Rust programming
Course —6

Gavrilut Dragos

Y= w b =

OOP concepts in Rust
Traits

Super traits / inheritance
Special traits

Operators

Agenda for today

OOP

OOP

Rust structures have both a role of a structure and C++ class. However, there are
several differences between how a class in C++ and its equivalent in Rust are
designed.

Maybe one of the most important one, is that methods for every object are
implemented separately (and not as part of that object definition). This techniques
allows rust to define traits (characteristics) that can be define for every object
(including the one that are already part of the standard library and basic types).

Rust

To add a method to a class, use the impl keyword,
follow by the name of the class.

Methods

Methods are defined with the impl construct with the following format:
 [visibility] fn method_name (/params]) -> <return_type>{...}
 [visibility] fn method_name (self, [params]) -> <return_type>{...}
 [visibility] fn method_name (&self, [params]) -> <return_type>{...}
 [visibility] fn method_name (&mut self, [params]) -> <return type>{...}

Where:

- [params] =2 is a list of parameters (similar to the one that can be added to a
regular Rust function)

- [visibility] = a set of keywords that explain the visibility of that method
- <return type> -> the return type of that method

- self, &self, &mut self 2 used if the method is applying to the object. If not
prezent, the method is considered static.

Methods

Let’s see a very simple example:

Rust

struct MyClass {
value: 132
}
impl MyClass {
fn inc(&mut self) { self.value += 1; }
fn get(&self) -> i32 { return self.value; }

¥

fn main() {
let mut obj = MyClass{value:0};
obj.inc();
println! ("{}",obj.get());

Let’s see a very simple example:

Rust

fn inc(&mut self) { self.value += 1; }

“self” is somehow similar to “this” pointer from C++.
For this method a mutable reference to the object is
required in order to be able to change its data members.

Methods

Methods

Let’s see a very simple example:

Rust

fn get(&self) -> i32 { return self.value; }

In this case we only need an immutable reference
towards the object as we don’t need to modify its
content.

Methods

Let’s see a very simple example:

Rust C++

struct MyClass {
value: i32 class MyClass {

public:
) int value;
void inc() { value+=1; }
int get() const { return value; }

impl MyClass {
fn inc(&mut self) { self.value += 1; }
fn get(&self) -> i32 { return self.value; } s
} J
fn main() {
let mut obj =
obj.value = 5;
obj.inc();

println!("{}",obj.get());

void main() {
MyClass 5
.value = 5;
.inc();
printf("%d\n", .get());

MyClass{value:0};

OBJ: Notice that methods in Rust that receive a &self are translated as const
methods in C++ (see method get)

Static Methods

If the &self / &mut self or self are omitted when defining an object method, that
method is considered to be static. In this example, method print_name is static and
can only be access via the class/struct name specifier.

Rust C++

struct MyClass {
: MyCl
value: 132 class MyClass {

public:
J int value;
static void print _name() {
MyClass printf("MyClass");

impl MyClass {
fn print_name() {
println!("MyClass");

}
} :
} }s

£n main() { void main() {

MyClass::print_name(); MyClass::print_name();

} }

Static Methods

If you want to call a static method from a regular method you can use either “Self”
(with capital “S”) as a type, or the name of the type you are implementing a
method for.

Rust

struct MyClass {
value: i32, MyClass -> value: 10

}
impl MyClass {
fn print_name() {
print!("MyClass");
}
fn print_me(&self) {
Self::print_name();
println! (" -> value: {}",self.value);

}

}
fn main() {

let x = MyClass{value:10};
x.print_me();

Static Methods

If you want to call a static method from a regular method you can use either “Self”
(with capital “S”) as a type, or the name of the type you are implementing a
method for.

Rust

MyClass -> value: 10

Self::print_name();

Alternatively, you can use
EMyClass: :print_name()R
to obtain the same result.

Static data members

There are also no static data members in Rust. However, we can use global variable
to achieve a similar result as a static data member in C++. When we are going to
talk about visibility, we will show how this global variables can be hidden.

Rust C++

struct MyClass { 1
value: i32, class MyClass {

} public:

static mut my class x: i32 = 10; int YalyeE
static 1int x;

impl MyClass { fati id inc() { x++; }
fn inc() { unsafe { my_class x +=1; } } stat}c Yoi 122) Xt ’)
fn get()->i32 { Statlc Int ge { return x; }

unsafe { return my class x; } };
} int MyClass::x = 10;

} void main() {

£n main() { MyClass::inc();
printf("%d\n",MyClass::get());

MyClass::inc();
println! ("{}",MyClass::get());

Static data members

There are also no static data members in Rust. However, we can use global variable
to achieve a similar result as a static data member in C++. When we are going to
talk about visibility, we will show how this global variables can be hidden.

Rust C++

unsafe

unsafe

Notice the usage of a special keyword ->
unsafe. Global variables can be modified
by multiple threads and as such their
usage may lead to undefined behavior.

Static data members

As a general rule, it is not recommended to create a global (mutable) variable to be
used as a static field for an object. However, since some designed patters (such as
Singleton) might require such an approach this is allowed but must be done in such
a way that access to that variable is limited (so that we reduce the chance of an
undefined behavior).

If such a construct is used without the unsafe keyword, the code will not compile.

Rust

error[EQ133]: use of mutable static is unsafe and requires
unsafe function or block
--> src\main.rs:6:17

struct MyClass {
value: 132,

¥

)

|
)) | fn inc() { my_class x += 1; }
static mut my_class_x: 132 | use of mutable static
impl MyClass { l
fn inc() { my class x += 1; }

fn get()->i32 { return my_class x; }

note: mutable statics can be mutated by multiple threads:
aliasing violations or data races will cause undefined
behavior

Calling methods

Another interesting thing is that (semantically) Rust has “self” (in different forms)
as the first parameter for methods that are associated/implemented for a struct.

This implies that a method is a little bit different than what we know from C++. In
C++ a method can only be called by the actual object, in Rust a method can be
called in two different ways:

* object.method (Param,, Param,,.. Param_), where object is of type ObjectType

or
* ObjectType::method ([reference]object, Param,, Param,,.. Param)

Where [reference] refers to the fact that the first parameter should reflect its
definition (self , &self or &mut self)

Calling methods

Let’s see an example:
Rust

struct A { value: u32 }
impl A {
fn print_a(&self) {
println!("value = {}",self.value);

value =10
value = 20

}
}

fn main() A
let al = A{value:10};
let a2 = A{value:20};
al.print_a();
A::print_a(&a2);

Notice that we have called print_a method in two different ways !

Calling methods

Also, there is no difference between a regular function that is designed to take the
first parameter a reference or an object of type “A”, or a similar method

implemented for type “A”. In this example, we showcase this behavior. Method call
receives a pointer to a function that has a first parameter of type &mut A and the
second parameter of type u32. Both “g” and fA:f® qualify for this type of functions.

Rust

struct A {}
impl A {

fn f(&mut self, x: u32) { println!("{}", x); }
}
fn g(_: &mut A, x: u32) { println!("{}", x + 10); }
fn call(fun: fn(&mut A, u32)) {

let mut x = A {};

fun(&mut x, 5);

}
fn main() A

call(A::f);
call(g);

Constructors

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Rust C++

struct MyClass { class MyClass {
value: i32 public:
} int value;
impl MyClass { MyClass(int v): value(v) {}
fn create(val: i32)-> MyClass { }s
return MyClass { value: val }; void main() {

} MyClass m(10);
} printf("%d\n",m.value);
fn main() {

let m = MyClass::create(10);

print!("{}",m.value);

Constructors

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Rust C++

fn create(val: i32)-> MyClass {
MyClass { value: val };

}

This static method acts as a constructor. It creates a new
MyClass object and returns it (this transfers the
ownership towards the variable “m”).

Constructors

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Rust C++

rax
mov dword ptr [rsp],ecx
mov eaX,dword ptr [rsp]
pop rcx

ret

fn create(val: i32)-> MyClass { mov ecx, 10

return MyClass { value: val }; Icall MyClass::createI
} mov dword ptr [m],eax

Constructors

Rust does not have a constructor-like method similar to what C++ has. This is
because any struct has a clear initialization way where each field MUST BE
INITIALIZED. However, constructors can be simulated via static methods:

Rust C++

fn create(val: i32)-> MyClass { This means that in reality, what Rust does is to copy the
return MyClass { value: val }; value that we get from parameter “val” to “m” variable

} from the main function.

Constructors

Rust also have a special type call Self that refers to the current type (not object). It
is often useful when returning an object of that type.

Rust

struct MyClass {
value: 132,

}
impl MyClass {
fn create(val: i32) ->]Self |{
return MyClass { value: val };

¥

}
fn main() A

let m = MyClass::create(10);
print!("{}", m.value);

Rust

struct MyClass {
value: 132,

h)

J
impl MyClass { 3
fn create(val: i32) ->|MyClass| {
return MyClass { value: val };
}
}
fn main() {

let m = MyClass::create(10);
print!("{}", m.value);

Constructors

Let’s try a more complex case (where the class has multiple members).
Rust

struct MyClass {
value: 132,
data: [u8;30]
}
impl MyClass {
fn new(val: i32, d: u8)-> MyClass {
return MyClass { value: val, data: [d;30] };
}
}

fn main() {
let m = MyClass::new(1,2);
print!("{}",m.value);

Constructors

Let’s try a more complex case (where the class has multiple members).
Rust

rcx, [m]

mov edx,1
let m = MyClass::new(1,2); mov r8d, 2

MyClass: :new

Constructors

Let’s try a more complex case (where the class has multiple members).

Rust mov byte ptr [rsp+2Bh],r8b
mov eax,edx // eax =1
mov dl,byte ptr [rsp+2Bh] // edx = 2
mov dword ptr [rsp+2Ch],eax
mov gword ptr [rsp+30h],rcx
mov gword ptr [rsp+38h],rcx
mov dword ptr [rsp+60h],eax
mov byte ptr [rsp+67h],dl
lea rcx, [rsp+42h]

. mov r8d, 30
fn new(val: i32, d: u8)-> MyClass { call i
return MyClass { value: val, data: [d;30] }; BREEY edx,dword ptr [rsp+2Ch]

mov rcx,qword ptr [rsp+30h]
mov rax,qword ptr [rsp+38h]
mov dword ptr [rcx],edx // m.value = 1
mov rdx, qword ptr [rsp+42h]_\
mov gword ptr [rcx+4],rdx
mov rdx,qword ptr [rsp+4Ah]
mov gword ptr [rcx+0Ch],rdx
mov rdx,qword ptr [rsp+52h] >m
mov gword ptr [rcx+14h],rdx
mov edx,dword ptr [rsp+5Ah]
mov dword ptr [rcx+1Ch],edx
mov dx,word ptr [rsp+5Eh]
mov word ptr [rcx+20h],dx -/

Constructors

Let’s try a more complex case (where the class has multiple members).

Rust C++ (approximation)

struct MyClass { class MyClass
value: 132, {

data: [u8;30] public:
} int value;

i uint8_t data[30];
impl MyClass { 8_t da ; . |
. static void fn new(MyClass * output, int val, uint8 t d
fn new(val: i32, d: u8)-> MyClass { _new(My P _t d)

{
return MyClass { value: val, MyClass ;

data: [d;30] .value = val;
}; memset (.data,d,30);
memcpy (output, & ,Sizeof(MyClass));
} }

}s
. void main() {
fn main() { MyClass m;
let m = MyClass::new(1,2); MyClass::fn_new(&m, 1, 2);
print!("{}",m.value); printf("%d\n",m.value);

Constructors

In reality, there is no real difference on how Rust constructs an object (as opposite
on how C++ does it). Both of them receive the address where the actual object is
located and construct it there.

Usually, Rust uses names like:

* new(...)
* from(...)
* with_...(...)

to describe a constructor. However, any name can be used.

OBS: from is part of a trait and while it is used to construct an object it is usually
associated with that trait.

Constructors

Keep in mind that defining a function similar to a constructor does not imply than an
object can not be created in different ways. In the next example, we create an object
of type MyClass using two different methods (::icreate(...) and structure initialization).

Rust (via create method) Rust (via structure initialization).

struct MyClass { struct MyClass {
value: 132 value: 132,
} }
impl MyClass { impl MyClass {
fn create(val: i32)-> MyClass { fn create(val: i132) -> MyClass {
return MyClass { value: val }; return MyClass { value: val };

} }

¥ }

fn main() { fn main() {
let m = MyClass::create(10); let m = MyClass{value:10};
print!("{}",m.value); print!("{}", m.value);

Constructors

One advantage of construction an object like this, is that we can return an error when
trying to construct an object, while using the constructor concept in C++ makes this
task more complicated.

Let’s assume that we have an object (of type Student). For each student we have a
name and a grade = but the grade should be between 1 and 10.

Using a constructor (like in C++) you can not return an error (so in theory every object
is valid). In Rust, we can return an Option<> or a Result<> and only if the result is valid
(Some for Option or Ok for Result) we obtain an instance of a specific type.

Constructors

Let’s see an example:
Rust

derive() 0

struct Student { utput

grade: 132, s1=None

name: Strin n n
} 5 s2=Some(Student { grade: 10, name: "Dragos" })
impl Student {

fn new(stud_name: &str, stud _grade: i32) -> Option<Student> {

if (stud_name.len()>0) && (stud_grade>=1) && (stud_grade<=10) {
return Some(Student{grade: stud grade, name: String::from(stud_name)});

}
return None;
}
}
fn main() {
let s1 = Student::new("Andrei",-5);
let s2 = Student::new("Dragos",10);
println!("s1={:?}",s1);
println!("s2={:?}",s2);

Constructors

Keep in mind that static functions are possible in C++ as well. This means that the
same technique can be used there (create an object via a static function). The only
difference is if we need to allocate a class in the heap or if we need to create an array.
Since C++ builds a class directly in the allocated memory, there is a need of a
constructor method that can be called automatically when an object is created.

