait A: Sized {}
 | - ^^^^^ ...because it requires `Self: Sized`
 | |
 | this trait cannot be made into an object...

Error

Deref and DerefMut traits are used to explicit dereferencing operations (an equivalent
to operator*/operator-> from C++). This mechanism is called Deref coercion.

If a type A implements Deref (with Target type set to type B) then:

• &A can be coerced to &B

• A implicitly implements all methods from B

OBS: Deref and DerefMut simulate the concept of inheritance (in the sense that
methods and data member from another type (e.g. parent class) are accessible
via the child object.

Special Traits (Deref and DerefMut)

pub trait Deref {
 type Target: ?Sized;
 fn deref(&self) -> &Self::Target;
}

Rust (Deref trait definition)

pub trait DerefMut: Deref {
 fn deref_mut(&mut self) -> &mut Self::Target;
}

Rust (DerefMut trait definition)

Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
 type Target = B;
 fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
 fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
 let mut a = A::new();
 a.x = 10;
 increment_y(&mut a);
 println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output

From B: x=10, y=1, From A: a=0

Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
 type Target = B;
 fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
 fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
 let mut a = A::new();
 a.x = 10;
 increment_y(&mut a);
 println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output

From B: x=10, y=1, From A: a=0

“A” type does not have any .x or .y
fields. However, due to the Deref

implementation, you can automatically
access fields .x and .y from field b of

type A

Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
 type Target = B;
 fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
 fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
 let mut a = A::new();
 a.x = 10;
 increment_y(&mut a);
 println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output

From B: x=10, y=1, From A: a=0

Due to the DerefMut implementation,
you can automatically obtain a mutable

reference to field .x field b of type A

Let’s see an example:

Special Traits (Deref and DerefMut)

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 }
struct A { b: B, a: i32 }

impl A { fn new() -> A { A { b: B { x: 0, y: 0 }, a: 0 } } }
impl Deref for A {
 type Target = B;
 fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
 fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
 let mut a = A::new();
 a.x = 10;
 increment_y(&mut a);
 println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);
}

Rust
Output

From B: x=10, y=1, From A: a=0

Notice that increment_y expects a mutable reference
to an object of type B. However, it can be called with

a mutable reference of type A that can be coerced
due to DerefMut to a mutable reference of type B.

From and Into traits are used to perform value-to-value conversion.

It is recommended to avoid implemented Into but rather implement From. Implementing
From will trigger the creation of Into as well due to the blanket implementation in the
standard library.

Special Traits (From and Into)

pub trait From<T>: Sized {
 fn from(_: T) -> Self;
}

Rust (From trait definition)
pub trait Into<T>: Sized {
 fn into(self) -> T;
}

Rust (Into trait definition)

impl<T, U> Into<U> for T
where
 U: From<T>,
{
 fn into(self) -> U {
 U::from(self)
 }
}

Rust (blanket implementation for Into)

Let’s see an example:

Special Traits (From and Into)

struct Test {
 value: i32,
}
impl From<i32> for Test {
 fn from(v: i32) -> Test {
 Test { value: v }
 }
}

fn main() {
 let a = Test::from(10);
 println!("a.value = {}", a.value);
 let b: Test = 11.into();
 println!("b.value = {}", b.value);
}

Rust
Output

a.value = 10
b.value = 11

Let’s see an example:

Special Traits (From and Into)

struct Test { value: i32 }
impl From<Test> for i32 {
 fn from(t: Test) -> i32 {
 t.value
 }
}
impl From<&Test> for i32 {
 fn from(t: &Test) -> i32 {
 t.value
 }
}
fn main() {
 let a = Test { value: 10 };
 let x: i32 = (&a).into();
 let b = Test { value: 20 };
 let y: i32 = b.into();
 println!("{x},{y}");
}

Rust
Output

10
20

When implementing From (if possible) consider
implementing both for an object (with
ownership transfer) and for a reference

From and Into traits also have a try version (TryFrom and TryInto).

