
Course – 7
Gavrilut Dragos

Rust programming

rev 10

Agenda for today

1. Generics

2. Match

Generics

Generics are a way of describing how methods, structs, enums and traits can be
built based on a template where the type(s) that is(are) being used in those
constructs is/are unknown and will be replace by the compiler at built time.

Generics are very similar to C++ concept (C++20) or somehow similar cu C++
templates, but there are a couple of exceptions (for example, a generic in Rust has
the semantic ability to describe some limitations).

Keep in mind that generic work by build code based on a template (this means that
using multiple generics will increase the size of your final binary).

Generics

Generics can be applied for methods/functions or structures/enum and traits. The
general format is:

1. Functions
fn name <Type1:Bounds, Type2:Bounds ,…Typen:Bounds> (…) -> …
 or
fn name <Type1, Type2 ,…Typen> (…) -> ReturnType
where Type1:Bounds ,…Typen:Bounds {…}

2. Struct/Enum/Traits
struct name <Type1:Bounds, Type2:Bounds ,…Typen:Bounds> (…) -> …
 or
struct name <Type1, Type2 ,…Typen> (…) where Type1:Bounds ,…Typen:Bounds {…}

OBS: Bounds are a combination of traits and lifetime rules that explain some requirements for a type
used in a template.

Generics

Generics can be applied for methods/functions or structures/enum and traits. The
general format is:

3. Template/Generic methods within the implementation of a type

 or

Generics

impl TypeName
{

fn name <Type1:Bounds, Type2:Bounds ,…Typen:Bounds> (…) {…}
}

impl TypeName
{

fn name <Type1, Type2 ,…Typen> (…) -> ReturnType
where Type1:Bounds ,…Typen:Bounds
{…}

}

Generics can be applied for methods/functions or structures/enum and traits. The
general format is:

4. Traits

Generics

trait TraitName <Type1:Bounds, Type2:Bounds ,…Typen:Bounds>
{

fn method1 (…);
fn method2 (…);
…..
fn methodn (…);

}

1. Generic functions

Generics

fn print<T>(v: T) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

error[E0277]: `T` doesn't implement `Debug`
 --> src\main.rs:4:21
 |
4 | println!("{:?}",v);
 | ^ `T` cannot be formatted using `{:?}` because it doesn’t
 | implement `Debug`
 |
 = note: this error originates in the macro `$crate::format_args_nl` (in Nightly
builds, run with -Z macro-backtrace for more info)
help: consider restricting type parameter `T`
 |
3 | fn print<T: std::fmt::Debug>(v: T) {
 | +++++++++++++++++

Error

1. Generic functions

Generics

fn print<T>(v: T) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

error[E0277]: `T` doesn't implement `Debug`
 --> src\main.rs:4:21
 |
4 | println!("{:?}",v);
 | ^ `T` cannot be formatted using `{:?}` because it doesn’t
 | implement `Debug`
 |
 = note: this error originates in the macro `$crate::format_args_nl` (in Nightly
builds, run with -Z macro-backtrace for more info)
help: consider restricting type parameter `T`
 |
3 | fn print<T: std::fmt::Debug>(v: T) {
 | +++++++++++++++++

Error

Notice that creating a stand-alone
 template is not enough. Rust requires an
explicit restriction (in this case since we
are using println macro to output value

“v”, type “T” must implement Debug
(due to the use of {:?}) in order to be

printable.

1. Generic functions

Generics

use std::fmt::Debug;

fn print<T: Debug>(v: T) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

Output

10
1.5
"Hello"

use std::fmt::Debug;

fn print<T>(v: T)
where
 T: Debug,
{
 println!("{:?}", v);
}
fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust
Output

10
1.5
"Hello"

In reality, Rust actually builds 3 functions (one for each type T [i32,f32 and &str] used)

Generics

use std::fmt::Debug;

fn print<T: Debug>(v: T) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

fn print_i32(v: i32) {
 println!("{:?}",v);
}
fn print_f32(v: f32) {
 println!("{:?}",v);
}
fn print_str(v: &str) {
 println!("{:?}",v);
}
fn main() {
 print_i32(10);
 print_f32(1.5);
 print_str("Hello");
}

Rust equivalent code

Output

10
1.5
"Hello"

use std::fmt::Debug;

fn print(v: impl Debug) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

Generic are identical to using impl <trait> (except that turbofish can not be used).

Generics

use std::fmt::Debug;

fn print<T: Debug>(v: T) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

error[E0107]: function takes 0 generic arguments but 1 generic argument was supplied
12 | print::<f32>(1.5);
 | ^^^^^------- help: remove these generics
 | |
 | expected 0 generic arguments

ErrorOutput

10
1.5
“Hello”

Generic are identical to using impl <trait> (except that turbofish can not be used).