Rust works by creating a temporary object first and then assigned it to the actual
object (transfer the ownership). Because of this, any kind of static function will work
as we will need to provide that temporary object first, and then the assignment is
performed by Rust.

Constructors

Obviously, there is no implicit default constructor in Rust. However, it is a common
practice to name it new, while other constructors that imply creating from a specific
type prefer the prefix from (as a derivation from the trait From).

Rust

derive()
struct MyClass {
value: i32, m1=MyClass { value: 0 }
} m2=MyClass { value: 10 }
impl MyClass {
fn new() -> MyClass { MyClass{value:0} }
fn from i32(val: 1i32) -> MyClass { MyClass{value:val} }

¥
fn main() A

let ml = MyClass::new();

let m2 = MyClass::from_i32(10);
println! ("ml={:?}",ml);
println! ("m2={:?}",m2);

Functional update syntax

The usage of .. operator is also called functional update syntax. It implies that you
can use this to call another initialization method (that will be called first) followed
by you own changes. Let’s see some example:

Rust

derive()
struct Test {
X: 132,
y: 132,
name: &'static str,

}

fn main() {
let obj = Test {
X: 1,
..Test { x: 5, y: 3, name:

¥
println!("obj={:?}", obj);

In this case, first the
..Test { x: 5, y: 3, name: "abc" }
is called that instantiate obj with {x=5,y=3,name="abc”};

"abc" } Then, x is being overwritten with value 1.

Functional update syntax

The usage of .. operator is also called functional update syntax. It implies that you
can use this to call another initialization method (that will be called first) followed
by you own changes. Let’s see some example:

Rust
derive()
struct Test {
X: 132,
y: 132,
name: &'static str,

}

impl Test { In this case, firstthe .. =< ::new() is called that

f - : 0, y: 0, 2
} n new() -> Test { Test { x: @, y: 0, name }o} instantiate obj with {x=0,y=0,name=""}; Then, x is being

an»

fn main() { overwritten with value 1, and name with value “xyz”
let obj = Test {
x: 1,
name: "xyz",
..Test::new()

}s
println!("obj={:?}", obj);

Functional update syntax

The usage of .. operator is also called functional update syntax. It implies that you
can use this to call another initialization method (that will be called first) followed
by you own changes. Let’s see some example:

Rust

derive()
struct Test {
X: 132,
y: 132,
name: &'static str,
}
impl Test {
fn new(val: i32) -> Test { Test { x: val, y: val, name: ""
}
fn main() {
let obj = Test {
name: "xyz",
..Test: :new(5) instantiate obj with {x=5,y=5,name="“"}; Then, name is
¥ overwritten with value “xyz”
println!("obj={:?}", obj);

In this case, firstthe . . Test: :new(5)is called that

awn

Functional update syntax

The ./ operator has to be the last from the declaration.

fuol

derive
() error: cannot use a comma after the base struct

struct Test { --> src\main.rs:13:9
|

X: 132,
y: 132, 13 |
name: &'static str, I

..Test::new(5),
ANNNNNNNNNNNAN - help: remove this comma

note: the base struct must always be the last field

}
impl Test {
fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }

}
fn main() {
let obj = Test {
name: "xyz",
..Test::new(5),
x: 1

}s
println!("obj={:?}", obj);

Functional update syntax

When using functional update syntax, you can also use another object (of the same
type) as your base:

Rust
derive()
struct Test {
X: 132,
y: 132,
name: &'static str,
}
impl Test {
fn new(val: i32) -> Test { Test { x: val, y: val, name: "" } }
¥
fn main() {
let base = Test::new(5);
let obj = Test {

obj=Test { x: 5, y: 5, name: "xyz" },
name: "xyz") base=Test{ x: 5, y: 5, name: "" }
. .base

}s
println!("obj={:?}, base={:?}", obj,base);

Functional update syntax

However, there are a couple of pitfalls that we need to take into consideration:

Rust
Output

deri
Stpiziviést { : obj=Test { x: 123, y: 5, name: "abc" },

x: i32, base=Test { x: 123, y: 5, name: "123" }

y: 132,
: String, 3 H
} name ring Notice tha this

impl Test { snipped works as

fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } } expected !
}
fn main() {
let mut base = Test::new(5);
base.x = 123;
let obj = Test {
name: String::from("abc"),
. .base
¥
println!("obj={:?}, base={:?}", obj,base);

Functional update syntax

However, there are a couple of pitfalls that we need to take into consideration:

Rust

Error

derive()
struct Test {
X: 132,
y: 132,
name: String,
}
impl Test {
fn new(val: i32) -> Test { Test { :
}
fn main() {
let mut base = Test::new(5);

base.x = 123;

error[E@382]: borrow of partially moved value: "base’

--> src\main.rs:17:41

I
let obj = Test {

x: 10,
. .base

};

implement the “Copy™ trait

I

I

I

| - value partially moved here
println!("obj={:?}, base={:?}", obj,base);

AAAN yalue borrowed here after partial move

note: partial move occurs because “base.name” has type “String , which does not

let_obi = Test {
Xx: 10,
. .base

s

println!("obj={:?}, base={:?}", obj,base);

Functional update syntax

Let’s analyze a little bit better what the next piece of code implies:

struct Test {
X: 132,
y: 132,
name: String,

let obj = Test { x: 10,
. .base

}s

}

Steps:

1.
2.

Initialize obj with all fields that are provided (in our case 2> “x”)

Copy/Move all elements from base that are not needed by the current

initialization (in our case, since we already initialized “X”, we will assign “y” and
“name”). For “y” everything is ok, but “name” will be moved as it does not

contain the Copy trait.

As such, trying to print base after this step is invalid (as it has a partially moved
member — name).

Functional update syntax

Now the code works, but notice that we don’t print base.name that was moved !!!

Rust
Output

derive()

struct Test { obj=Test { x: 10, y: 5, name: "123" }, base.x=123, base.y=5
X: 132,
y: 132,
name: String,

}
impl Test {
fn new(val: i32) -> Test { Test { x: val, y: val, name: String::from("123") } }
}
fn main() {
let mut base = Test::new(5);
base.x = 123;
let obj = Test {
X: 10,
. .base
}s
println!("obj={:?}, base.x={}, base.y={}", obj,base.x, base.y);

Method overloading

Rust does not support (in the sense that there can not be two
methods with the same name as part of the same implementation of one class). We
emphasize the word: “same implementation of one class” as methods with the same
name are allowed with traits (we will discuss about this later) or with
generics/templates.

One major advantage here is ¢larity (if you have multiple functions with the same
name, its is not always clear how parameters must be converted to match one of the
functions). If you only have one function with a specific name, this issue will NOT be
encountered anymore.

Method overloading

Let’s see an example:

Rust

struct MyClass {
value: 132,

}
impl MyClass {
fn add(&mut self, vl: i32) { Error

self.value+= vi1; error[E0201]: duplicate definitions with name “add:
} --> src\main.rs:8:5

fn add(&mut self, v1: i32, v2: i32) { |
self.value+= vl1+v2;

|
|

} |

} |
|

|

|

fn add(&mut self, vi1: i32) {
self.value+= v1;

}

- previous definition of “add™ here
fn add(&mut self, vi: i32, v2: i32) {
self.value+= v1+v2;

fn main() A
let m = MyClass{value:0};
m.add(10);
m.add(10,20);
println! ("{}",m.value);

}

N duplicate definition

/
|
|
|l
/
|
|
|l

Method overloading

The solution in this case is to change the name of those two methods:

Rust

struct MyClass {
value: 132,

}
impl MyClass {
fn add one(&mut self, vi1: i32) {
self.value+= vi;

1
fn add two(&mut self, v1: i32, v2: i32) {
self.value+= v1+v2;
}
}
fn main() {
let mut m = MyClass{value:0};
m.add _one(10);

m.add_two(10,20);
println! ("{}",m.value);

Destructors

Rust does not have a destructor method (in the sense of a specific method with the
same name as the class) as C++ does. However, there is a special trait called Drop that
can be used to define a function with a similar scope.

Furthermore, the lifetime of one object or its transformation can be controlled via
methods that receive self as an argument (notice that it is self and not &self or &mut

self).

This technique transfers the ownership and as a result one can convert that object into
another one, or it can drop it.

We will discuss more about destructors when we talk about traits.

Destructors

Let’s see an example:
Rust

struct MyClass {
value: 132,
} Destruct object !
impl MyClass { End program
fn destruct _me(self) {
println! ("Destruct object !'");

}

}
fn main() {

let m = MyClass{value:0}; After this point, “m” lifetime is over and any data that it

m.destruct _me();

contains will be dropped.
println!("End program");

Let’s see an example:
Rust

struct MyClass {
value: 132,

}
impl MyClass {
fn destruct _me(self) {
println!("Destruct object !");

}

fn main() {
let m = MyClass{value:0};
m.destruct me();
println!("m.value = {}",m.value);

Destructors

error[E@382]: borrow of moved value: "m’
--> src\main.rs:12:29

10 | let m = MyClass{value:0};

| - move occurs because "m’ has type "MyClass , which does not
| implement the “Copy™ trait

11 | m.destruct_me();
| “m° moved due to this method call
12 | println!("m.value = {}",m.value);

|

|

AAAANAN yalue borrowed here after move

note: this function takes ownership of the receiver “self’, which moves "m’
--> src\main.rs:5:20

5 | fn destruct_me(self) {

| AAANA

Consuming an object

Let’s see an example where we convert one object into another (by converting we
refer to a transfer of ownership between object fields). This is often known as
consuming one object and producing another one !

Rust

derive()
struct Student { math: 132, english: 132, name: String }

derive() Student = Student { math: 10, english: 8, name: "John" }

struct StudentAverage { grade: i32, name: String } Average = StudentAverage { grade: 9, name: "John" }
impl Student { !

fn convert_to student average(self)->StudentAverage {
StudentAverage{grade: (self.math+self.english)/2, name: self.name}

}

}
fn main() {

let s = Student{math:10, english:8, name: String::from("John")};
println!("Student = {:?}",s);

let sa = s.convert_to_student_average();

println!("Average = {:?}",sa);

Consuming an object

Let’s see an example where we convert one object into another (by converting we
refer to a transfer of ownership between object fields). This is often known as
consuming one object and producing another one !

Rust

error[E@382]: borrow of moved value: "s°
--> src\main.rs:22:31

derive() |

. s . . s 18 | let s = Student{math:10, english:8, name: String::from("John")};
struct Student { math: 132, engllSh' 132, | - move occurs because “s° has type “Student’, which does not

derive() implement the “Copy’ trait
struct StudentAverage { grade: 132, name: | 19 | println!("Student = {:?}",s);
impl Student { 20 | let sa = s.convert_to_student_average();
| s’ moved due to this method call

fn convert to student average(self)->S 21 | println! ("Average

} 22 | println! ("Student
fn main() { | ~ value borrowed here after move

let s = Student{math:10, english:8, name: String::from("John")};
println!("Student = {:?}",s);

let sa = s.convert_to_student_average();

println! ("Average {:?}",sa);

println! ("Student {:?}",s);

Consuming an object

There are several conventions that are usually used in Rust when writing a method
that consumes/converts an object:

1. use into_<type> if you want to consume current type and obtained a new object
by transferring ownership. This type of method receives a - as a first argument.

struct ClassA { }
struct ClassB { }

impl ClassA { fn into_classB(self,) -> ClassB {...} }

2. use to_<type> if you want to create a new object and keep the original object
(usually this means making a copy/clone of some of the data members of the
original object). This type of method receives a as a first argument.

struct ClassA { }
struct ClassB { }

impl ClassA { fn to_classB(&self,) -> ClassB {...} }

Consuming an object

There are several conventions that are usually used in Rust when writing a method
that consumes/converts an object:

3. use as_<type> if you want to convert an immutable reference of type “A” to an
immutable reference of type “B”. This type of method receives a ﬁ as a first
argument. Usually this means that type “A” has a data member of type “B”.

struct ClassA { }

struct ClassB { }
impl ClassA { fn as_classB(&self,) -> &ClassB {...} }

Consuming an object

Let’s see how these conversion will look like for our Student structure

Rust

struct Student {
math: 132,
english: 132,
name: String,
¥
struct StudentAverage {
grade: 132,
name: String,
by
impl Student {
fn into_student_average(self) -> StudentAverage {
StudentAverage {
grade: (self.math + self.english) / 2,
name: self.name,

Ownership of “Student::nameftis transferred

}

}
fn to_student_average(&self) -> StudentAverage {

StudentAverage {
grade: (self.math + self.english) / 2,
name: self.name.clone(),

A copy/clone of “Student::nameis made

Enums

Implementing methods (static and non-static) is not limited to structures, it works
similar for enums. To access the enum value, use the self keyword

Rust

enum Value {
Int(i32),
Float(f32)

}
impl Value {

Output

X is int: true
y is int: false

fn is_int(&self)->bool {

match self
Value::

_=> A
}
}
fn main() {
let x = Value::
let y = Value::

println!("x is
println!("y is

{
Int(_) => { return true; }

return false;}

Int(10);

Float(1.5);

int: {}",x.is_int());
int: {}",y.is_int());

Enums

The same logic could have been obtained via an “if let” statement, “while let”
statement or “matches!” macro, instead of using a match.