The difference from the From and Into forms is that these traits return a Result (allowing
someone to validate if something can be converted into another object or not).

Special Traits (From and Into)

pub trait TryFrom<T>: Sized {
 type Error;
 fn try_from(value: T) -> Result<Self, Self::Error>;
}

Rust (From trait definition)
pub trait TryInto<T>: Sized {
 type Error;

 fn try_into(self) -> Result<T, Self::Error>;
}

Rust (Into trait definition)

AsRef and AsMut traits are used to perform cheap reference-to-reference conversion.
Keep in mind that similar result can be obtained if using From or Into traits (but
implemented over/for a reference or mutable reference).

Rust also has two very similar traits (Borrow and BorrowMut) that resembles in terms of
definition with AsRef and AsMut.

Special Traits (AsRef and AsMut)

pub trait AsRef<T: ?Sized> {
 fn as_ref(&self) -> &T;
}

Rust (AsRef trait definition)
pub trait AsMut<T: ?Sized>
 fn as_mut(&mut self) -> &mut T;
}

Rust (AsMut trait definition)

pub trait Borrow<Borrowed: ?Sized> {
 fn borrow(&self) -> &Borrowed;
}

Rust (Borrow trait definition)
pub trait BorrowMut<Borrowed: ?Sized>: Borrow<Borrowed> {
 fn borrow_mut(&mut self) -> &mut Borrowed;
}

Rust (BorrowMut trait definition)

Let’s see an example:

Special Traits (AsRef and AsMut)

#[derive(Debug)]
struct Test { x: i32 }
impl AsRef<i32> for Test {
 fn as_ref(&self) -> &i32 {
 return &self.x;
 }
}
impl AsMut<i32> for Test {
 fn as_mut(&mut self) -> &mut i32 {
 return &mut self.x;
 }
}
fn main() {
 let mut a = Test{x:10};
 let a_mut: &mut i32 = a.as_mut();
 *a_mut = 20;
 let a_ref: &i32 = a.as_ref();
 println!("{:?},{}", a, a_ref);
}

Rust
Output

Test { x: 20 },20

Let’s see an example (this time using borrow/borrow_mut):

Special Traits (AsRef and AsMut)

use std::borrow::{Borrow,BorrowMut};

#[derive(Debug)]
struct Test {
 x: i32
}
impl Borrow<i32> for Test {
 fn borrow(&self) -> &i32 { return &self.x; }
}
impl BorrowMut<i32> for Test {
 fn borrow_mut(&mut self) -> &mut i32 { return &mut self.x; }
}
fn main() {
 let mut a = Test{x:10};
 let a_mut: &mut i32 = a.borrow_mut();
 *a_mut = 20;
 let a_ref: &i32 = a.borrow();
 println!("{:?},{}",a,a_ref);
}

Rust
Output

Test { x: 20 },20

The main difference between AsRef/AsMut and Borrow/BorrowMut is that Borrow and
BorrowMut have several blanket implementations that allows one to used them directly
in a generic (e.g. in a where clause) without the need to actually implement them for a
specific type.

Let’s consider the following problem → we want to write a generic function that
consumes an object but before it consumes it, it uses its reference to print it.

Let’s see how we can implement such a function using both Borrow/BorrowMut and
AsRef/AsMut.

Special Traits (AsRef and AsMut)

Solution (using borrow/borrow_mut):

Special Traits (AsRef and AsMut)

use core::fmt;
use std::{borrow::Borrow, fmt::Display};
struct Point { x: i32, y: i32}
impl Display for Point {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "Point object => (x={}, y={})", self.x, self.y)
 }
}
fn print_value<T>(object: T)
where
 T: Borrow<T> + Display,
{
 let x = object.borrow();
 println!("obj = {}", x);
}
fn main() {
 let p = Point { x: 10, y: 20 }; print_value(p);
 let x = 10; print_value(x);
}