Outside of turbofish usage, the behavior is similar (using impl <trait> works like a
syntatictic sugar).

use std::fmt::Debug;

fn print(v: impl Debug) {
 println!("{:?}",v);
}

fn main() {
 print(10);
 print(1.5);
 print("Hello");
}

Rust

Generics

use std::fmt::Debug;

fn print<T: Debug>(v: T) {
 println!("{:?}",v);
}

fn main() {
 print::<i32>(10);
 print::<f32>(1.5);
 print::<&str>("Hello");
}

Rust

Output

10
1.5
“Hello”

1. Generic functions (a more complex example)

So … what happens in this case ?

Generics

use std::ops::Add;

fn compute_sum<T: Add>(v1: T, v2: T) -> T
{
 return v1 + v2;
}
fn main() {
 let r1 = compute_sum::<i32>(10,5);
 let r2 = compute_sum::<f32>(10.5,5.5);
 println!("{r1},{r2}");
}

Rust error[E0308]: mismatched types
 --> src\main.rs:4:12
 |
3 | fn compute_sum<T: Add>(v1: T, v2: T) -> T {
 | - this type parameter - expected
 | `T` because of return type
4 | return v1+v2;
 | ^^^^^ expected type parameter `T`,
 | found associated type
 |

Error

1. Generic functions (a more complex example)

We have specified that T must support the Add trait as we know that we will add v1 with v2

Generics

use std::ops::Add;

fn compute_sum<T: Add>(v1: T, v2: T) -> T
{
 return v1 + v2;
}
fn main() {
 let r1 = compute_sum::<i32>(10,5);
 let r2 = compute_sum::<f32>(10.5,5.5);
 println!("{r1},{r2}");
}

Rust

We need to specify that T must implement
the Add trait in order for the addition of

v1+v2 to be possible.

1. Generic functions (a more complex example)

We have specified that T must support the Add trait as we know that we will add v1 with v2

Generics

use std::ops::Add;

fn compute_sum<T: Add>(v1: T, v2: T) -> T
{
 return v1 + v2;
}
fn main() {
 let r1 = compute_sum::<i32>(10,5);
 let r2 = compute_sum::<f32>(10.5,5.5);
 println!("{r1},{r2}");
}

Rust

pub trait Add<Rhs = Self> {
 type Output;

 fn add(self, rhs: Rhs) -> Self::Output;
}

Rust (from ariths.rs)

Notice that in order to use the Add trait
we need to specify the Output type.

1. Generic functions (a more complex example)

Notice that in order to properly explain how the template should work, we need to specify that the
result of the addition will be of type T as well ! We do this by adding the <Output=T> to the
specifications of Add trait.

Generics

use std::ops::Add;

fn compute_sum<T: Add<Output=T>>(v1: T, v2: T) -> T {
 return v1+v2;
}
fn main() {
 let r1 = compute_sum::<i32>(10,5);
 let r2 = compute_sum::<f32>(10.5,5.5);
 println!("{r1},{r2}");
}

Rust

Output

15,16

But what if we want to add more restrictions (e.g. we want a specific type to
implement multiple traits). The actual format of Bounds allows this:

Format: Type : Trait1 + Trait2 + … Traitn + Lifetime …

Where a trait can be defined in one of the following ways:

• With its name: Type : Trait

• With its name defined as a template: Type : Trait<T>

• With its name and one or more inner types defined : Type : Trait<Output=…>

OBS: Keep in mind that Type does not necessarily have to be a template type (it
could also be an existing type that requires a bound related to the current template:
for example: i32 : From<T> means that i32 must implement Trait<T>

Generics

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Generics

use std::ops::Add;

fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T3: Add<Output = T3> + From<T1> + From<T2>,
{
 return T3::from(v1) + T3::from(v2);
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

15,15.5

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Generics

use std::ops::Add;

fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T3: Add<Output = T3> + From<T1> + From<T2>,
{
 return T3::from(v1) + T3::from(v2);
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

15,15.5

Trait Add is needed because we add
two values of type T3

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Generics

use std::ops::Add;

fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T3: Add<Output = T3> + From<T1> + From<T2>,
{
 return T3::from(v1) + T3::from(v2);
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

15,15.5

Trait From<T1> is needed because
we convert “v1” to type T3

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Generics

use std::ops::Add;

fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T3: Add<Output = T3> + From<T1> + From<T2>,
{
 return T3::from(v1) + T3::from(v2);
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

15,15.5

Trait From<T2> is needed because
we convert “v2” to type T3

Let’s analyze another example:

Generics

use std::fmt::Display;
use std::ops::Add;
fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T1: Display + Copy,
 T2: Display + Copy,
 T3: Add<Output = T3> + From<T1> + From<T2> + Display,
{
 let result = T3::from(v1) + T3::from(v2);
 println!("{}+{}={}", v1, v2, result);
 return result;
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

10+5=15
10.5+5=15.5
15,15.5

Let’s analyze another example:

Generics

use std::fmt::Display;
use std::ops::Add;
fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T1: Display + Copy,
 T2: Display + Copy,
 T3: Add<Output = T3> + From<T1> + From<T2> + Display,
{
 let result = T3::from(v1) + T3::from(v2);
 println!("{}+{}={}", v1, v2, result);
 return result;
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