Rust

fn is_int(&self)->bool {
return if let Value::Int(_)=self { true } else { false }

fn is_int(&self)->bool {)

match self {
Value::Int(_) => { return true; }
_ => { return false;}

fn is_int(&self)->bool {
if let Value::Int(_) = self {
return true;

}

return false;

Enums

Static methods can also be implemented for an enum (they are in particular useful
when creating enum objects).
Rust

derive()
enum Value { Output
Int(i32),
Float(f32) Int(10),Float(1.5)

}
impl Value {

fn from_i32(value: i32)->Value {
return Value::Int(value);

}
fn from f32(value: f32)->Value {

return Value::Float(value);
}
}
fn main() {
let x = Value::from_i32(10);

let y = Value::from_f32(1.5);
println! ("{x:?},{y:?}");

Traits

Traits

In Rust a trait is a set of characteristics that an object has. Formally, a trait is very
similar to an interface. However, from a semantic point of view, it is closer to a C++
abstract class.

From the semantic point of view, a trait is a list of methods that can be
implemented for an existing type (IMPORTANT: not necessarily a newly created
type, but also types that are already defined).

Rust

To implement a trait for an existing
structure/enum, use the impl keyword.

Traits

Let’s see a simple example:
Rust

struct MyClass {
x: 132

}

trait IncrementAndDecrement {
fn inc(&mut self);
fn dec(&mut self);

}

impl IncrementAndDecrement for MyClass {
fn inc(&mut self) { self.x+=1; }
fn dec(&mut self) { self.x-=1; }

}

fn main() A
let mut m = MyClass{x:3};
m.inc();m.inc();m.inc();
m.dec();
println! ("X = {}",m.x);

Traits

Let’s see a simple example:
Rust C++

struct MyClass { clas;uiqiz?mentAndDecPement {
} S virtual void inc()

: 1 .
trait IncrementAndDecrement { virtual void dec()

i ¥
fn inc(&mut self);] .
fn dec(&mut self); class MyClass: public IncrementAndDecrement {

} public:
int x;

impl IncrementAndDecrement for MyClass { virtual void inc() override { x++; };

fn inc(&mut self) { self.x+=1; }
fn dec(&mut self) { self.x-=1; } }s
} > .
. void main
fn main() { MyClaii {.
let mut m = MyClass{x:3}; X = 3 ’
m.inc();m.inc();m.inc(); A . _
n.dec() .inc();m.inc();m.inc();

: .dec();
| n - n .
println! ("X {}1",m.x); printf("X = %d",m.x);

virtual void dec() override { x--; };

Traits

Let’s see a simple example:
Rust

dword ptr [m],3
rcx, [m]
first::impl$0::inc

rex, [m] Notice that the linkage is done statically

_ .21 - first::impl$0::inc . .
let mut m = MyClass{x:3}; ol (even if inc and dec are equivalent to a
m.inc();m.inc();m.inc(); first::impl$e: :inc virtual method).
m.dec(); rcx, [m]

first::impl$0: :dec

Traits

When implementing a trait, we can use the type Self to refer to the type where we
implement the trait. This allows to define a trait and be more generic (not needing to
specify the type of some parameters).

Rust

struct MyClass {
X: 132
¥
trait IsBigger {
fn is_bigger(&self, object: &Self) -> bool;

isml>m2=>true

}
impl IsBigger for MyClass {

fn is bigger(&self, object: &Self) -> bool {

return if self.x>object.x { true } else { false };

¥
¥
fn main() {
let ml = MyClass{x:3};
let m2 = MyClass{x:2};
println!("is m1 > m2 => {}",ml.is bigger(&m2));

Traits

However, a virtual method (in C++) is interesting from the polymorphic point of view.

This behavior can be modeled Rust using the dyn keyword:
Rust

struct ClassA { }
struct ClassB { } ClassA
trait Name { fn get name(&self) -> &str; } ClassB
impl Name for ClassA {

fn get name(&self) -> &str { "ClassA" }

Output

}
impl Name for ClassB {

fn get name(&self) -> &str { "ClassB" }
}
fn print_name(obj: &dyn Name) {
println! ("{}",obj.get name());
}
fn main() {
let obj_a = ClassA{};
let obj b = ClassB{};
print_name(&obj_a);
print_name(&obj_b);

Traits

However, a virtual method (in C++) is interesting from the polymorphic point of view.

This behavior can be modeled Rust using the dyn keyword:
Rust

struct ClassA { }
struct ClassB { } ClassA
trait Name { fn get_name(&self) -> &str; } ClassB
impl Name for ClassA {

fn get name(&self) -> &str { "ClassA" }

Output

}
impl Name for ClassB {

fn get name(&self) -> &str "ClassB"
} BE- () t) Notice the usage of &dyn Name as the type of obj. This
fn print_name(obj: &dyn Name)] { translates that obj is a reference to a type that

println!("{}",obJ.get_name()); implements the trait Name.
}

fn main() {
let obj_a = ClassA{};
let obj b = ClassB{};
print name(&obj a);
print name(&obj b);

Traits

However, a virtual method (in C++) is interesting from the polymorphic point of view.

This behavior can be modeled Rust using the dyn keyword:
Rust

ClassA
ClassB

This actually translate in the following way: when

sending a dynamic reference towards a trait,

Rust send two parameters:

1. apointer to the object (self) via register RCX

2. apointer to a vfptr (similar like in C++) via
register RDX

rcx,[obj_a]
rdx, [impl$<first::ClassA, first::Name>::vtable$ (©7FF60708D498h)]
first::print_name

rcx,[obj b]
rdx, [impl$<first::ClassB, first::Name>::vtable$ (©7FF60708D4B8h)]
first::print_name

print_name(&obj_a);
print_name(&obj_b);

Traits

However, a virtual method (in C++) is interesting from the polymorphic point of view.

This behavior can be modeled Rust using the dyn keyword:
Rust

Similar to C++, all virtual/dynamic methods are ClassA
kept in a list (that is referred by vfptr pointer). As ClassB
a difference from C++, there is no need for

redirection (as vfptr pointer is provided directly

via a register).

rsp,98h

fn print_name(obj: &dyn Name) { qword ptr [self],rcx
rintln! ("{}",obj.get name ; qword ptr [vfptr],rdx
} P ("{}",0b].get_ 0); rax,qword ptr [vfptr+18h]
rax // Name::get_name()

Traits

This means that the size of an object that implements some traits does not change in
Rust. “ClassA” in both Rust and C++ has one member (“x”) that has 4 bytes. However,
in C++ due to the virtual method get_name, an instance of ClassA also contains a
pointer to a vfptr (and as such a size of 8 (for 32 bytes) or 12/16 for 64 bytes).

Rust

struct ClassA { class Name { _
X: 132, public:
} virtual const char * get name() = 0;
trait Name { }s
fn get name(&self) -> &str; class ClassA: public Name {
} int x;
impl Name for ClassA { public:
fn get _name(&self) -> &str { virtual const char * get name() override {
"ClassA" return "ClassA";
} }
} ¥

fn main() { void main() {
println! ("{}", std::mem::size of::<ClassA>()) printf("%d",sizeof(ClassA));

} }

C++

Traits

Furthermore, the same logic applies for arrays (or for any kind of structure/enum that
uses a structure that implements a trait that define a virtual method.

Rust

struct ClassA {
X: 132,
}
trait Name {
fn get name(&self) -> &str;

}
impl Name for ClassA {

fn get name(&self) -> &str {
"ClassA™

}
}
fn main() {
println! ("{}", std::mem::size of::<[ClassA;10]>());

}

Traits

So ... let’s analyze and see how the classic polymorphism example works in Rust.
C++ (classic polymorphism example)

struct Figure {
virtual const char * get name() = 0;

¥
struct Circle: public Figure { Output
virtual const char * get name() override { return "Circle";}
}; Circle
struct Rectangle: public Figure { Rectangke
virtual const char * get name() override { return "Rectangle";}

s Triangle

struct Triangle: public Figure {
virtual const char * get name() override { return "Triangle";}
}s
void main() {
Figure* [3];
[0] new Circle();
[1] new Rectangle();
[2] = new Triangle();
for (auto i = @;i<2;i++) {
printf("%s\n", [i]->get_name());
}

Traits

Let’s recreate the same example for polymorphism in Rust.

We will do this in 3 steps:

1. Write the Figure trait and implement it for Circle, Rectangle and Triangle
2. Write initialization methods for Circle, Rectangle and Triangle

3. Discuss how main function should be written in order to illustrate the
polymorphism.

Traits

Step 1: Write the Figure trait and implement it for Circle, Rectangle and Triangle

Rust

trait Figure {
fn get name(&self) -> &str;

}

struct Circle { x: i32, y:i32, r: i32 }
struct Rectangle { x: i32, y:i32, w:i32, h:i32 }
struct Triangle { x: [132;3], y:[132;3] }

impl Figure for Circle {
fn get_name(&self) -> &str { "Circle" }

}
impl Figure for Rectangle {

fn get_name(&self) -> &str { "Rectangle" }
}
impl Figure for Triangle {

fn get_name(&self) -> &str { "Triangle" }
}

Traits

Step 2: Write initialization methods for Circle, Rectangle and Triangle

Rust

impl Circle {
fn new()->Circle {
Circle{x:0,y:0,r:1}
}
}
impl Rectangle {
fn new()->Rectangle {
Rectangle{x:0,y:0,w:100,h:20}
}

}
impl Triangle {
fn new()->Triangle {
Triangle{x:[0,1,2],y:[0,1,0]}

}

Traits

Step 3: Discuss how main function should be written in order to illustrate the

polymorphism.

error[E@308]: mismatched types
Rust --> src\main.rs:38:18
fn main() { 38
let figuri = |
Box::new(Circle::new()),

expected struct “Circle’,

|
| Box: :new(Rectangle: :new()),
|
| found struct “Rectangle’

Box: :new(Rectangle: :new()),
Box::new(Triangle::new()) --> src\main.rs:39:18

error[E0308]: mismatched types

15 |
for fig in Figur‘i.iter‘() { 39 | Box: :new(Triangle: :new())
println! ("{}",fig.get name()); I

expected struct “Circle’, found
struct “Triangle’

}

The fact is that we can not create an array with traits similar to how we do it in C++
(Rust assumes that the first item is the type of array and as such for this example, the
code will not compile).

Traits

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Rust

fn main() {
let figuri: [Box::<dyn Figure>;3] = [
Box::new(Circle::new()),
Box: :new(Rectangle: :new()),
Box: :new(Triangle::new())

Circle
Rectangle

1; Triangle

for fig in figuri.iter() {
println!("{}",fig.get_name());

}

Now the code works and output a similar result as the code from C++;

Traits

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Rust “figure” layout

[0] ptrto a Circle object

let figuri: [Box::<dyn Figure>;3] = [
Box: :new(Circle::new()), ptr to vtable of trait Figure for Circle object
Box: :new(Rectangle::new()),

Box: :new(Triangle::new()) [1] ptr to a Rectangle object

ptr to vtable of trait Figure for Rectangle object
[2] ptrto a Triangle object

ptr to vtable of trait Figure for Triangle object

Let’s see how “figure” is organized in memory. Notice that each element in the array
consists out of two pointers (one towards the data (a Circle struct, a Rectangle struct
or a Triangle struct) and the second one towards the vtable for trait Figure that was
implemented for Circle, Rectangle and Triangle.

Traits

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Rust

fn main() {
let figuri: [dyn Figure;3] = [

Circle: :neVJ(): error[EQ277]: the size for values of type “dyn Figure cannot be known at compilation time
Rectangle: :new(), --> src\main.rs:36:17

Triangle: :new()

|
1; | let figuri: [dyn Figure;3] = [
’ | doesn't have a size known at compile-time
I

for fig in figuri.iter() {

println!("{}",fig.get name()); = help: the trait “Sized™ is not implemented for “dyn Figure®
} = note: slice and array elements must have “Sized type

Keep in mind that we can not use a “dyn Figure type” outside of a box as we can not
know at compile time the size of an object that implements Figure trait.

Traits

Step 3: Discuss how main function should be written in order to illustrate the
polymorphism.

Rust

fn main() {
let mut figuri = Vec::<Box<dyn Figure>>::new();
figuri.push(Box::new(Circle::new()));

ircl
figuri.push(Box: :new(Rectangle::new())); Circle

Rectangle

figuri.push(Box::new(Triangle::new())); i
for fig in figuri.iter() { Triangle
println!("{}",fig.get _name());

}

The same can be done with a vector (instead of an array) with similar results.

Traits

The previous code can be adjusted so that we can returned a boxed trait from a
function. Let’s see how get_a_figure looks like in assembly:

Rust

fn get_a figure(id: i32) -> Box<dyn Figure> {
if id == @ { return Box::new(Circle::new()); }
if id == 1 { return Box::new(Rectangle::new()); } Circle
Box::new(Triangle::new()) Rectangle
} :
fn main() { Triangle
let mut figuri = Vec::<Box<dyn Figure>>::new();

for i in 0..3 {
figuri.push(get _a figure(i));

}
for fig in figuri.iter() {

println!("{}", fig.get name());
}

Traits

lea rcx, [temp_stack circle]
call first::Circle::new
The previous code can be adjusted so that we mov 20T [S oFF 6 Gl
mov edx
:] [4 . 5}
function. Let’s see how get_a_figure looks lik call alloc: :alloc: :exchange_malloc
mov gword ptr [ptr_to_circle],rax
Rust jmp RETURN_FIGURE_FROM_CIRCLE
fn get_a figure(id: i32) -> Box<dyn Figure> {
if id == @ { return Box::new(Circle::new()); } RETURN_FIGURE_FROM_CIRCLE: ; el
if id == 1 { return Box::new(Rectangle::new()); } mgz ::i’gzip g [pier e Edrele]
Box::new(Triangle::new()) mov rdx,qword ptr [temp_stack circle]
} mov gword ptr [rcx],rdx
fn main() { mov edx,dword ptr [temp_stack circle.r]
let mut figuri = Vec::<Box<dyn Figure>>::new(); mov dword ptr [ptr_to_circle.r],edx
for i in 0..3 { mov gword ptr [res.data_pointer],rax
. . . SNy lea rax, [impl<Circle, Figure>::vtable]
figuri.push(get_a_figure(1)); mov gword ptr [res.vtable],rax
} I jmp RETURN_FROM_FUNCTION
for fig in figuri.iter() {
println!("{}", fig.get name());
} RETURN_FROM_FUNCTION:
mov rax,qword ptr [res.data_pointer]
mov rdx,qword ptr [res.vtable]
add rsp,0Aoh
pop rbp

ret

Traits

The previous code can be adjusted so that we can returned a boxed trait from a
function. Let’s see how get_a_figure looks like in assembly:

Rust

return Box::new(Circle::new());

C++ (approximation)

struct Figure_result {
void* ptr_to_data;
void* ptr_to_vtable;
}s
Figure result get a figure(int idx) {
if (idx == 0) {
Circle = Circle::new();
Circle* = new Circle();
memcpy ()

sizeof(Circle));

Figure_ result ;
.ptr_to data =
.ptr_to _vtable =

return 5

A hardcoded address in process memory
where the vtable for Circle is located.