Rust
Output

obj = Point object => (x=10, y=20)
obj = 10

Solution (using borrow/borrow_mut):

Special Traits (AsRef and AsMut)

use core::fmt;
use std::{borrow::Borrow, fmt::Display};
struct Point { x: i32, y: i32}
impl Display for Point {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "Point object => (x={}, y={})", self.x, self.y)
 }
}
fn print_value<T>(object: T)
where
 T: Borrow<T> + Display,
{
 let x = object.borrow();
 println!("obj = {}", x);
}
fn main() {
 let p = Point { x: 10, y: 20 }; print_value(p);
 let x = 10; print_value(x);
}

Rust
Output

obj = Point object => (x=10, y=20)
obj = 10

Notice that we require Borrow to be implemented for
T but we haven’t actually implemented it (this is
because blanket implementation does it for us).

Let’s try the same code with AsRef:

Special Traits (AsRef and AsMut)

use core::fmt;
use std::{borrow::Borrow, fmt::Display};
struct Point { x: i32, y: i32}
impl Display for Point {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "Point object => (x={}, y={})", self.x, self.y)
 }
}
fn print_value<T>(object: T)
where

T: AsRef<T> + Display
{

let x = object.as_ref();
 println!("obj = {}", x);
}
fn main() {
 let p = Point { x: 10, y: 20 }; print_value(p);
 let x = 10; print_value(x);
}

Rust

error[E0277]: the trait bound `Point: AsRef<Point>` is not satisfied
 --> src\main.rs:22:17
 |
22 | print_value(p);
 | ----------- ^ the trait `AsRef<Point>` is not implemented for `Point`
 | |
 | required by a bound introduced by this call
 |

Error

Notice that without the blanket implementation, we
can not use AsRef/AsMut in a generic !

Operators

When creating different types, it is often required to overwrite how some
mathematical operations work for them. In C++ this is accomplished by using the
keyword “operator” and being able to write specific methods that describe how
certain operation should behave.

In Rust, there are a set of traits that if implemented will result in a similar behavior.
Keep in mind that there has to be a resemblance on how an operator should
behave. Some operators like (&& and ||) use lazy evaluation and require bool
parameters and as such can not be overwritten.

Operators

Most of the arithmetic (binary) operators have two possible forms:

A) Expr Ꚛ Expr (binary operation)

Notice that the method receives a self. This means that
ownership will be transferred if Copy trait is not
implemented !

B) Variable Ꚛ= Expr (assignment)

Operators

pub trait OperationName<Rhs = Self> {
 type Output;

 fn operationname(self, rhs: Rhs) -> Self::Output;
}

pub trait OperationNameAssign<Rhs = Self> {

 fn operationname_assign(&mut self, rhs: Rhs);
}

With OperationName (sentence case) being
the name assigned for the operation Ꚛ and
operationname (lowercased) the name of the
method that needs to be implemented to
overwrite that operation.

The next table contains a list of all binary operations that follow the previous
described template:

Operators

Operator Trait Method

+ std::ops::Add add

- std::ops::Sub sub

* std::ops::Mul mul

/ std::ops::Div div

% std::ops::Rem rem

& std::ops::BitAnd bitand

| std::ops::BitOr bitor

^ std::ops::BitXor bitxor

<< std::ops::Shl shl

>> std::ops::Shr shr

Operator Trait Method

+= std::ops::AddAssign add_assign

-= std::ops::SubAssign sub_assign

*= std::ops::MulAssign mul_assign

/= std::ops::DivAssign div_assign

%= std::ops::RemAssign rem_assign

&= std::ops::BitAndAssign bitand_assign

|= std::ops::BitOrAssign bitor_assign

^= std::ops::BitXorAssign bitxor_assign

<<= std::ops::ShlAssign shl_assign

>>= std::ops::ShrAssign shr_assign

Let’s see a very simple example:

Operators

use std::ops::Add;

struct Test {
 value: i32,
}
impl Add<i32> for Test {
 type Output = i32;

 fn add(self, rhs: i32) -> Self::Output {
 self.value + rhs
 }
}
fn main() {
 let a = Test { value: 10 };
 let x = a + 10;
 println!("{x}");
}

Rust

Output

20

Notice that add method receives a self (meaning that the ownership of the object
is transferred and as such, “a” will no longer be available after the addition.