10+5=15
10.5+5=15.5
15,15.5

Display trait is needed for println!
macro

Let’s analyze another example:

Generics

use std::fmt::Display;
use std::ops::Add;
fn compute_sum<T1, T2, T3>(v1: T1, v2: T2) -> T3
where
 T1: Display + Copy,
 T2: Display + Copy,
 T3: Add<Output = T3> + From<T1> + From<T2> + Display,
{
 let result = T3::from(v1) + T3::from(v2);
 println!("{}+{}={}", v1, v2, result);
 return result;
}
fn main() {
 let r1 = compute_sum::<i32, i8, i64>(10, 5);
 let r2 = compute_sum::<f32, i8, f64>(10.5, 5);
 println!("{r1},{r2}");
}

Rust

Output

10+5=15
10.5+5=15.5
15,15.5

The ownership of “v1” is transferred
when T3::from(…) is called. As such,

printing v1 is no longer possible,
except for the case where “v1”

implements the Copy trait.

Bounds have another advantage. While in C++, its not that easy to enforce a
specific type/list of types for a template variable, in Rust this can be easily obtained
with a combination of bounds and traits.

Let’s analyze the following problem: we want to create a generic/template where
one of the parameters can only be selected from a specific set of types. In C++, we
would have to use static_assert to achieve this, and even in this case we would still
be limited by the fact that everything is written in a header and as such it can be
easily modified.

In Rust, we will use a combination of traits and bounds to achieve the same result.

Generics

Let’s consider the following snippet and assume that we would like to make sure
that type T is just some signed integer (one of i8, i32 or i128).

Generics

use std::fmt::Display;
fn print<T>(value: T)
where
 T: Display,
{
 println!("{}", value);
}
fn main() {
 print::<i32>(-5);
 print::<i8>(100);
}

Rust

Output

-5
100

The solution is to create a special trait (that does not have to do anything),
implement it for i8, i32 or i128, and finally add a bound for type T.

Generics

use std::fmt::Display;

trait JustIntegers {}
impl JustIntegers for i8 {}
impl JustIntegers for i32 {}
impl JustIntegers for i128 {}

fn print<T>(value: T)
where
 T: Display + JustIntegers
{
 println!("{}", value);
}

fn main() {
 print::<i32>(-5);
 print::<i8>(100);
}

Rust Output

-5
100

The solution is to create a special trait (that does not have to do anything),
implement it for i8, i32 or i128, and finally add a bound for type T.

Generics

use std::fmt::Display;

trait JustIntegers {}
impl JustIntegers for i8 {}
impl JustIntegers for i32 {}
impl JustIntegers for i128 {}

fn print<T>(value: T)
where
 T: Display + JustIntegers
{
 println!("{}", value);
}

fn main() {
 print::<i32>(-5);
 print::<i8>(100);
}

Rust Output

-5
100

Trait JustIntegers is implemented for i8, i32 and i128

Type T must have the trait JustIntegers

The solution is to create a special trait (that does not have to do anything),
implement it for i8, i32 or i128, and finally add a bound for type T.

Generics

use std::fmt::Display;
trait JustIntegers {}
impl JustIntegers for i8 {}
impl JustIntegers for i32 {}
impl JustIntegers for i128 {}

fn print<T>(value: T)
where
 T: Display+JustIntegers,
{
 println!("{}", value);
}
fn main() {
 print::<u32>(1);
}

Rust

error[E0277]: the trait bound `u32: JustIntegers` is not satisfied
 --> src\main.rs:14:18
 |
14 | print::<u32>(1);
 | ------------ ^ the trait `JustIntegers` is not implemented for `u32`
 | |
 | required by a bound introduced by this call
 |
 = help: the following implementations were found:
 <i128 as JustIntegers>
 <i32 as JustIntegers>
 <i8 as JustIntegers>
note: required by a bound in `print`
 --> src\main.rs:9:16
 |
7 | fn print<T>(value: T)
 | ----- required by a bound in this
8 | where
9 | T: Display+JustIntegers,
 | ^^^^^^^^^^^^ required by this bound in `print`

Error

2. Structures

In this example we have create two objects: p1 that has “x” and “y” of type i32, and p2 where both
“x” and “y” are of type f32.