Traits

Keep in mind that returning a boxed (dynamic) type is different than returning an
implementation of a trait . The next code will not compile as Rust will assume that all
return branches must return the same thing (a circle) just like the first return branch
does.

Rust

fn get_a figure(id: i32) -> impl Figure {
if id == 0 {
return Circle::new();
}
if id == 1 { error[E@308]: mismatched types
return Rectangle::new(); --> src\main.rs:75:16

|
¥ . 70 | fn get_a_figure(id: i32) -> impl Figure {
return Triangle::new(); expected ~_° because of return type

expected struct “Circle’, found struct “Rectangle’

Traits

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.
Rust

fn get _a figure(id: 132) -> impl Figure {
if id == 0 { m
return Circle::new(); .
} () Circle

return Circle::new();

}
fn main() {

let a = get_a figure(Q);
println! ("{}",a.get_name());

Let’s see what happens when we create the “a” variable.

Traits

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.
Rust

. rcx, [a]
let a = get_a_figure(9); edx,edx // edx = @ (first parameter: id = 0)
first::get_a figure

Let’s see what happens when we create the “a” variable.

If we return the exact same type from all branches of the get_a_figure function, the

code compiles. sub
mov
Rust

cmp

fn get _a figure(id: 132) -> impl Figure { jne

if id == 0 { mov
return Circle::new(); call

} jmp
return Circle::new(); IDX IS NOT ZERO:

mov

call

RETURN_FROM_FUNCTION:
mov
add
ret

rsp, 38h
gword ptr [address_of_al],rcx

edx, 0

IDX_IS_NOT_ZERO

rcx,gword ptr [address_of_a]
Circle::new
RETURN_FROM_FUNCTION

rcx,gword ptr [address_of_a]
Circle: :new

rax,qword ptr [address_of_a]
rsp, 38h

Let’s see what happens when we create the “a” variable.

Traits

Traits

If we return the exact same type from all branches of the get_a_figure function, the

code compiles.
Rust

fn get _a figure(id: 132) -> impl Figure {
if id == 0 {
return Circle::new();

}

return Circle::new();

}
fn main() {
let a = get_a figure(Q);
println! ("{}",a.get_name());

This means that even if semantically “a” is of
type “impl Figure”, in reality “a” is a Circle
object (with the exception that we can only
access Figure related methods).

C++ (approximation)

void get a figure(void* result, int idx) {
if (idx == 09) {
Circle
memcpy (result,
return;

= Circle::new();
, sizeof(Circle));

}

Circle
memcpy (result,
return;

= Circle::new();
, sizeof(Circle));

}

void main() {
uint8_t [sizeof(Circle)];
get _a_figure(,0);
Figure* = reinterpret_cast<Figure*>(

Traits

If we return the exact same type from all branches of the get_a_figure function, the
code compiles.
Rust Rust

fn get a figure(id: i132) -> impl Figure { fn get _a figure(id: i132) -> Circle {
if id == 0 { if id == 0 {
return Circle::new(); return Circle::new();

} }

return Circle::new(); return Circle::new();

} }
fn main() { fn main() {

let a = get_a figure(0); let a = get _a figure(9);
println! ("{}",a.get name()); println! ("{}",a.get name());

As such = these two pieces of code are similar (in terms on how the compiler
generates code). The assembly code (for x64) is actually identical for both cases (even
if from the semantic point of view, “a” has a different type).

Traits

Methods from a trait can have a default implementation (much like a virtual method
from C++). This means that if that method is not overridden, the default implementation

will be used. To implement a trait without override its method, use:

inpl <trait name> for <type> { I
Keep in mind that this is possible only if all method from the trait have a default
implementation !

Rust

struct ClassA {}

struct ClassB {}

trait Name { fn get name(&self) -> &str { "Default name®“ } }
impl Name for ClassA {}

impl Name for ClassB { fn get name(&self) -> &str { "ClassB" } }

fn main() {
let a = ClassA{};
let b = ClassB{};
println!("a {}",a.get _name());
println!("b = {}",b.get name());

Traits

A trait can have both default (implemented methods) and unimplemented method and
they can use one each other.

Rust

struct ClassA {}
trait Message {
fn get name(&self) -> &str {
"Default name"

} , Notice that print_messagelis implemented in
fn print_message(&self);

} ClassA and uses get_name that has a default
impl Message for ClassA { implementation in trait Message.

fn print_message(&self) {
println!("Hello from '{}'",self.get name());

}
}
fn main() {

let a = ClassA{};
a.print_message();

Traits

What's different in Rust in terms of how a trait work, is that a trait can be implemented
for other types as well (even if they are not defined in that program =2 e.g. for example a

system type). Rust

trait BitCount { %
2

fn compute bit count(&self) -> u32;

}

In this case, we create a new trait, called [Ei U

BitCount that can be implemented for fn compute_bit_count(&self) -> u32 {
let mut value = *self;

type U32 let mut count = Qu32;
while value>@ {

] count = count + (value % 2);
As a result, every variable or constant of value = value / 2;
type u32 will have a function called)

return count;

compute_bit_count that counts how }

many bits with value 1 a value has. Lo
n main() {
let x = 24u32;

println! ("Bits in x = {}",x.compute _bit count());

trait BitCount {

fn compute bit count(&self) -> u32;

}
impl BitCount for u32 {

fn compute_bit count(&self) -> u32 {
let mut value *self;
let mut count = Qu32;
while value>@ {

count = count + (value % 2);
value = value / 2;
}
return count;
}
}
fn main() {

println! ("Bits in 24u32
println!("Bits in 24i32

Error

error[E@599]: no method named "~ compute_bit_count™ found for type 132" in the current
scope

--> src\main.rs:17:41
|
17 | println! ("Bits in 24i32 = {}",24i32.compute_bit_count());
| ANNNANARANNANNAAN method not found in ~i32°
|
= help: items from traits can only be used if the trait is implemented and in scope

note: “BitCount”™ defines an item "~ compute_bit_count’, perhaps you need to implement it
--> src\main.rs:1:1

1 | trait BitCount {

| A

{}",24u32.compute _bit count());
{}",24i32.compute bit count());

Traits

Another interesting example is the following. There is no method in class String that
can be used to set/change the existing string with a different one. You can obviously
run a .clear() followed by a [push_str(...) to do this, but you can also do it using traits ©

Rust

trait StringSetter {
fn set(&mut self, text: &str);

}
impl StringSetter for String {
fn set(&mut self, text: &str) {
self.clear();
self.push_str(text);

}

}
fn main() {

let mut s = String::from("abc");
println!("S = {}",s);
s.set("123456");

println!("S = {}",s);

S =abc
S =123456

Traits

A trait can also have constants defined as part of the trait. That constant should be
seen as a static variable (it does not affect in any way the size of the structure that
implements that trait).

Rust

struct RON {
amount: 132

} m=0

trait Currency { m =100
const DEFAULT:132 = 100; size of RON = 4
fn set(&mut self, value: i32);

}

impl Currency for RON { fn set(&mut self, value: i32) { self.amount = value; } }
fn main() {

let mut m = RON{amount:0};

println!("m = {}",m.amount);

m.set (RON: :DEFAULT);

println!("m = {}",m.amount);

println!("size of RON = {}",std::mem::size_of::<RON>());

Traits

A constant value defined in a trait does not necessarily need to be instantiated as part
of the trait definition. However, that constant needs to be initialized in implementation.

error[EQ046]: not all trait items implemented, missing: ~DEFAULT"
--> src\main.rs:8:1

|
5 | const DEFAULT:i32;
| "DEFAULT" from trait
const DEFAULT:132; ...
8 | impl Currency for RON {
missing “DEFAULT" in implementation

Traits

A constant value defined in a trait does not necessarily need to be instantiated as part
of the trait definition. However, that constant needs to be initialize in implementation.

Rust

m=0
m=1234

const DEFAULT:132; i fRON =4
size O =

const DEFAULT:132 = 1234;

Traits

Similar to constant values, a trait can have types defined within the trait. And just like
constant values, the actual type of a defined type within a trait can be set up at the
trait or implementation level.

Let’s analyze the following problem:
 We need to convert from both Celsius and Fahrenheit to Kelvin

* Let’s also consider that Celsius is represented as an i32, while Fahrenheit is stored in
an f32 value.

* To do this, we will define two types (Celsius and Fahrenheit) and a trait (that describe
how the conversion to Kelvin is performed.

* We will also define a third type (Kelvin) that just returns its value. We will use it for a
different discussion.

Traits

Step 1: Define structures for Celsius, Fahrenheit and Kelvin as well as the conversion
trait.
Rust

struct Celsius {
value: 132,

}

struct Fahrenheit {
value: 32,

}

struct Kelvin {
value: 32

}

trait TemperatureConverter {
type ConversionOutput;
fn to_kelvin(&self) -> Self::ConversionOutput;

Notice that trait TemperatureConverter has an inner type (ConversionOutput) that
not yet defined !

Traits

Step 2: Implement TemperatureConverter for both Celsius, Fahrenheit and Kelvin types.

Rust

impl TemperatureConverter for Celsius {
type ConversionOutput = i32;
fn to_kelvin(&self) -> Self::ConversionOutput { return self.value + 273; }

}

impl TemperatureConverter for Fahrenheit {
type ConversionOutput = f32;

fn to_kelvin(&self) -> Self::ConversionOutput { return ((self.value - 32.0) / 1.8) + 273.15; }

}

impl TemperatureConverter for Kelvin {
type ConversionOutput = f32;
fn to_kelvin(&self) -> Self::ConversionOutput { self.value }

Notice that we have different formulas for those three types, and that we define
ConversionOutput for all implementations (i32 for Celsius and 32 for Fahrenheit-and
Kelvin).

Traits

Step 3: Write a main function that showcase how the trait works.

Rust

fn main() {
let ¢ = Celsius { value: 24 };
println!("Celsius({}) = Kelvin({})", c.value, c.to kelvin());

let £ = Fahrenheit { value: 100.5 }; Celsius(24) = Kelvin(297)

println! ("Fahrenheit({}) = Kelvin({})", f.value, f.to _kelvin()); Fahrenheit(100.5) = Kelvin(311.20557)
let k = Kelvin { value: 50.2 }; Kelvin(50.2) = Kelvin(50.2)
println!("Kelvin({}) = Kelvin({})", k.value, k.to kelvin());

OBS: This technique is similar to the usage of templates / generics. We will however
discuss about templates/generics and their usage with structs/enums and traits in
another course.

Traits

Keep in mind that using this technique (an inner type that is defined in the
implementation of the trait) will not allow any kind of polymorphism as there is no
similar definition for the trait methods.

Rust

fn main() {
let a:[Box<dyn TemperatureConverter>;2] =
Box: :new(Celsius { value: 24 }),
Box: :new(Fahrenheit { value: 100.5 })
1;
for i in a.iter() {
println! ("{}",i.to_kelvin());
} error[EQ191]: the value of the associated type ~ConversionOutput™ (from trait

“TemperatureConverter’) must be specified
--> src\main.rs:24:20

type ConversionOutput;
“ConversionOutput™ defined here

let a:[Box<dyn TemperatureConverter>;2] = [

help: specify the associated type:
“TemperatureConverter<ConversionOutput = Type>~

Traits

Keep in mind that even if we modify the way we define the Box (by adding an explicit
request for the ConversionOutput type, all elements from the list MUST have the same
ConversionOutputType !

Rust

fn main() {
let a: [Box<dyn TemperatureConverter<ConversionOutput = f32>>; 3] = [
Box: :new(Celsius { value: 24 }),
BOX::new(Kelvin { value: 150.Z),
Box: :new(Fahrenheit { value: 100.5 }),
1;
for i in a.iter() { println!("{}", i.to_kelvin()) }

error[E0271]: type mismatch resolving <Celsius as TemperatureConverter>::ConversionOutput == f32°
--> src\main.rs:35:9
|
35 | Box: :new(Celsius { value:
| type mismatch resolving "“<Celsius as
| TemperatureConverter>::ConversionOutput == f32°
note: expected this to be "“f32°
--> src\main.rs:16:29

16 | type ConversionOutput = i32;

Traits

Now it works. Keep in mind that both Kelvin and Fahrenheit type have the same type
for the ConversionOutput (f32).