Operators

use std::ops::Add;

struct Test { value: i32 }
impl Add<i32> for Test {
 type Output = i32;
 fn add(self, rhs: i32) -> Self::Output {
 self.value + rhs
 }
}
fn main() {
 let a = Test { value: 10 };
 let x = a + 10;
 println!("{x}");
 println!("{}",a.value);
}

Rust

error[E0382]: borrow of moved value: `a`
 --> src\main.rs:17:19
 |
14 | let a = Test { value: 10 };
 | - move occurs because `a` has type `Test`, which
 | does not implement the `Copy` trait
15 | let x = a + 10;
 | ------ `a` moved due to usage in operator
16 | println!("{x}");
17 | println!("{}",a.value);
 | ^^^^^^^ value borrowed here after move

Error

You can, however, implement Add for a reference (in this case for &Test) and avoid
transferring ownership.

Operators

use std::ops::Add;
struct Test {
 value: i32,
}
impl Add<i32> for &Test {
 type Output = i32;
 fn add(self, rhs: i32) -> Self::Output {
 self.value + rhs
 }
}
fn main() {
 let a = Test { value: 10 };
 let x = (&a) + 10;
 println!("{x}");
 println!("{}", a.value);
}

Rust
Output

20
10

You can, however, implement Add for a reference (in this case for &Test) and avoid
transferring ownership.

Operators

use std::ops::Add;
struct Test {
 value: i32,
}
impl Add<i32> for &Test {
 type Output = i32;
 fn add(self, rhs: i32) -> Self::Output {
 self.value + rhs
 }
}
fn main() {
 let a = Test { value: 10 };
 let x = (&a) + 10;
 println!("{x}");
 println!("{}", a.value);
}

Rust
Output

20
10

Notice that the syntax is not the clear (you need to explicitly say
that you want to add a reference (&a) with a number.

Notice that if Add is not implemented for self, adding an object with a number (for
our case) will fail.

Operators

use std::ops::Add;
struct Test {
 value: i32,
}
impl Add<i32> for &Test {
 type Output = i32;
 fn add(self, rhs: i32) -> Self::Output {
 self.value + rhs
 }
}
fn main() {
 let a = Test { value: 10 };
 let x = a + 10;
 println!("{x}");
 println!("{}", a.value);
}

Rust

error[E0369]: cannot add `{integer}` to `Test`
 --> src\main.rs:13:14
 |
13 | let x = a+10;
 | -^-- {integer}
 | |
 | Test
 |
note: an implementation of `Add<_>` might be missing for `Test`

Error

You can however call the method .add(…) directly (this is different than the
operator + as it will try to match the parameters and since Add trait is implemented
for &Test, the code will compile !

Operators

use std::ops::Add;
struct Test {
 value: i32,
}
impl Add<i32> for &Test {
 type Output = i32;
 fn add(self, rhs: i32) -> Self::Output {
 self.value + rhs
 }
}
fn main() {
 let a = Test { value: 10 };
 let x = a.add(10);
 println!("{x}");
 println!("{}", a.value);
}

Rust
Output

20
10

You can implement multiple Add operations:

Operators

struct Test { value: i32 }
impl Add<i32> for Test {
 type Output = i32;
 fn add(self, rhs: i32) -> Self::Output { self.value + rhs }
}
impl Add<Test> for Test {
 type Output = Test;
 fn add(self, rhs: Test) -> Self::Output {
 Test { value: self.value + rhs.value }
 }
}
fn main() {
 let a = Test { value: 10 };
 let b = Test { value: 20 };
 let c = Test { value: 30 };
 let x = a + 10;
 let d = b + c;
 println!("{},{}", x, d.value);
}

Rust

Output

20,50

In this case we have two forms of Add:
1) Test + i32 => i32
2) Test + Test => Test

Let’s see an example that uses an assignment.