Generics

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T
}
fn main() {
 let p1 = Point::<i32>{ x:1, y:2 };
 let p2 = Point::<f32>{ x:1.2, y:2.3 };
 println!("{:?}",p1);
 println!("{:?}",p2);
}

Rust

Output

Point { x: 1, y: 2 }
Point { x: 1.2, y: 2.3 }

In reality, Rust will construct two completely different structures:

Generics

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T
}
fn main() {
 let p1 = Point::<i32>{ x:1, y:2 };
 let p2 = Point::<f32>{ x:1.2, y:2.3 };
 println!("{:?}",p1);
 println!("{:?}",p2);
}

Rust

#[derive(Debug)]
struct Point_i32 { x: i32, y: i32 }
#[derive(Debug)]
struct Point_f32 { x: f32, y: f32 }

fn main() {
 let p1 = Point_i32{ x:1, y:2 };
 let p2 = Point_f32{ x:1.2, y:2.3 };
 println!("{:?}",p1);
 println!("{:?}",p2);
}

Rust (approximation)

If we want to implement a method for a generic structure or enum, use the
following format: impl<T1, T2,… Tn> StructureName<T1, T2,… Tn> { … }

Generics

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T
}
impl<T> Point<T> {
 fn new(x: T, y: T)->Self { Point {x:x, y:y} }
}
fn main() {
 let p1 = Point::<i32>::new(1,2);
 let p2 = Point::<f32>::new(1.2,2.3);
 println!("{:?}",p1);
 println!("{:?}",p2);
}

Rust

Output

Point { x: 1, y: 2 }
Point { x: 1.2, y: 2.3 }

Types can be inferred from the parameters used. For example, in this case, p1 is of
type Point<i32> because “x” is 1 (an i32) and “y” is 2 (an i32).

Generics

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T,
}
impl<T> Point<T> {
 fn new(x: T, y: T) -> Self {
 Point { x: x, y: y }
 }
}
fn main() {
 let p1 = Point::new(1, 2); // Point<i32>
 let p2 = Point::new(1.2, 2.3); // Point<f64>
 println!("{:?}", p1);
 println!("{:?}", p2);
}

Rust

Output

Point { x: 1, y: 2 }
Point { x: 1.2, y: 2.3 }

If parameters do not match the template, the compiler will throw an error.

Generics

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T,
}
impl<T> Point<T> {
 fn new(x: T, y: T) -> Self {
 Point { x: x, y: y }
 }
}
fn main() {
 let p1 = Point::new(1, 2.5);
 let p2 = Point::new(1.2, 2.3);
 println!("{:?}", p1);
 println!("{:?}", p2);
}

Rust

error[E0308]: mismatched types
 --> src\main.rs:12:28
 |
12 | let p1 = Point::new(1, 2.5);
 | ^^^ expected integer, found floating-point number

Error

You can also use “_” (underline) as a template parameter to ask Rust to infer the
type:

In this case, we did not provide the type “T”, but we’ve asked Rust to infer the type.

Generics

fn f<K: From<T>, T>(x: T) -> K {
 K::from(x)
}
fn main() {
 let x = f::<i64, _>(5); // x is inferred to x64
 println!("{x}");
}

Rust

Output

5

Rust does not support specialized templates (like C++ does).

Generics

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T,
}
impl<T> Point<T> {
 fn new(x: T, y: T) -> Self {
 Point { x: x, y: y }
 }
}
impl Point<i32> {
 fn new(x: i32, y: i32) -> Self {
 Point { x: x * x, y: y * y }
 }
}

Rust

error[E0592]: duplicate definitions with name `new`
 --> src\main.rs:7:5
 |
7 | fn new(x: T, y: T) -> Self {
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^ duplicate definitions for `new`
...
12 | fn new(x: i32, y: i32) -> Self {
 | ------------------------------ other definition for `new`

Error

However, certain functions can be implemented specifically for a type:

Generics

#[derive(Debug)]
struct Point<T> { x: T, y: T, }
impl<T> Point<T> {
 fn new(x: T, y: T) -> Self {
 Point { x: x, y: y }
 }
}
impl Point<i32> {
 fn new_i32(x: i32, y: i32) -> Self {
 Point { x: x * x, y: y * y }
 }
}
fn main() {
 let p1 = Point::<i32>::new_i32(1, 2);
 let p2 = Point::<f32>::new(1.2, 2.3);
 println!("{:?}", p1);
 println!("{:?}", p2);
}

Rust

Output

Point { x: 1, y: 4 }
Point { x: 1.2, y: 2.3 }

However, certain functions can be implemented specifically for a type:

Generics

#[derive(Debug)]
struct Point<T> { x: T, y: T, }
impl<T> Point<T> {
 fn new(x: T, y: T) -> Self {
 Point { x: x, y: y }
 }
}
impl Point<i32> {
 fn new_i32(x: i32, y: i32) -> Self {
 Point { x: x * x, y: y * y }
 }
}
fn main() {
 let p1 = Point::<i32>::new_i32(1, 2);
 let p2 = Point::<f32>::new_i32(1.2, 2.3);
 println!("{:?}", p1);
 println!("{:?}", p2);
}

Rust

error[E0599]: no function or associated item named `new_i32` found for struct
`Point<f32>` in the current scope
 --> src\main.rs:18:28
 |
2 | struct Point<T> {
 | --------------- function or associated item `new_i32` not found for this
...
18 | let p2 = Point::<f32>::new_i32(1.2, 2.3);
 | ^^^^^^^ function or associated item not found in
 | `Point<f32>`
 |
 = note: the function or associated item was found for
 - `Point<i32>`------------------------------ other definition for
 `new`

Error

new_i32 exists only for templates of Point where
T = i32. As such, this line can not compile.