Rust

fn main() {
let a: [Box<dyn TemperatureConverter<ConversionOutput = f32>>; 2] = |
Box::new(Kelvin { value: 150.2 }),
Box::new(Fahrenheit { value: 100.5 }),

150.2
311.20557
15
for i in a.iter() {

println! ("{}", i.to _kelvin());
}

}

OBS: While this technique is working, it is not usually used for polymorphism (as it
implies to make sure that types that have a super-trait have the same internal type —
thus making the concept of internal type less relevant as it can be hardcoded).

Traits

A trait can also contain static methods, that can have a default behavior or not, and
in the last case, those methods should be implemented for types that implement
the trait. Obviously, since a static method in a trait is not linked to an instance of the
type that implements that trait, things like polymorphism can not be achieved with
these methods.

Rust

trait Addition { Output |
fn compute(v1l:132, v2:i32) -> i32; _
}
struct ClassA { }
impl Addition for ClassA {
fn compute(vl:i32, v2:i32) -> i32 {
v1i+v2
}
}

fn main() {
println! ("{}",ClassA::compute(10, 20));
}

Traits

A structure/enum can implement multiple traits. What happens if there are two traits

that define a method with the same name ?

Rust

trait TraitA { fn compute(&self, value:i32) -> i32; }
trait TraitB { fn compute(&self, value:i32) -> i32; }

struct ClassA { value: i32 }
impl TraitA for ClassA {
fn compute(&self, value:i32) -> 132 {
return self.value * value;
}
}
impl TraitB for ClassA {
fn compute(&self, value:i32) -> 132 {
return self.value / value;
}
}
fn main() {

let x = ClassA{value:10};
println! ("{}",x.compute(5));

Error

error[E0034]: multiple applicable items in scope
--> src\main.rs:23:21
|
23 | println! ("{}",x.compute(5));
| AAAANAN multiple " compute” found
I
note: candidate #1 is defined in an impl of the trait “TraitA’
for the type "ClassA’
--> src\main.rs:11:5

11 | fn compute(&self, value:i32) -> i32 {

| ANNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNANNN

note: candidate #2 is defined in an impl of the trait "TraitB’
for the type "ClassA’
--> src\main.rs:16:5

16 | fn compute(&self, value:i32) -> i32 {

| ANNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNANNN

help: disambiguate the associated function for candidate #1

23 | println!("{}",TraitA::compute(&x, 5));

help: disambiguate the associated function for candidate #2

23 | println! ("{}",TraitB::compute(&x, 5));

Traits

The solution is to specifically explain Rust that, it needs to call a function defined from
a specific trait. The format for this call is:

trait-name>::method(&obj, Param,, Param,, ... Param,)

Where [g]g] is on object of type _ that implements

Rust

trait TraitA { fn compute(&self, value:i32) -> i32; } m

trait TraitB { fn compute(&self, value:i32) -> i32; }
struct ClassA { value: 132 }

impl TraitA for ClassA {..}

impl TraitB for ClassA {..}

fn main() {
let x = ClassA{value:10};
println! ("{}",<ClassA as TraitA>::compute(&x,5));
println!("{}",<ClassA as TraitB>::compute(&x,5));

Traits

The solution is to specifically explain Rust that, it needs to call a function defined from
a specific trait. The format for this call is:

trait-name>:: (&obj, Param,, Param,, ... Param)
Where [g]g] is on object of type _ that implements
Rust

. . fn main() {
Alternatively, the following let x = ClassA{value:10};

format can be used: println! ("{}", TraitA::compute(&x,5));
println! ("{}", TraitB::compute(&x,5));

Super traits

y

Super traits

Rust does not have an inheritance model, similar to what other languages have
where a type can be derived from another type and as such inherits all of its parent
properties, data members and methods.

However, Rust allows a certain type of inheritance by providing the concept of a
super trait. If “A” is a super trait for “B” , then any structure or enum that

implements “B” must also implement “A”

Rust

The format is similar to the way inheritance is

done in C++ (name of the trait, followed by “:’ and
the name of the super trait).

Let’s see an example:

Rust

trait Vehicle {
fn get name(&self) -> &str;
}
trait Car: Vehicle {
fn get max_speed(&self) -> u32;
}
struct Dacia { }
impl Car for Dacia {
fn get max_speed(&self) -> u32 {
return 140;
}
}

fn main() {
let d = Dacia{};
println!("max_speed = {}",d.get max_speed());

Super traits

error[E@277]: the trait bound "Dacia: Vehicle is not satisfied
--> src\main.rs:8:6
|
8 | impl Car for Dacia {
| AN the trait "Vehicle® 1is not implemented for "Dacia’
|
note: required by a bound in " Car’
--> src\main.rs:4:12
|
4 | trait Car: Vehicle {
| ANAANAN pequired by this bound in ~“Car’

The code will not compile because we haven’t
implemented the trait Vehicle for structure Dacia. This is
required because Vehicle is a super trait for the trait Car.

Super traits

Let’s see an example:
Rust

trait Vehicle {
fn get name(&self) -> &str; Output

}
trait Car: Vehicle { max_speed = 140

fn get max_speed(&self) -> u32; name= Dacia

}

struct Dacia {}
impl Car for Dacia {
fn get _max_speed(&self) -> u32 { return 140; }

}

impl Vehicle for Dacia {
fn get name(&self) -> &str { return "Dacia"; }

}

fn main() {
let d = Dacia {};
println!("max_speed = {}", d.get _max_speed());
println!("name= {}", d.get name());

Super traits

Any trait derived from another trait has access to all of the methods defined in the
super trait. Similar, via Self type, it can access any constant defined in the super trait

and instantiated in the struct or current trait.

Rust

trait Vehicle {

const MAX_SPEED: u32; Max speed for Dacia is 140
fn get name(&self) -> &str;

}
trait Car: Vehicle {

fn print_speed(&self) { println!("Max speed for {} is {}", self.get name(),Self::MAX SPEED); }
}

struct Dacia {}

impl Car for Dacia { }
impl Vehicle for Dacia {
const MAX_SPEED: u32 = 140;
fn get name(&self) -> &str { return "Dacia"; }

}
fn main() {

let d = Dacia {};
d.print_speed();

Super traits

Multiple inheritance is also possible as a trait can be a super trait for multiple traits.
Rust

trait Vehicle {
fn get name(&self) -> &str;
} Output
trait Car: Vehicle { _
fn get_speed(&self) -> wu32; Name = Dacia
} Speed = 140
trait Color: Vehicle { Color = Blue
fn get color(&self) -> &str;

}
struct Dacia {}
impl Car for Dacia { fn get speed(&self) -> wu32 { 140 } }
impl Color for Dacia { fn get _color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get name(&self) -> &str { "Dacia "} }
fn main() {
let d = Dacia {};
println! ("Name
println! ("Speed
println!("Color

{}",d.get _name());
{}",d.get_speed());
{}",d.get _color());

| I [| B

Super traits

Multiple inheritance is also possible as a trait can be a super trait for multiple traits.

Rust

This approach solves and the fact that a
trait does not have any data members
solves the diamond problem associated

with multiple inheritance.

Super traits

A similar code in C++ would look like this.
Rust C++

class Vehicle {

trait Vehicle .
{ virtual const char * get name() = 0;

fn get name(&self) -> &str; s
} g , : :
trait Car: Vehicle { ClaSS.CiP'IPUbl%C Vzh}cie {t d() = o;

fn get speed(&self) -> u32; s virtual unsigned 1nt get_spee ’
class Color: public Vehicle {

virtual const char * get color() 9;

}
trait Color: Vehicle {

fn get color(&self) -> &str; s
class Dacia: public Car,public Color {
virtual const char * get name() override {...}
virtual unsigned int get speed() override {...}

virtual const char * get color() override {...}

}

struct Dacia {}

impl Car for Dacia { .. }

impl Color for Dacia { .. }

impl Vehicle for Dacia { .. }

fn main() {
let d = Dacia {};
println!("Name = {}",d.get _name());
println!("Speed = {}",d.get_speed());
println!("Color = {}",d.get_color());

}s5

void main() {
Dacia d;
printf("Name = {}",d.get name());
printf("Speed = {}",d.get _speed());
printf("Color = {}",d.get _color());

Super traits

At the same time, multiple traits can be super trait for another trait. Semantically
this is explained in the following way:

<name>: SuperTrait, + SuperTrait, + .. SuperTrait, {..}

This is in particular useful when using templates/generics as it can be used to explain certain type of
limitations (e.g. the type used in a generic must implement Trait, , Trait,, ...).
This format is often referred as trait combos.

Rust
trait MyTrait : MySuperTrait + MySecondarySuperTrait + MyThirdSuperTrait {

}

impl MyTrait for MyClass {

}

Super traits

The same example = but with trait combos.
Rust

trait Vehicle {
fn get name(&self) -> &str;
} Output
trait Color { :
fn get_color(&self) -> &str; Name = Dacia
} Speed =140
trait Car:|Vehicle + Color|{ Color = Blue
fn get speed(&self) -> u32;

}

struct Dacia {}
impl Car for Dacia { fn get speed(&self) -> wu32 { 140 } }
impl Color for Dacia { fn get _color(&self) -> &str { "Blue" } }
impl Vehicle for Dacia { fn get name(&self) -> &str { "Dacia "} }
fn main() {

let d = Dacia {};

println!("Name = {}",d.get name());

println! ("Speed {}",d.get_speed());

println!("Color = {}",d.get color());

Super traits

The same example = but with trait combos.
Rust

(vende |

Special Traits

y

Special Traits

Rust has some special traits that can be used to improve certain operations or how
some types behave:

Traits that reflect certain properties (Copy, Clone, Debug, etc)

Traits that reflects operators (addition, substraction, etc)

Traits that reflects comparations between types

Traits that reflect casts and/or conversions between types

These traits can be overridden. In some cases, Rust can automatically implement
some special traits via #[derive(...)] attribute.

Special Traits

To automatically tell Rust that it needs to implement a trait for a specific class, use
[derive(...)] attribute. The general format is:

#[derive(Trait,, Trait,, ... Trait,)]

List of these traits (that are also called derivable traits):

Copy Support for Copy Semantics

Clone Add support to clone an object

Debug Debug information for an object

Hash Provide a way to compute a hash for a reference (Compiler controlled)
Default Default value for an object

Eq Comparation support (equal)

PartialEq Comparation support (equal and not equal)

Ord Set an object to be comparable (can be ordered)

PartialOrd Set an object to be partial comparable (can be ordered)

Special Traits (Copy & Clone)

Copy trait indicates “Copy semantics” for a specify trait. Clone is a super trait for
Copy trait (so any implementation of Copy trait implies Clone traits as well).

Rust (Copy trait definition) Rust (Clone trait definition)

ub trait Copy: Clone { pub trait Clone: Sized {

’ o fn clone(&self) -> Self;

} fn clone_from(&mut self, source: &Self) {..}
}

Notice that Copy trait has no defined method. This is because this trait implies
byte-wise copy for any object upon assignment. Clone imply Sized (a trait that
indicates that the size of the object that has this trait, must be known at compile
time). This is to be expected if Copy implies a byte-wise copy (a memcpy).

Special Traits (Copy & Clone)

Clone trait, however, can be implemented

Rust

struct MyNumber {

value: 132,
}
impl Copy for MyNumber {}
impl Clone for MyNumber {

fn clone(&self) -> Self {

MyNumber {
value: self.value + 1,

}

} Notice that y.value is 2 (this is to be expected as
} x.clone() increases the value of MyNumber.
fn main() {

let x

let y

let z

println! ("{},{},{}", x.value, y.value, z.value);

MyNumber { value: 1 };
x.clone();
X5

Special Traits (Copy & Clone)

Clone trait, however, can be implemented
Rust

derive(s)
struct MyNumber {
value: 132,

}
fn main() {

let x = MyNumber { value: 1 };

let y = x.clone();

let z X;

printIn!("{},{},{}", x.value, y.value, z.value);

OBS: Notice that the default implementation (obtained via #[derive(Copy,Clone)] uses byte wise copy
for both clone and assignment.

Special Traits (Copy & Clone)

A newly create struct can implement Copy trait only if all of its fields implement
Copy trait.

Rust

erive(oo Eror 0000000000

struct lWyhhnnber‘ { error[E0204]: the trait "Copy may not be implemented for this type
. --> src\main.rs:1:10
value: 132,

name:String 1 | #[derive(Copy,Clone)]
} | AAANA
fn main() { .

. 4
let x = MyNumber { value: 1, name: "123".to _string() };

| name:String
| e this field does not implement ~Copy”
I

}

In this case, one of the fields (name) does not implement Copy trait and as such the entire structure
can not implemented it.

Special Traits (Display & Debug)

Rust has two traits (Display and Debug) that should be used to display an object.
Both Debug and Display traits have the same methods, however there are some
differences between them:

» Debug trait can be used with #[derive(...)], Display can’t

* Display is designed for user-facing, while Debug is merely a developer way of
validating information about an object.

* Debug requires a special format {:?}

Rust (Display trait definition) Rust (Debug trait definition)

pub trait Display pub trait Debug
{ {

fn fmt(&self, f: &mut Formatter<'_>) -> Result; fn fmt(&self, f: &mut Formatter<'_ >) -> Result;
¥ }

Special Traits (Display & Debug)

Let’s see some examples:
Rust

derive()
value: 132,
} MyNumber { value: 1}

fn main() {
let x = MyNumber { value: 1 };
println!("{:?}",x);

}

Notice that it is fairly easy to print any kind of object if we implement (via
#[derive(Debug)]) the Debug trait for it. Rust will create a default implementation
for this trait that will print each field from that structure.