Operators

use std::ops::SubAssign;

#[derive(Debug)]
struct Test {
 value: i32
}
impl SubAssign<i32> for Test {
 fn sub_assign(&mut self, rhs: i32) {
 self.value -= rhs;
 }
}
fn main() {
 let mut a = Test { value: 10 };
 a -= 5;
 println!("{:?}",a);
}

Rust

Output

5

Rust also allows overwriting two unary operators (Neg and Not) that corresponds to
the operator – (minus) and operator ! (exclamation mark) in front of an expression.

OBS: Keep in mind that this operator receives self (implying a transfer of ownership).
This means that if you implement this for a type that does not have the Copy trait,
that object will not be available after calling Neg or Not operators.

Operators

pub trait Neg {
 type Output;

 fn neg(self) -> Self::Output;
}

Rust (Neg trait definition)

pub trait Not {
 type Output;

 fn not(self) -> Self::Output;
}

Rust (Not trait definition)

Let’s see an example that uses unary operators:

Operators

use std::ops::{Neg,Not};
#[derive(Debug)]
struct Test {
 value: i32
}
impl Neg for Test {
 type Output = i32;
 fn neg(self)->Self::Output { -self.value }
}
impl Not for Test {
 type Output = i32;
 fn not(self)->Self::Output { 100-self.value }
}
fn main() {
 let a = Test { value: 10 };
 let x = -a;
 let b = Test { value: 10 };
 let y = !b;
 println!("{x},{y}");
}

Rust

Output

-10,90

Index and IndexMut traits are design to allow index operator overwriting in Rust, with
Index being a super-trait for IndexMut.

Keep in mind the indexing operation in Rust return a reference or a mutable reference.
This is a limitation as you can not create and return an object (except for the case
where that object is part of the type).

OBS: As a rule, in cases where index is out of range, you should panic !

OBS2: container[idx] is pretty much the syntax sugar for container.index(idx)

Operators

pub Index<Idx: ?Sized>
{
 type Target: ?Sized;
 fn index(&self, index: Idx)->&Self::Output;
}

Rust (Index trait definition)

pub trait IndexMut<Idx: ?Sized>: Index<Idx>
{
 fn index_mut(&mut self, index: Idx)->&mut Self::Output;
}

Rust (IndexMut trait definition)

Let’s see an example that uses index operators:

Operators

use std::ops::{Index,IndexMut};

#[derive(Debug)]
struct IPv4 {
 values: [u8;4]
}
impl Index<usize> for IPv4 {
 type Output = u8;
 fn index(&self, index: usize) -> &Self::Output {
 if index<4 { return &(self.values[index]); }
 panic!("Out of bounds !");
 }
}
impl IndexMut<usize> for IPv4 {
 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
 if index<4 { return &mut (self.values[index]); }
 panic!("Out of bounds !");
 }
}

Rust

Output

IP = 0.0.0.0
IP = 192.168.0.1

fn main() {
 let mut ip = IPv4{values: [0u8;4]};
 println!("IP = {}.{}.{}.{}",ip[0],ip[1],ip[2],ip[3]);
 ip[0] = 192;
 ip[1] = 168;
 ip[2] = 0;
 ip[3] = 1;
 println!("IP = {}.{}.{}.{}",ip[0],ip[1],ip[2],ip[3]);

}

Main function

You can also add multiple indexes:

Operators

use std::ops::Index;
struct IPv4 {
 values: [u8;4]
}
impl Index<usize> for IPv4 {
 type Output = u8;
 fn index(&self, index: usize) -> &Self::Output {
 if index<4 { return &(self.values[index]); }
 panic!("Out of bounds !");
 }
}
impl Index<&str> for IPv4 {
 type Output = u8;
 fn index(&self, index: &str) -> &Self::Output {
 match index {
 "first" => { return &(self.values[0]); }
 "second" => { return &(self.values[1]); }
 "third" => { return &(self.values[2]); }
 "forth" => { return &(self.values[3]); }
 _ => { panic!("Invalid index"); }
 }
 }
}

Rust

Output

IP = 192.168.1.123
192
168

fn main() {
 let ip = IPv4{values: [192u8,168,1,123]};
 println!("IP = {}.{}.{}.{}",ip[0],ip[1],ip[2],ip[3]);
 println!("{}",ip["first"]);
 println!("{}",ip["second"]);

}

Main function

Finally, keep in mind that assignment (‘=‘) can not be overwritten.

This is because assignment is used for ownership transfer or Copy semantics
(pending on what trait is present).

As such, this operator has to be handled by the compiler itself (as it is part of the
move/copy semantics logic that Rust uses internally).

Operators

Q
A&

	Default Section
	Slide 1: Course – 6 Gavrilut Dragos
	Slide 2: Agenda for today

	OOP
	Slide 3: OOP
	Slide 4: OOP
	Slide 5: Methods
	Slide 6: Methods
	Slide 7: Methods
	Slide 8: Methods
	Slide 9: Methods
	Slide 10: Static Methods
	Slide 11: Static Methods
	Slide 12: Static Methods
	Slide 13: Static data members
	Slide 14: Static data members
	Slide 15: Static data members
	Slide 16: Calling methods
	Slide 17: Calling methods
	Slide 18: Calling methods
	Slide 19: Constructors
	Slide 20: Constructors
	Slide 21: Constructors
	Slide 22: Constructors
	Slide 23: Constructors
	Slide 24: Constructors
	Slide 25: Constructors
	Slide 26: Constructors
	Slide 27: Constructors
	Slide 28: Constructors
	Slide 29: Constructors
	Slide 30: Constructors
	Slide 31: Constructors
	Slide 32: Constructors
	Slide 33: Constructors
	Slide 34: Functional update syntax
	Slide 35: Functional update syntax
	Slide 36: Functional update syntax
	Slide 37: Functional update syntax
	Slide 38: Functional update syntax
	Slide 39: Functional update syntax
	Slide 40: Functional update syntax
	Slide 41: Functional update syntax
	Slide 42: Functional update syntax
	Slide 43: Method overloading
	Slide 44: Method overloading
	Slide 45: Method overloading
	Slide 46: Destructors
	Slide 47: Destructors
	Slide 48: Destructors
	Slide 49: Consuming an object
	Slide 50: Consuming an object
	Slide 51: Consuming an object
	Slide 52: Consuming an object
	Slide 53: Consuming an object
	Slide 54: Enums
	Slide 55: Enums
	Slide 56: Enums

	Traits
	Slide 57: Traits
	Slide 58: Traits
	Slide 59: Traits
	Slide 60: Traits
	Slide 61: Traits
	Slide 62: Traits
	Slide 63: Traits
	Slide 64: Traits
	Slide 65: Traits
	Slide 66: Traits
	Slide 67: Traits
	Slide 68: Traits
	Slide 69: Traits
	Slide 70: Traits
	Slide 71: Traits
	Slide 72: Traits
	Slide 73: Traits
	Slide 74: Traits
	Slide 75: Traits
	Slide 76: Traits
	Slide 77: Traits
	Slide 78: Traits
	Slide 79: Traits
	Slide 80: Traits
	Slide 81: Traits
	Slide 82: Traits
	Slide 83: Traits
	Slide 84: Traits
	Slide 85: Traits
	Slide 86: Traits
	Slide 87: Traits
	Slide 88: Traits
	Slide 89: Traits
	Slide 90: Traits
	Slide 91: Traits
	Slide 92: Traits
	Slide 93: Traits
	Slide 94: Traits
	Slide 95: Traits
	Slide 96: Traits
	Slide 97: Traits
	Slide 98: Traits
	Slide 99: Traits
	Slide 100: Traits
	Slide 101: Traits
	Slide 102: Traits
	Slide 103: Traits
	Slide 104: Traits
	Slide 105: Traits