3. Generic methods implemented in a structure/enum

Generics

struct Point {
 x: i32,
 y: i32,
}

impl Point {
 fn add<T>(&mut self, value: T)
 where
 i32: From<T>,
 T: Copy
 {
 self.x += i32::from(value);
 self.y += i32::from(value);
 }
}

fn main() {
 let mut p = Point { x: 5, y: 10 };
 p.add::<i32>(10);
 println!("P is ({},{})",p.x,p.y);
 p.add::<i8>(5);
 println!("P is ({},{})",p.x,p.y);
}

Rust

Output

P is (15,20)
P is (20,25)

3. Generic methods implemented in a structure/enum

Generics

struct Point {
 x: i32,
 y: i32,
}

impl Point {
 fn add<T>(&mut self, value: T)
 where
 i32: From<T>,
 T: Copy
 {
 self.x += i32::from(value);
 self.y += i32::from(value);
 }
}

fn main() {
 let mut p = Point { x: 5, y: 10 };
 p.add::<i32>(10);
 println!("P is ({},{})",p.x,p.y);
 p.add::<i8>(5);
 println!("P is ({},{})",p.x,p.y);
}

Rust

“add” is a generic method within the
implementation for structure Point

3. Generic methods implemented in a structure/enum

Generics

struct Point {
 x: i32,
 y: i32,
}

impl Point {
 fn add<T>(&mut self, value: T)
 where
 i32: From<T>,
 T: Copy
 {
 self.x += i32::from(value);
 self.y += i32::from(value);
 }
}

fn main() {
 let mut p = Point { x: 5, y: 10 };
 p.add::<i32>(10);
 println!("P is ({},{})",p.x,p.y);
 p.add::<i8>(5);
 println!("P is ({},{})",p.x,p.y);
}

Rust

Since we need to convert a value of type T into an i32, then i32
must implement From<T>.

3. Generic methods implemented in a structure/enum

Generics

struct Point {
 x: i32,
 y: i32,
}

impl Point {
 fn add<T>(&mut self, value: T)
 where
 i32: From<T>,
 T: Copy
 {
 self.x += i32::from(value);
 self.y += i32::from(value);
 }
}

fn main() {
 let mut p = Point { x: 5, y: 10 };
 p.add::<i32>(10);
 println!("P is ({},{})",p.x,p.y);
 p.add::<i8>(5);
 println!("P is ({},{})",p.x,p.y);
}

Rust

Since we call i32::from twice, and the value’s ownership is
transferred the first time, T must implement Copy so that the

second i32::from could be valid.

3. Generic methods implemented in a structure/enum

Generics

struct Point {
 x: i32, y: i32,
}
impl Point {
 fn add<T>(&mut self, value: T)
 where
 i32: From<T>,
 T: Copy
 {
 self.x += i32::from(value);
 self.y += i32::from(value);
 }
}
fn main() {
 let mut p = Point { x: 5, y: 10 };
 p.add::<&str>("test");
}

Rust

error[E0277]: the trait bound `i32: From<&str>` is not satisfied
 --> src\main.rs:17:7
 |
17 | p.add::<&str>("test");
 | ^^^ the trait `From<&str>` is not implemented for `i32`
 |
 = help: the following implementations were found:
 <i32 as From<NonZeroI32>>
 <i32 as From<bool>>
 <i32 as From<i16>>
 <i32 as From<i8>>
 and 71 others
note: required by a bound in `Point::add`
 --> src\main.rs:8:14
 |
6 | fn add<T>(&mut self, value: T)
 | --- required by a bound in this
7 | where
8 | i32: From<T>,
 | ^^^^^^^ required by this bound in `Point::add`

Error

4. Generic traits

Generics

trait ConvertorToType<T> {
 fn convert_to(self) -> T;
}
impl ConvertorToType<i32> for i8 {
 fn convert_to(self) -> i32 { (self as i32) * 2 }
}
impl ConvertorToType<f32> for i8 {
 fn convert_to(self) -> f32 { (self as f32) / 2.0 }
}

fn main() {
 let x: f32 = 123i8.convert_to();
 let y: i32 = 123i8.convert_to();
 println!("{x},{y}");
}

Rust

Output

61.5,246

4. Generic traits

Generics

trait ConvertorToType<T> {
 fn convert_to(self) -> T;
}
impl ConvertorToType<i32> for i8 {
 fn convert_to(self) -> i32 { (self as i32) * 2 }
}
impl ConvertorToType<f32> for i8 {
 fn convert_to(self) -> f32 { (self as f32) / 2.0 }
}

fn main() {
 let x: f32 = 123i8.convert_to();
 let y: i32 = 123i8.convert_to();
 println!("{x},{y}");
}

Rust

This behavior is very similar to a
specialized template from C++.