Special Traits (Display & Debug)

Let’s see some examples:
Rust

use std::fmt::Display;
use std::fmt;
struct MyNumber {

value: i32, MyNumber => with value =1
}
impl Display for MyNumber {

fn fmt(&self, f: &mut fmt::Formatter<' >) -> std::fmt::Result {

f.write str("MyNumber => with value = ")?;

f.write fmt(format_args!("{}",self.value))?;
ok(())

}
}
fn main() {

let x = MyNumber { value: 1 };
println! ("{}",x);

Special Traits (Display & Debug)

Let’s see some examples:
Rust

MyNumber => with value = 1

fn fmt(&self, f: &mut fmt::Formatter<' >) -> std::fmt::Result {
f.write_str("MyNumber => with value = ")?;
f.write fmt(format_args!("{}",self.value))?;

ok(()) Alternatively, the write! macro
can be used !

fn fmt(&self, f: &mut fmt::Formatter<' >) -> std::fmt::Result {
write! (f, "MyNumber => with value = {}",self.value)?;

0k(())

Special Traits (Default)

Default trait is used to describe a default initialization value for an object. It works
like a static (constructor) method that creates an object. All basic types implement
that trait. Furthermore, Default trait can be defined via #[derive(...)].

Rust (Default trait definition)

pub trait Default: Sized {
{

fn default() -> Self;

}

Besides basic types, more than 150 types in Rust implement default.

Usage:
let x = Type::default();

let x: Type = Default::default()

Special Traits (Default)

Let’s see some examples:

Rust

struct MyNumber {
value: 132,
¥
impl Default for MyNumber {
fn default() -> Self {
Self { value: 100 }

}
¥

fn main() {
let x = MyNumber::default();
let y i32::default();
let z = String::default();
println! ("{}",x.value);
println!("{}",y);
println! ("[{}]",2z);

Special Traits (Default)

Default trait can be automatically implemented via #[derive(...)] attribute. All of the
structure members MUST implement Default trait as well.

derive(s MyNumber { value: 0, float: 0.0, flag: false }

truct MyNumb
) Pu\c,alu)e/;uringgr { MyNumber { value: O, float: 0.0, flag: false }

float: 32,
flag: bool

}
fn main() {

let x = MyNumber::default();

let y: MyNumber = Default::default();
println! ("{:?}",x);
println!("{:?}",y);

Special Traits (Default)

Default trait can be automatically implemented via #[derive(...)] attribute. All of the
structure members MUST implement Default trait as well.

Rust

struct MyStructWithoutDefault {
value: 132

}

derive(5
struct MyNumber {
value: 132,
float: 32,
flag: bool,
extra: MyStructWithoutDefault

}

fn main() {
let x = MyNumber::default();
println! ("{:?}",x);

Error
error[E@277]: the trait bound ~MyStructWithoutDefault: Default™ is not satisfied

)

--> src\main.rs:10:5

| #[derive(Default,Debug)]

——————— in this derive macro expansion

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

the trait “Default™ is not implemented for
“MyStructWithoutDefault"

Special Traits (Default)

When #[derive(...)] attribute is used to automatically implement the Default trait
for an enum, you MUST also specify the default variant (to do this add #[default]
before the e default variant in the enum).

use std::default;
derive(,

enum Color {
Red,
default
Green,
Blue,
White

}
fn main() {

let x = Color::default();
println!("{:?}",x);

}

Special Traits (Default)

You can also overwrite some default value and keep the rest of them by using the

following syntax BEDEEDIRERCISIEUIAA®] When constructing an object (this is in fact
another usage of functional update syntax in Rust):

Rust

derive(s
struct MyStruct {
y: ;23 x = MyStruct { x: 0, y: false, z: 0.0, name: "" }
)z/ £32, , y = MyStruct { x: 10, y: false, z: 0.0, name: "" }

name: String z = MyStruct { x: 0, y: true, z: 0.0, name: "10" }
}

fn main()

let x = MyStruct::default();

let y = MyStruct { x: 10, ..Default::default()};

let z = MyStruct { name: "10".to_string(), y:true, ..Default::default()};
println!("x = {:?}",x);

println!("y = {:?}",y);

println!("z {:?}",2);

Special Traits (Eq and PartialEq)

Eq and PartialEq traits are used to describe if how to check the equality or
difference between two object. PartialEq is the super trait of Eq.

Rust (PartialEq trait definition) Rust (Eq trait definition)

pub trait PartialEq<Rhs: ?Sized = Self> { pub trait Eq: PartialEqg<Self> {
fn eq(&self, other: &Rhs) -> bool; }

fn ne(&self, other: &Rhs) -> bool {
Iself.eq(other)

}

}

Notice that “ne” (not-equal) method has a default implementation. This mean that
normally, a type that implements this trait only needs to overwrite the eq method.

The “ne” is useful for types (e.g. floating values) that have special cases (such as
NaN) where different values (in term of bit comparation) might have the same
interpretation.

Special Traits (Eq and PartialEq)

Let’s see a simple example on how to use PartialEq:

Rust

struct MyStruct {
value: 132
}
impl PartialEq for MyStruct {
fn eq(&self, other: &Self) -> bool {
self.value == other.value

}

}
fn main() A
let x = MyStruct{value: 10};
let y = MyStruct{value: 10};
if x ==y {
println!("x an y are equals !");

}

X any are equals !

Special Traits (Eq and PartialEq)

PartialEg and Eqg traits can be automatically implemented via #[derive(...)] attribute.
Keep in mind that PartialEq is a super trait of Eq and as such if you derive from Eq
you must derive from PartialEq as well. All of the members from that structure

MUST implement PartialEq and/or Eq.
Rust

derive() ™
struct MyStruct { X any are equais :

value: 132

}
fn main() A

let x = MyStruct{value: 10};

let y = MyStruct{value: 10};
if x ==y {
println!("x an y are equals !");

}

}

Special Traits (Eq and PartialEq)

PartialEg and Eqg traits can be automatically implemented via #[derive(...)] attribute.
Keep in mind that PartialEq is a super trait of Eq and as such if you derive from Eq
you must derive from PartialEq as well. All of the members from that structure
MUST implement PartialEq and/Oor Eq.

Rust

struct MyNonComparableStruct { error[E@369]: binary operation “==" cannot be applied to type “MyNonComparableStruct’
field:i32 --> src\main.rs:7:5
le o1 |
} 4 | #[derive(PartialEq)]
derive(Eq, | in this derive macro expansion

struct MyStruct { .

value: 132, I
extra: MyNonComparableStruct |

extra: MyNonComparableStruct

} note: an implementation of “PartialEqg<_>" might be missing for ~MyNonComparableStruct’

fn main() {
let x = MyStruct{value: 10, extra: MyNonComparableStruct { field: 10 }};
let y = MyStruct{value: 10, extra: MyNonComparableStruct { field: 10 }};
if x ==y {
println!("x an y are equals !");

}

Special Traits (Ord and PartialOrd)

Ord and PartialOrd traits describe a way to compare two objects. PartialOrd is a
super trait of Ord, and PartialEq is a super trait of PartialOrd

Rust (PartialOrd trait definition)

pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs>

{
fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;

1t (&self, other: &Rhs) -> bool {
matches! (self.partial cmp(other), Some(Less))

le(&self, other: &Rhs) -> bool {
Imatches! (self.partial cmp(other), None | Some(Greater))

gt(&self, other: &Rhs) -> bool {
matches! (self.partial cmp(other), Some(Greater))

ge(&self, other: &Rhs) -> bool {
matches! (self.partial cmp(other), Some(Greater | Equal))

Rust (Ordering)

pub enum Ordering {
Less = -1,
Equal = 9,
Greater =1,

Notice that the only method that needs
to be implemented is partial_cmp !

By default, PartialOrd implements:
* |t =» lower then

* le = lower or equal

» gt =» greater then

* ge =» greater or equal

Special Traits (Ord and PartialOrd)

As PartialEq is a super trait of PartialOrd, “eq” and “ne” methods are inherited from
PartialEq. Ord trait also implements method like min, max and clamp.

Rust (Ord trait definition)

pub trait Ord: Eq + PartialOrd<Self> {
fn cmp(&self, other: &Self) -> Ordering;
fn max(self, other: Self) -> Self where Self: Sized,

{

}
fn min(self, other: Self) -> Self where Self: Sized,

{

}
fn clamp(self, min: Self, max: Self) -> Self where Self:

{

max_by(self, other, Ord::cmp)

min_by(self, other, Ord::cmp)

assert!(min <= max);

if self < min { min }

else if self > max { max }
else { self }

Special Traits (Ord and PartialOrd)

Let’s see an example to understand how max, min and clamp methods work.

Rust

fn main() {
println!("5.max(10)
println! ("5.max(2)
println!("5.min(10)

st
.max(2)); .
.min(10)); 5.min(10)

.min(2)); .
.clamp(2,8)); 5.min(2)

.clamp(7,9)); 5.clamp(2,8
.clamp(1,4)); 5.clamp(7,9) =

5.clamp(1,4) =

println!("5.min(2)

println!("5.clamp(2,8)
println!("5.clamp(7,9)
println!("5.clamp(1,4)

.clamp(...) method keeps a value within an interval. If it is lower than its lower
bound, the value returned will the lower bound of the interval. If it is greater than
the upper bound, the value return will be the upper bound of the interval.
Otherwise, the value will remained unchanged.

Special Traits (Ord and PartialOrd)

Let’s see a simple example that illustrates how to manually implement PartialOrd.
Rust

use std::cmp::0rdering;
struct MyStruct { value: i32 } Output
impl PartialEq for MyStruct { L

fn eq(&self, other: &Self) -> bool { self.value == other.value } y is bigger than x

}
impl PartialOrd for MyStruct {

fn partial cmp(&self, other: &Self) -> Option<Ordering> {
if self.value>other.value { return Some(Ordering::Greater); }
if self.value<other.value { return Some(Ordering::Less); }
return Some(Ordering::Equal);

}
}
fn main() {
let x = MyStruct{value:10};
let y = MyStruct{value:20};
if y>x {
println!("y is bigger than x");
}

Special Traits (Ord and PartialOrd)

When #[derive(...)] attribute is used to automatically implement the PartialOrd,
keep in mind that the automatic logic is to compare each variable in the order they
were added in the structure.

Rust

derive(5
struct MyStruct {

vl: 132, ~
v2: i32, CMP(x,y) = Some(Less)

v3: i32 CMP(x,z) = Some(Less)
¥ CMP(x,t) = Some(Greater)

fn main() _
let x CMP(x,x) = Some(Equal)

MyStruct { : v2:20, v3:10 };
MyStruct { : v2:10, v3:100 };
MyStruct { v2:20, v3:100 };
MyStruct { v2:10, v3:100 };
",X.partial cmp(&y));
",x.partial cmp(&z));
",x.partial cmp(&t));
",x.partial cmp(&x));

let y
let z
let t
println! ("CMP(x,y)
println! ("CMP(x,z)
println! ("CMP(x,t)
println! ("CMP(x,x)

mnmn n n e~

< <
(R

Special Traits (Drop)

Rust does not have a destructor (in a traditional, descriptive, manually defined C++
way). However, there is a trait called Drop that serves a similar purpose (it contains
a method that is being called when the scope of an object ends).

Rust (Drop trait definition)

pub trait Drop {
fn drop(&mut self);

}

While in most cases, you don’t really need to implement this trait (as Rust will
automatically destroy object), there are some scenarios (e.g. when managing an
external resource, a socket, etc) when this trait might be required.

Drop can not be automatically implemented via #[derive(...)] attribute.

OBS: Keep in mind that Rust will not allow you to call .drop() explicitly.

Special Traits (Drop)

Let’s see an example:

Rust
struct MyStruct {
v: 132

} : :
impl Drop for MyStruct { Inner block scope will end right now !

fn drop(&mut self) { Dropping (v=20)
println!("Dropping (v={})",self.v); Main block scope will end right now !
) ; Dropping (v=10)
fn main() {

let x = MyStruct{v:10};
{

let y = MyStruct{v:20};
println!("Inner block scope will end right now !");

}

println!("Main block scope will end right now !");

Special Traits (Drop)

As previously stated, explicit destructor calls (via .drop()) method are not allowed.

Rust

struct MyStruct {
v: 132

} error[E@040]: explicit use of destructor method
impl Drop for MyStruct { --> src\main.rs:13:7

fn drop(&mut self) {

println! ("Dropping (v={})",self.v); 3

x.drop();

| __AAAA_ _

} | |

| explicit destructor calls not allowed
help: consider using “drop”~ function: “drop(x)"

}
fn main() {

let x = MyStruct{v:10};
x.drop();

OBS: If allowed, these calls could lead to the wrong behavior of some objects (e.q. if
the destructor closes some handles) if the object is being used after the call to

.drop().

Special Traits (Drop)

The order idrop() method is called is also different how C++ is doing. First it is called
for the main object, then for every field from that object in the order of the
declaration.

Rust

struct ClassA { v: 132 }
struct ClassB { v: 132 }
struct MyStruct { a: ClassA, b: ClassB } Dropping MyStruct

impl Drop for MyStruct { Dropping ClassA

fn drop(&mut self) { println!("Dropping MyStruct"); } .
} Dropping ClassB

impl Drop for ClassA {

fn drop(&mut self) { println!("Dropping ClassA"); }

}
impl Drop for ClassB {

fn drop(&mut self) { println!("Dropping ClassB"); }
}
fn main() {
let x = MyStruct { a: ClassA { v: @ }, b: ClassB { v: @ }

}

Special Traits (Drop)

Another observation is that Drop trait can not be implemented for object that have
Copy semantics. This is because object that implement Copy trait are normally

copied (via a memcpy method) and as such memory deallocation can be handled
automatically.