	Super traits
	Slide 106: Super traits
	Slide 107: Super traits
	Slide 108: Super traits
	Slide 109: Super traits
	Slide 110: Super traits
	Slide 111: Super traits
	Slide 112: Super traits
	Slide 113: Super traits
	Slide 114: Super traits
	Slide 115: Super traits
	Slide 116: Super traits

	Special traits
	Slide 117: Special Traits
	Slide 118: Special Traits
	Slide 119: Special Traits
	Slide 120: Special Traits (Copy & Clone)
	Slide 121: Special Traits (Copy & Clone)
	Slide 122: Special Traits (Copy & Clone)
	Slide 123: Special Traits (Copy & Clone)
	Slide 124: Special Traits (Display & Debug)
	Slide 125: Special Traits (Display & Debug)
	Slide 126: Special Traits (Display & Debug)
	Slide 127: Special Traits (Display & Debug)
	Slide 128: Special Traits (Default)
	Slide 129: Special Traits (Default)
	Slide 130: Special Traits (Default)
	Slide 131: Special Traits (Default)
	Slide 132: Special Traits (Default)
	Slide 133: Special Traits (Default)
	Slide 134: Special Traits (Eq and PartialEq)
	Slide 135: Special Traits (Eq and PartialEq)
	Slide 136: Special Traits (Eq and PartialEq)
	Slide 137: Special Traits (Eq and PartialEq)
	Slide 138: Special Traits (Ord and PartialOrd)
	Slide 139: Special Traits (Ord and PartialOrd)
	Slide 140: Special Traits (Ord and PartialOrd)
	Slide 141: Special Traits (Ord and PartialOrd)
	Slide 142: Special Traits (Ord and PartialOrd)
	Slide 143: Special Traits (Drop)
	Slide 144: Special Traits (Drop)
	Slide 145: Special Traits (Drop)
	Slide 146: Special Traits (Drop)
	Slide 147: Special Traits (Drop)
	Slide 148: Special Traits (Drop)
	Slide 149: Special Traits (Drop)
	Slide 150: Special Traits (Sized)
	Slide 151: Special Traits (Sized)
	Slide 152: Special Traits (Sized)
	Slide 153: Special Traits (Deref and DerefMut)
	Slide 154: Special Traits (Deref and DerefMut)
	Slide 155: Special Traits (Deref and DerefMut)
	Slide 156: Special Traits (Deref and DerefMut)
	Slide 157: Special Traits (Deref and DerefMut)
	Slide 158: Special Traits (From and Into)
	Slide 159: Special Traits (From and Into)
	Slide 160: Special Traits (From and Into)
	Slide 161: Special Traits (From and Into)
	Slide 162: Special Traits (AsRef and AsMut)
	Slide 163: Special Traits (AsRef and AsMut)
	Slide 164: Special Traits (AsRef and AsMut)
	Slide 165: Special Traits (AsRef and AsMut)
	Slide 166: Special Traits (AsRef and AsMut)
	Slide 167: Special Traits (AsRef and AsMut)
	Slide 168: Special Traits (AsRef and AsMut)

	Operators
	Slide 169: Operators
	Slide 170: Operators
	Slide 171: Operators
	Slide 172: Operators
	Slide 173: Operators
	Slide 174: Operators
	Slide 175: Operators
	Slide 176: Operators
	Slide 177: Operators
	Slide 178: Operators
	Slide 179: Operators
	Slide 180: Operators
	Slide 181: Operators
	Slide 182: Operators
	Slide 183: Operators
	Slide 184: Operators
	Slide 185: Operators
	Slide 186: Operators

	Q&A
	Slide 187