This behavior is very similar to a
specialized template from C++.

4. Generic traits

Generics

trait ConvertorToType<T> {
 fn convert_to(self) -> T;
}
impl ConvertorToType<i32> for i8 {
 fn convert_to(self) -> i32 { (self as i32) * 2 }
}
impl ConvertorToType<f32> for i8 {
 fn convert_to(self) -> f32 { (self as f32) / 2.0 }
}

fn main() {
 let x: f32 = 123i8.convert_to();
 let y: i32 = 123i8.convert_to();
 println!("{x},{y}");
}

Rust

Output

61.5,246

Another similar way of writing the same thing is:
let x = ConvertorToType::<f32>::convert_to(123i8);

At the same time, default implementation for a trait can be used as well.

Generics

trait ConvertorToType<T>
where
 Self: Sized,
 T: From<Self>
{
 fn convert_to(self) -> T {
 T::from(self)
 }
}
impl ConvertorToType<i32> for i8 {}
impl ConvertorToType<f32> for i8 {}

fn main() {
 let x = ConvertorToType::<f32>::convert_to(123i8);
 let y: i32 = 123i8.convert_to();
 println!("{x},{y}");
}

Rust

Output

123,123

It is also possible to overwrite the original implementation:

Generics

trait ConvertorToType<T>
where
 Self: Sized,
 T: From<Self>
{
 fn convert_to(self) -> T { T::from(self) }
}
impl ConvertorToType<i32> for i8 {}
impl ConvertorToType<f32> for i8 {
 fn convert_to(self) -> f32 {
 1.2345
 }
}

fn main() {
 let x = ConvertorToType::<f32>::convert_to(123i8);
 let y: i32 = 123i8.convert_to();
 println!("{x},{y}");
}

Rust

Output

1.2345,123

This behavior is very similar to a
specialized template from C++.

It is also possible to overwrite the original implementation:

Generics

trait ConvertorToType<T>
where
 Self: Sized,
 T: From<Self>
{
 fn convert_to(self) -> T { T::from(self) }
}
impl ConvertorToType<i32> for i8 {}
impl ConvertorToType<f32> for i8 {
 fn convert_to(self) -> f32 {
 1.2345
 }
}

fn main() {
 let x = ConvertorToType::<f32>::convert_to(123i8);
 let y: i32 = 123i8.convert_to();
 println!("{x},{y}");
}

Rust

Why do we need this Sized trait here ?

When compiling the code, the compiler needs to know the size of a type
in order to implement operation over it that might imply copy-ing an

object. Since we already require for T to implement From<Self> and this
implies ownership transfer of Self, Self must have a known size.

It is also possible to overwrite the original implementation:

Generics

trait SomeValue {
 fn get_some_value()->Self;
}
impl SomeValue for i32 {
 fn get_some_value()->i32 { 12345 }
}

trait Initialize<T> where T: SomeValue
{
 fn convert_to(&self) -> T {
 T::get_some_value()
 }
}
impl Initialize<i32> for i8 {}

fn main() {
 let x = Initialize::<i32>::convert_to(&123i8);
 println!("{x}");
}

Rust Output

12345

Notice that we don’t need to use Sized anymore in this case:
• method convert_to receives a reference
• default implementation of convert_to does not require

any ownership transfer (assignments or From methods
called)

When using generics (methods, functions, structures, etc) we might need to use
turbofish (::<…>) notation to refer to a specific implementation of a generic.

In many cases, Rust is able to infer the type (based on parameters) but sometimes
(if several matches for the same generic exists) you might be required to use either
this notation or other forms.

As a generic observation, it is preferred NOT TO use turbofish notation (except for
cases where there is no other way around).

Let’s see some scenarios where this notation can be used. Pay close attention for
alternative situations where a different syntax can be used.

Generics

Case 1:

OBS: Notice that “x.set(123)” does not need to use turbofish notation as we already
know

Generics

struct MyNumber<T> {
 value: T
}
impl<T> MyNumber<T> {
 fn set(&mut self,x: T) {
 self.value = x;
 }
}
fn main() {
 let mut x = MyNumber::<i32>{value:0};
 x.set(123);
 println!("{}",x.value);
}

Rust One case where turbofish can be used is if the structure
is a template/generic and upon creation you need to
explain to Rust the generic parameter(s).
In this particular case, we need to explain what is “T”
when initializing a MyNumber object.
Alternatives:

let mut x = MyNumber{ value:0 };

let mut x:MyNumber<i32> = MyNumber{ value:0 };

Case 2:

Generics

struct MyNumber {
 value: i32
}
impl MyNumber {
 fn set<T>(&mut self,x: T) where i32: From<T>{
 self.value = i32::from(x);
 }
}
fn main() {
 let mut x = MyNumber{value:10};
 x.set::<i8>(100i8);
 println!("{}",x.value);
}

Rust In this case, method set from the implementation of
MyNumber is generic and as such type “T” must be
specified or inferred (if possible).