Rust

der\ive(B) error[EQ184]: the trait “Copy may not be implemented for this type; the type has a destructor
struct MyStruct { --> src\main.rs:1:10

. |
v: 132, 1 | #[derive(Copy,Clone)]
} | NN Copy not allowed on types with destructors

impl Drop for MyStruct {
fn drop(&mut self) {

println! ("Dropping MyStruct");

}
}

fn main() {
let x = MyStruct { v: @ };

}

Special Traits (Drop)

Another observation is that implementing Drop trait for a struct will disable the
partial move ability. Let’s analyze the following example:

i Output
struct Test {

X: 132,
name: String

}
fn main() {

let t = Test{x:1, name: String::from("ABC") };
let _s = t.name;
println!("x={}",t.x);

}

Notice that moves the value of field name from structure Test.
But this is a partial move as the structure Test (through its member “x”) is still
available (we can actually print t.x).

Special Traits (Drop)

Now let’s implement Drop trait for the same structure. We will notice that the
same example does not work anymore (meaning that you can not move individual
fields from a structure anymore — as the new Drop implementation implies the

entire structure is being moved).

Rust error[E@509]: cannot move out of type “Test , which implements the "Drop” trait
--> src\main.rs:10:14

struct Test {
X: 132, 10
name: String

let _s = t.name;

AAAAAA

}
impl Drop for Test {

cannot move out of here
move occurs because “t.name’ has type “String , which does
not implement the “Copy trait

fn drop(&mut self) { }

}
fn main() {

let t = Test{x:1, name: String::from("ABC") };
let _s = t.name;
println! ("x={}",t.x);

Special Traits (Sized)

Sized trait is a special trait that indicates that current type has a know size at
compile time.

Rust (Sized trait definition)

pub trait Sized {
}

This purpose is controlled by the compiler. You cand not implicitly implement it but
it is very useful for bounds (in generics) where this trait might be required. It is also
possible to relax the bounds that request a Sized object by adding ?’ in front of it
(). This removes the bound for an object to be Sized.

Special Traits (Sized)

Explicit implementation of Sized trait is not allowed:

Rust

struct MyStruct {

v: 132,
} error[E@322]: explicit impls for the "Sized™ trait are not permitted
impl Sized for MyStruct { -7> sremain.rs:4:d

4 | impl Sized for MyStruct {

} | ANNNNNNNNNNNNNNNNNNNNANN impl O.F 'Sized' not allowed

fn main() {
let x = MyStruct { v: @ };

}

Special Traits (Sized)

Notice that even if Sized can be a super trait for another trait, that trait can not be
used to instantiate a dynamic object.

Rust

error[EQ038]: the trait A" cannot be made into an object
--> src\main.rs:5:12

trait A: Sized {

}
struct S {

}
impl A for S {

}
fn main() {

let y: Box<dyn A> = Box::new(S{});

let y: Box<dyn A> = Box::new(S {});
ANNNNNNAAN = AT cannot be made into an object

note: for a trait to be "object safe" it needs to allow building a vtable to allow the
call to be resolvable dynamically;

--> src\main.rs:1:10
I

trait A: Sized {}

1
| - Anann . because it requires “Self: Sized”
|
|

}

this trait cannot be made into an object...

Special Traits (Deref and DerefMut)

Deref and DerefMut traits are used to explicit dereferencing operations (an equivalent
to operator™/operator-> from C++). This mechanism is called Deref coercion.
Rust (Deref trait definition) Rust (DerefMut trait definition)

pub trait Deref {

) pub trait DerefMut: Deref {
type Target: ?Sized;

fn deref _mut(&mut self) -> &mut Self::Target;
fn deref(&self) -> &Self::Target;

}

}
If a type A implements Deref (with Target type set to type B) then:
 &A can be coerced to &B

* Aimplicitly implements all methods from B

OBS: Deref and DerefMut simulate the concept of inheritance (in the sense that
methods and data member from another type (e.qg. parent class) are accessible
via the child object.

Special Traits (Deref and DerefMut)

Let’s see an example:

Rust

use std::ops::{Deref,DerefMut};
struct B { x: i32, y: i32 } From B: x=10, y=1, From A: a=0
struct A { b: B, a: 132 }

Output

impl A { fn new() -> A { A {b: B {x: 0, y: @}, a: 0 } } }
impl Deref for A {
type Target = B;
fn deref(&self) -> &Self::Target { &self.b }
}
impl DerefMut for A {
fn deref _mut(&mut self) -> &mut Self::Target { &mut self.b }
}
fn increment_y(b: &mut B) { b.y += 1; }
fn main() {
let mut a = A::new();
a.x = 10;
increment_y(&mut a);
println!("From B: x={}, y={}, From A: a={}", a.x, a.y, a.a);

impl Deref for A {
type Target = B;
fn deref(&self) -> &Self::Target { &self.b }

<
<

Output

From B: x=10, y=1, From A: a=0

a.X, a.y,«e—a+

“A” type does not have any .x or .y
fields. However, due to the Deref
implementation, you can automatically
access fields .x and .y from field b of
type A

Special Traits (Deref and DerefMut)

Let’s see an example:

Rust Output

From B: x=10, y=1, From A: a=0

impl DerefMut for A {
fn deref_mut(&mut self) -> &mut Self::Target { &mut self.b } e

) Due to the DerefMut implementation,

you can automatically obtain a mutable
reference to field .x field b of type A

Output

From B: x=10, y=1, From A: a=0

fn increment_y(b: &mut B) { b.y += 1; } e Notice that increment_y expects a mutable reference

to an object of type B. However, it can be called with
a mutable reference of type A that can be coerced

increment_y(&mut a); due to DerefMut to a mutable reference of type B.

Special Traits (From and Into)

From and Into traits are used to perform value-to-value conversion.

Rust (From trait definition) Rust (Into trait definition)

pub trait From<T>: Sized { pub trait Into<T>: Sized {
fn from(_: T) -> Self; fn into(self) -> T;

} }

It is recommended to avoid implemented Into but rather implement From. Implementing

From will trigger the creation of Into as well due to the blanket implementation in the
standard library.

Rust (blanket implementation for Into)

impl<T, U> Into<U> for T
where

U: From<T>,

{

fn into(self) -> U {
U::from(self)

}

Special Traits (From and Into)

Let’s see an example:
Rust

struct Test {
value: i32, a.value =10
} b.value =11
impl From<i32> for Test {
fn from(v: 132) -> Test {
Test { value: v }

}
¥

fn main() {
let a = Test::from(10);
println!("a.value = {}", a.value);
let b: Test = 11.into();
println!("b.value = {}", b.value);

Special Traits (From and Into)

Let’s see an example:

— Output
struct Test { value: 132 }

impl From<Test> for i32 {
fn from(t: Test) -> i32 {
t.value

¥

}
impl From<&Test> for 132 {

fn from(t: &Test) -> 132 { When implementing From (if possible) consider
t.value implementing both for an object (with
¥ ownership transfer) and for a reference

}
fn main() {

let a = Test { value: 10 };
let x: 132 = (&a).into();
let b = Test { value: 20 };
let y: 132 = b.into();
println! ("{x},{y}");

Special Traits (From and Into)

From and Into traits also have a try version (TryFrom and TryiInto).

Rust (From trait definition) Rust (Into trait definition)

pub trait TryInto<T>: Sized {
type Error;

pub trait TryFrom<T>: Sized {
type Error;

fn try from(value: T) -> Result<Self, Self::Error>;

fn try into(self) -> Result<T, Self::Error>;

The difference from the From and Into forms is that these traits return a Result (allowing
someone to validate if something can be converted into another object or not).

Special Traits (AsRef and AsMut)

AsRef and AsMut traits are used to perform cheap reference-to-reference conversion.
Keep in mind that similar result can be obtained if using From or Into traits (but
implemented over/for a reference or mutable reference).

Rust (AsRef trait definition) Rust (AsMut trait definition)

pub trait AsRef<T: ?Sized> { pub trait AsMut<T: ?Sized>
fn as_ref(&self) -> &T; fn as_mut(&mut self) -> &mut T;

} }

Rust also has two very similar traits (Borrow and BorrowMut) that resembles in terms of
definition with AsRef and AsMut.

Rust (Borrow trait definition) Rust (BorrowMut trait definition)

pub trait Borrow<Borrowed: ?Sized> { pub trait BorrowMut<Borrowed: ?Sized>: Borrow<Borrowed> {
fn borrow(&self) -> &Borrowed; fn borrow_mut(&mut self) -> &mut Borrowed;

} }

Special Traits (AsRef and AsMut)

Let’s see an example:

Rust Output

derive()
struct Test { x: i32 } Test { x: 20 },20

impl AsRef<i32> for Test {
fn as_ref(&self) -> &i32 {
return &self.x;

}
}
impl AsMut<i32> for Test {
fn as_mut(&mut self) -> &mut i32 {
return &mut self.x;
}
}
fn main() {
let mut a = Test{x:10};
let a_mut: &mut 132 = a.as mut();
*a_mut = 20;
let a_ref: &132 = a.as ref();
println! ("{:?},{}", a, a_ref);

Special Traits (AsRef and AsMut)

Let’s see an example (this time using borrow/borrow_mut):

Rust Output

Test {x: 20 },20

use std::borrow: :{Borrow,BorrowMut};

derive()
struct Test {
X: 132
}
impl Borrow<i32> for Test {
fn borrow(&self) -> &i32 { return &self.x; }
}
impl BorrowMut<i32> for Test {
fn borrow mut(&mut self) -> &mut i32 { return &mut self.x; }
}
fn main() {
let mut a = Test{x:10};
let a _mut: &mut 132 = a.borrow mut();
*a_mut = 20;
let a_ref: &132 = a.borrow();
println! ("{:?},{}",a,a_ref);

Special Traits (AsRef and AsMut)

The main difference between AsRef/AsMut and Borrow/BorrowMut is that Borrow and
BorrowMut have several blanket implementations that allows one to used them directly

in a generic (e.g. in a where clause) without the need to actually implement them for a
specific type.

Let’s consider the following problem - we want to write a generic function that
consumes an object but before it consumes it, it uses its reference to print it.

Let’s see how we can implement such a function using both Borrow/BorrowMut and
AsRef/AsMut.

Special Traits (AsRef and AsMut)

Solution (using borrow/borrow_mut):
Rust

use core::fmt; _ _ _
use std::{borrow::Borrow, fmt::Display}; obj = Point object => (x=10, y=20)
struct Point { x: i32, y: i32} Obj=:10
impl Display for Point {
fn fmt(&self, f: &mut fmt::Formatter<' >) -> fmt::Result {
write! (f, "Point object => (x={}, y={})", self.x, self.y)

Output

}

}
fn print_value<T>(object: T)

where
T: Borrow<T> + Display,
{
let x = object.borrow();
println!("obj = {}", Xx);
}
fn main()
let p = Point { x: 10, y: 20 }; print_value(p);
let x = 10; print_value(x);

0 0 O borra DOITrQo
Output
obj = Point object => (x=10, y=20)
obj =10

Notice that we require Borrow to be implemented for
T: Borrow<T> T but we haven’t actually implemented it (this is
because blanket implementation does it for us).

Special Traits (AsRef and AsMut)

Let’s try the same code with AsRef:
Rust

Notice that without the blanket implementation, we
can not use AsRef/AsMut'in a generic !

Error

fn print_value<T>(object: T) error[E@277]: the trait bound ~Point: AsRef<Point>" is not satisfied
where --> src\main.rs:22:17

T: AsRef<T> + Display |

22 print_value(p);

~ the trait “AsRef<Point>™ is not implemented for "~Point”

{

required by a bound introduced by this call

I
|
let x = object.as _ref(); |
println!("obj = {}", Xx); }

Operators

Operators

When creating different types, it is often required to overwrite how some
mathematical operations work for them. In C++ this is accomplished by using the
keyword “operator” and being able to write specific methods that describe how
certain operation should behave.

In Rust, there are a set of traits that if implemented will result in a similar behavior.
Keep in mind that there has to be a resemblance on how an operator should
behave. Some operators like (&& and | |) use lazy evaluation and require bool
parameters and as such can not be overwritten.

Operators

Most of the arithmetic (binary) operators have two possible forms:
A) Expr @ Expr (binary operation)

J

operationname(

Notice that the method receives a self. This means that With OperationName (sentence case) being
ownership will be transferred if Copy trait is not the name assigned for the operation] and

implemented ! operationname|(lowercased) the hame of the
method that needs to be implemented to
overwrite that operation.

B) Variable ®= Expr (assignment)

operationname_assign(&

Operators

The next table contains a list of all binary operations that follow the previous
described template:

T [

+

*

/
%

<<

>>

std:
std:
std:
std:
std:
std:
std:
std:
std:
std:

:ops:
:ops:
:0ps:
:0ps:
:ops::
:ops::
:ops::
:ops::
:Shl
:Shr

:0ps:

:0ps:

:Add
:Sub
:Mul
:Div

Rem
BitAnd
BitOr
BitXor

add
sub
mul
div
rem
bitand
bitor
bitxor
shl

shr

std:
std:
std:
std:
std:
std:
std:
std:
std:

:0ps:
:0ps:
:0ps:
:0ps::
:0ps::
:0ps::
:0ps::
:0ps:

:0ps:

ps::AddAssign
:SubAssign
:MulAssign
:DivAssign

RemAssign
BitAndAssign
BitOrAssign
BitXorAssign

:ShlAssign
:ShrAssign

add_assign
sub_assign
mul_assign
div_assign
rem_assign
bitand_assign
bitor_assign
bitxor_assign
shl_assign

shr_assign

Operators

Let’s see a very simple example:

Rust
use std::ops::Add;

struct Test {
value: 132,

}
impl Add<i32> for Test {

type Output = i32;

fn add(self, rhs: i32) -> Self::Output {
self.value + rhs

}

}
fn main() {

let a = Test { value: 10 };
let x = a + 10;
println! ("{x}");

Operators

Notice that add method receives a self (meaning that the ownership of the object
is transferred and as such, el will no longer be available after the addition.

Rust
use std::ops::Add;

struct Test { value: 132 }
impl Add<i32> for Test {
type Output = i32;
fn add(self, rhs: i32) -> Self::Output {
self.value + rhs

} error[E@382]: borrow of moved value: “a°

} --> src\main.rs:17:19
fn main() { |
let a = Test { value: 10 }; I
let x = a + 10; |
println! ("{x}"); I let x = a + 10;
|
|
|

let a = Test { value: 10 };
- move occurs because “a’ has type Test , which
does not implement the “Copy trait

“a moved due to usage in operator
println! ("{x}");

println!("{}",a.value);

ANAAAAN yalue borrowed here after move

println! ("{}",a.value);

Operators

You can, however, implement Add for a reference (in this case for &Test) and avoid
transferring ownership.

Rust

use std::ops::Add; m

struct Test {
value: 132,

}
impl Add<i32> for &Test {

type Output = i32;
fn add(self, rhs: i32) -> Self
self.value + rhs

}

}
fn main() A

let a = Test { value: 10 };
let x = (&) + 10;

println! ("{x}");

println! ("{}", a.value);

Operators

You can, however, implement Add for a reference (in this case for &Test) and avoid
transferring ownership.

impl Add<i32> for &Test {

Notice that the syntax is not the clear (you need to explicitly say
that you want to add a reference (&a) with a number.

let x = (&) + 10;

Operators

Notice that if Add is not implemented for self, adding an object with a number (for
our case) will fail.

Rust

error[E@369]: cannot add "~ {integer} to "“Test"
impl Add<i32> for &Test { --> src\main.rs:13:14

|
| let x = a+10;

| -~-- {integer}
|

|

|

Test

note: an implementation of “Add< > might be missing for "“Test’

let x = a + 10;

Operators

You can however call the method .add(...) directly (this is different than the
operator + as it will try to match the parameters and since Add trait is implemented

20
10

for &Test, the code will compile !
Rust

impl Add<i32> for &Test {

let x = a.add(10);

Operators

You can implement multiple Add operations:
Rust

struct Test { value: i32 }
impl Add<i32> for Test { Output
type Output = 1i32;
fn add(self, rhs: i32) -> Self::Output { self.value + rhs } 20,50

}
impl Add<Test> for Test {

In this case we have two forms of Add:
type Output = Test;) |
fn add(self, rhs: Test) -> Self::Output { 1) Test+i32=>i32
Test { value: self.value + rhs.value } 2) Test + Test => Test

}
}

fn main()
let Test { value: 10 };
let Test { value: 20 };
let Test { value: 30 };
let a + 10;
let =b + c;

println! ("{},{}", x, d.value);

Operators

Let’s see an example that uses an assignment.
Rust

use std::ops::SubAssign;

derive()
struct Test {
value: 132
}
impl SubAssign<i32> for Test {
fn sub_assign(&mut self, rhs: i32) {
self.value -= rhs;

}

}
fn main() {

let mut a = Test { value:
a -=5;
println!("{:?}",a);

Operators

Rust also allows overwriting two unary operators (Neg and Not) that corresponds to
the operator — (minus) and operator ! (exclamation mark) in front of an expression.

Rust (Neg trait definition) Rust (Not trait definition)

pub trait Neg { pub trait Not {
type Output; type Output;

fn neg(self) -> Self::Output; fn not(self) -> Self::Output;
} }

OBS: Keep in mind that this operator receives self (implying a transfer of ownership).
This means that if you implement this for a type that does not have the Copy trait,
that object will not be available after calling Neg or Not operators.

Operators

Let’s see an example that uses unary operators:

Rust
use std::ops::{Neg,Not};
derive()

struct Test {
value: 132

}
impl Neg for Test {

type Output = 1i32;
fn neg(self)->Self::0utput { -self.value }
}
impl Not for Test {
type Output = i32;
fn not(self)->Self::0Output { 100-self.value }
}
fn main()
let a
let x
let b = Test { value: 10 };
let y Ib;
println! ("{x},{y}");

Test { value: 10 };
_a;

[I | I | I | e}

Operators

Index and IndexMut traits are design to allow index operator overwriting in Rust, with
Index being a super-trait for IndexMut.

Rust (Index trait definition) Rust (IndexMut trait definition)

. DCH
?Ub Indexcldx: #5ized> pub trait IndexMut<Idx: ?Sized>: Index<Idx>

type Target: ?Sized; {
fn index(&self, index: Idx)->&Self::0utput; }

Keep in mind the indexing operation in Rust return a reference or a mutable reference.
This is a limitation as you can not create and return an object (except for the case
where that object is part of the type).

fn index_mut(&mut self, index: Idx)->&mut Self::Output;

J

OBS: As a rule, in cases where index is out of range, you should panic !

OBS2: containerl[idx] is pretty much the syntax sugar for container.index(idx)

Let’s see an example that uses index operators:

Rust

use std::ops::{Index,IndexMut};

derive()
struct IPv4 {
values: [u8;4]
}
impl Index<usize> for IPv4 {
type Output = u8;
fn index(&self, index: usize) -> &Self::0utput {
if index<4 { return &(self.values[index]); }
panic!("Out of bounds !");

}
}

impl IndexMut<usize> for IPv4 {

Main function

fn main() {
let mut ip =
println! ("IP
ip[0] 192;
ip[1] 168;
ip[2] = ©;
ip[3] = 1;
println! ("IP

Operators

IPv4{values: [0u8;4]};
= {3 A {r.{}"iple],ip[1],ip[2],1ip[3]);

= {;r.-{r.{;.{}",ipl@],ip[1],1ip[2],1ip[3]);

fn index_mut(&mut self, index: usize) -> &mut Self::Output {
if index<4 { return &mut (self.values[index]); }

panic!("Out of bounds !");

Output

IP=0.0.0.0
IP=192.168.0.1

Operators

You can also add multiple indexes:
Rust

struct IPv4 { Main function

values: [u8;4]]
} fn main() {
impl Index<usize> for IPv4 { 1e? ip = EPV4{values: [192E8{168,1{123]}§ .
type Output = u8; pr}ntln!("IP"=.{}'-I{}-{}I-'{} ,ip[@],ip[1],ip[2],ip[3]);
fn index(&self, index: usize) -> &Self::Output { println!("{}",ip["first"]);
if index<4 { return &(self.values[index]); } println!("{}",ip["second"]);
panic!("Out of bounds !");

}

}
impl Index<&str> for IPv4 { Output

type Output = u8;
fn index(&self, index: &str) -> &Self::Output { IP=192.168.1.123
match index {
"first" => { return &(self.values[0]); } 192
"second" => { return &(self.values[1l]); } 168
"third" => { return &(self.values[2]); }
"forth" => { return &(self.values[3]); }

=> { panic!("Invalid index"); }

Operators

Finally, keep in mind that assignment (‘=‘) can not be overwritten.

This is because assignment is used for ownership transfer or Copy semantics
(pending on what trait is present).

As such, this operator has to be handled by the compiler itself (as it is part of the
move/copy semantics logic that Rust uses internally).

	Default Section
	Slide 1: Course – 6 Gavrilut Dragos
	Slide 2: Agenda for today

	OOP
	Slide 3: OOP
	Slide 4: OOP
	Slide 5: Methods
	Slide 6: Methods
	Slide 7: Methods
	Slide 8: Methods
	Slide 9: Methods
	Slide 10: Static Methods
	Slide 11: Static Methods
	Slide 12: Static Methods
	Slide 13: Static data members
	Slide 14: Static data members
	Slide 15: Static data members
	Slide 16: Calling methods
	Slide 17: Calling methods
	Slide 18: Calling methods
	Slide 19: Constructors
	Slide 20: Constructors
	Slide 21: Constructors
	Slide 22: Constructors
	Slide 23: Constructors
	Slide 24: Constructors
	Slide 25: Constructors
	Slide 26: Constructors
	Slide 27: Constructors
	Slide 28: Constructors
	Slide 29: Constructors
	Slide 30: Constructors
	Slide 31: Constructors
	Slide 32: Constructors
	Slide 33: Constructors
	Slide 34: Functional update syntax
	Slide 35: Functional update syntax
	Slide 36: Functional update syntax
	Slide 37: Functional update syntax
	Slide 38: Functional update syntax
	Slide 39: Functional update syntax
	Slide 40: Functional update syntax
	Slide 41: Functional update syntax
	Slide 42: Functional update syntax
	Slide 43: Method overloading
	Slide 44: Method overloading
	Slide 45: Method overloading
	Slide 46: Destructors
	Slide 47: Destructors
	Slide 48: Destructors
	Slide 49: Consuming an object
	Slide 50: Consuming an object
	Slide 51: Consuming an object
	Slide 52: Consuming an object
	Slide 53: Consuming an object
	Slide 54: Enums
	Slide 55: Enums
	Slide 56: Enums

	Traits
	Slide 57: Traits
	Slide 58: Traits
	Slide 59: Traits
	Slide 60: Traits
	Slide 61: Traits
	Slide 62: Traits
	Slide 63: Traits
	Slide 64: Traits
	Slide 65: Traits
	Slide 66: Traits
	Slide 67: Traits
	Slide 68: Traits
	Slide 69: Traits
	Slide 70: Traits
	Slide 71: Traits
	Slide 72: Traits
	Slide 73: Traits
	Slide 74: Traits
	Slide 75: Traits
	Slide 76: Traits
	Slide 77: Traits
	Slide 78: Traits
	Slide 79: Traits
	Slide 80: Traits
	Slide 81: Traits
	Slide 82: Traits
	Slide 83: Traits
	Slide 84: Traits
	Slide 85: Traits
	Slide 86: Traits
	Slide 87: Traits
	Slide 88: Traits
	Slide 89: Traits
	Slide 90: Traits
	Slide 91: Traits
	Slide 92: Traits
	Slide 93: Traits
	Slide 94: Traits
	Slide 95: Traits
	Slide 96: Traits
	Slide 97: Traits
	Slide 98: Traits
	Slide 99: Traits
	Slide 100: Traits
	Slide 101: Traits
	Slide 102: Traits
	Slide 103: Traits
	Slide 104: Traits
	Slide 105: Traits

	Super traits
	Slide 106: Super traits
	Slide 107: Super traits
	Slide 108: Super traits
	Slide 109: Super traits
	Slide 110: Super traits
	Slide 111: Super traits
	Slide 112: Super traits
	Slide 113: Super traits
	Slide 114: Super traits
	Slide 115: Super traits
	Slide 116: Super traits

	Special traits
	Slide 117: Special Traits
	Slide 118: Special Traits
	Slide 119: Special Traits
	Slide 120: Special Traits (Copy & Clone)
	Slide 121: Special Traits (Copy & Clone)
	Slide 122: Special Traits (Copy & Clone)
	Slide 123: Special Traits (Copy & Clone)
	Slide 124: Special Traits (Display & Debug)
	Slide 125: Special Traits (Display & Debug)
	Slide 126: Special Traits (Display & Debug)
	Slide 127: Special Traits (Display & Debug)
	Slide 128: Special Traits (Default)
	Slide 129: Special Traits (Default)
	Slide 130: Special Traits (Default)
	Slide 131: Special Traits (Default)
	Slide 132: Special Traits (Default)
	Slide 133: Special Traits (Default)
	Slide 134: Special Traits (Eq and PartialEq)
	Slide 135: Special Traits (Eq and PartialEq)
	Slide 136: Special Traits (Eq and PartialEq)
	Slide 137: Special Traits (Eq and PartialEq)
	Slide 138: Special Traits (Ord and PartialOrd)
	Slide 139: Special Traits (Ord and PartialOrd)
	Slide 140: Special Traits (Ord and PartialOrd)
	Slide 141: Special Traits (Ord and PartialOrd)
	Slide 142: Special Traits (Ord and PartialOrd)
	Slide 143: Special Traits (Drop)
	Slide 144: Special Traits (Drop)
	Slide 145: Special Traits (Drop)
	Slide 146: Special Traits (Drop)
	Slide 147: Special Traits (Drop)
	Slide 148: Special Traits (Drop)
	Slide 149: Special Traits (Drop)
	Slide 150: Special Traits (Sized)
	Slide 151: Special Traits (Sized)
	Slide 152: Special Traits (Sized)
	Slide 153: Special Traits (Deref and DerefMut)
	Slide 154: Special Traits (Deref and DerefMut)
	Slide 155: Special Traits (Deref and DerefMut)
	Slide 156: Special Traits (Deref and DerefMut)
	Slide 157: Special Traits (Deref and DerefMut)
	Slide 158: Special Traits (From and Into)
	Slide 159: Special Traits (From and Into)
	Slide 160: Special Traits (From and Into)
	Slide 161: Special Traits (From and Into)
	Slide 162: Special Traits (AsRef and AsMut)
	Slide 163: Special Traits (AsRef and AsMut)
	Slide 164: Special Traits (AsRef and AsMut)
	Slide 165: Special Traits (AsRef and AsMut)
	Slide 166: Special Traits (AsRef and AsMut)
	Slide 167: Special Traits (AsRef and AsMut)
	Slide 168: Special Traits (AsRef and AsMut)

	Operators
	Slide 169: Operators
	Slide 170: Operators
	Slide 171: Operators
	Slide 172: Operators
	Slide 173: Operators
	Slide 174: Operators
	Slide 175: Operators
	Slide 176: Operators
	Slide 177: Operators
	Slide 178: Operators
	Slide 179: Operators
	Slide 180: Operators
	Slide 181: Operators
	Slide 182: Operators
	Slide 183: Operators
	Slide 184: Operators
	Slide 185: Operators
	Slide 186: Operators

	Q&A
	Slide 187