Alternatives:

x.set(100i8);

Case 3:

Generics

struct MyNumber {
 value: i32,
}
trait ValueSetter<T> {
 fn set(value: T) -> Self;
}
impl ValueSetter<i8> for MyNumber {
 fn set(x: i8)->Self
 {
 MyNumber {
 value: i32::from(x),
 }
 }
}
fn main() {
 let x = MyNumber::set(12i8);
 println!("{}", x.value);
}

Rust Notice that we did not use turbofish notation. This is
because method set is not generic/template and as
such using something like set::<i8>:: (…) is not a valid
semantic expression.

Case 4:

Generics

struct MyNumber<T> {
 value: T,
}
trait ValueSetter<V> {
 fn set(value: V) -> Self;
}
impl<T> ValueSetter<i8> for MyNumber<T>
where
 T: From<i8>,
{
 fn set(x: i8) -> Self {
 MyNumber {
 value: T::from(x),
 }
 }
}
fn main() {
 let x = MyNumber::<i8>::set(123i8);
 println!("{}", x.value);
}

Rust In this case, we need turbofish to specify the template
for MyNumber. Type “V” will be inferred by Rust from
the argument value of set method.

Alternatives:

let x: MyNumber::<i8> = MyNumber::set(123i8);

Case 5:

Generics

struct MyNumber<T> { value: T }
trait ValueSetter<V> { fn set(value: V) -> Self;}
impl<T> ValueSetter<i8> for MyNumber<T>
Where T: From<i8>,
{
 fn set(x: i8) -> Self {
 MyNumber { value: T::from(x) }
 }
}
impl<T> ValueSetter<i16> for MyNumber<T>
Where T: From<i16>,
{
 fn set(x: i16) -> Self {
 MyNumber { value: T::from(x) }
 }
}
fn main() {
 let x = MyNumber::<i32>::set(123 as i16);
 println!("{}", x.value);
}

Rust In this case, we need to specify the type of MyNumber
and we need to make sure that we specifically explain
the parameter type of the method set.
Keep in mind that ::set::<i16>(…) is not valid as method
set is not generic.

Alternatives:

let x: MyNumber::<i32> = MyNumber::set(123 as i16);

Case 6:

Generics

struct MyNumber<T> {
 value: T,
}
trait ValueSetter<V> {
 fn set(value: V) -> Self;
}
impl<T,V> ValueSetter<V> for MyNumber<T>
where
 T: From<V>,
{
 fn set(x: V) -> Self {
 MyNumber {
 value: T::from(x),
 }
 }
}
fn main() {
 let x = MyNumber::<i32>::set(123 as i16);
 println!("{}", x.value);
}

Rust In this case, both “V” and “T” template parameters
must be deducted. For “T” we can use turbofish
notation, “V” will be obtained from the parameter of
set method.

Alternatives:

let x: MyNumber::<i32> = MyNumber::set(123 as i16);

Finally, let’s discuss a little bit what is the advantage of requiring a strict list of traits
within the definition of a Generic. Let’s analyze the following two cases (Rust and C++)

Generics

struct Test {
 x: i32,
}

fn add_values<T>(v1: &T, v2: &T) -> T {
 return v1 + v2;
}

fn main() {
 let t1 = Test { x: 10 };
 let t2 = Test { x: 20 };
 let t3 = Test { x: 0 };
 t3 = add_values(&t1, &t2);
}

Rust

struct Test {
 int x;
};

template <typename T>
T add_values(T& v1, T& v2) {
 return v1 + v2;
}

void main() {
 Test t1 = { 10 };
 Test t2 = { 20 };
 Test t3;
 t3 = add_values(t1, t2);
}

C++

Now → let’s look at how errors are presented in both cases (notice that structure Test
has no add operator in both cases, and as such “v1+v2” where v1,v2 is T is not possible.

Generics

struct Test {
 x: i32,
}

fn add_values<T>(v1: &T, v2: &T) -> T {
 return v1 + v2;
}

fn main() {
 let t1 = Test { x: 10 };
 let t2 = Test { x: 20 };
 let t3 = Test { x: 0 };
 t3 = add_values(&t1, &t2);
}

Rust

struct Test {
 int x;
};

template <typename T>
T add_values(T& v1, T& v2) {
 return v1 + v2;
}

void main() {
 Test t1 = { 10 };
 Test t2 = { 20 };
 Test t3;
 t3 = add_values(t1, t2);
}

C++

error[E0369]: cannot add `&T` to `&T`
 --> src\main.rs:5:15
 |
5 | return v1 + v2;
 | -- ^ -- &T
 | |
 | &T
 |
help: consider restricting type parameter `T`
 |
4 | fn add_values<T: std::ops::Add<Output = &T>>(v1: &T, v2: &T) -> T {
 | ++++++++++++++++++++++++++++

Error

error C2676: binary '+': 'T' does not
define this operator or a conversion to a
type acceptable to the predefined operator

Error

Rust also support constants as a generic parameter (similar to the ones from C++). A
constant parameter must de defined in the template declaration with the keyword
const followed by the generic parameter name and its type (const N: type). Type N can
be one of the following: u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize , isize, char
and bool.

Generics

#[derive(Debug)]
struct FixArray <T,const N: usize> {
 elements: [T;N]
}
fn main() {
 let a:FixArray<i32,5> = FixArray {elements: [0;5]};
 let b:FixArray<char,9> = FixArray {elements: ['A';9]};
 println!("{:?}",a);
 println!("{:?}",b);
}

Rust

Output

FixArray { elements: [0, 0, 0, 0, 0] }
FixArray { elements: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A'] }

Let’s see a more complex example:

Generics

#[derive(Debug)]
struct FixArray<T, const N: usize>
where
 T: std::ops::AddAssign,
 T: From<u8>,
 T: Copy

{
 elements: [T; N],

}

impl<T, const N: usize> FixArray<T, N>
where
 T: std::ops::AddAssign,
 T: From<u8>,
 T: Copy
{
 fn new(value: T) -> Self {
 FixArray::<T, N> {
 elements: [value; N],
 }
 }
 fn consecutive(start: T) -> Self {
 let mut x: FixArray<T, N> = FixArray::new(start);
 let mut temp = start;
 for i in &mut x.elements {
 *i = temp;
 temp += T::from(1u8);
 }
 x
 }

}

Rust (Generic structure declaration) (Generic structure implementation)

Let’s see a more complex example:

Generics

#[derive(Debug)]
struct FixArray<T, const N: usize>
where
 T: std::ops::AddAssign,
 T: From<u8>,
 T: Copy

{
 elements: [T; N],

}

impl<T, const N: usize> FixArray<T, N>
where
 T: std::ops::AddAssign,
 T: From<u8>,
 T: Copy
{
 fn new(value: T) -> Self {
 FixArray::<T, N> {
 elements: [value; N],
 }
 }
 fn consecutive(start: T) -> Self {
 let mut x: FixArray<T, N> = FixArray::new(start);
 let mut temp = start;
 for i in &mut x.elements {
 *i = temp;
 temp += T::from(1u8);
 }
 x
 }

}

Rust

fn main() {
 let a: FixArray<i32, 5> = FixArray::new(1);
 let b: FixArray<u8, 7> = FixArray::consecutive(10);
 println!("{:?}", a);
 println!("{:?}", b);
}

Rust

Output

FixArray { elements: [1, 1, 1, 1, 1] }
FixArray { elements: [10, 11, 12, 13, 14, 15, 16] }

Rust generics can conditionally implement some traits using the where keyword:

Generics

struct MyStruct<T> {
 data: T,
}
trait OddNumber {
 fn is_odd(&self) -> bool;
}
impl OddNumber for i32 {
 fn is_odd(&self) -> bool { (*self % 2) == 1 }
}
impl<T> OddNumber for MyStruct<T>
where
 T: OddNumber,
{
 fn is_odd(&self) -> bool { self.data.is_odd() }
}
fn main() {
 let x: MyStruct<i32> = MyStruct { data: 5 };
 println!("x is odd ? => {}", x.is_odd());
}

Rust
Output

x is odd ? => true

This tells the compiler to implement the trait
OddNumber over MyStruct<T> only if T also
implements OddNumber trait.

Rust generics can conditionally implement some traits using the where keyword:

Generics

struct MyStruct<T> {
 data: T,
}
trait OddNumber {
 fn is_odd(&self) -> bool;
}
impl OddNumber for i32 {
 fn is_odd(&self) -> bool { (*self % 2) == 1 }
}
impl<T> OddNumber for MyStruct<T>
where
 T: OddNumber,
{
 fn is_odd(&self) -> bool { self.data.is_odd() }
}
fn main() {
 let x: MyStruct<i32> = MyStruct { data: 5 };
 println!("x is odd ? => {}", x.is_odd());
}

Rust
Output

x is odd ? => true

Since i32 implements OddNumber, so will
MyStruct<i32> implement OddNumber as well.
As a result, we can call x.is_odd().

Rust generics can conditionally implement some traits using the where keyword:

Generics

struct MyStruct<T> {
 data: T,
}
trait OddNumber {
 fn is_odd(&self) -> bool;
}
impl OddNumber for i32 {
 fn is_odd(&self) -> bool { (*self % 2) == 1 }
}
impl<T> OddNumber for MyStruct<T>
where
 T: OddNumber,
{
 fn is_odd(&self) -> bool { self.data.is_odd() }
}
fn main() {
 let x: MyStruct<u32> = MyStruct { data: 5 };
 println!("x is odd ? => {}", x.is_odd());
}

Rust

In this case, we can not call x.is_odd() as the trait
OddNumber was not implemented over MyStruct<u32> due
to the fact that u32 does not implement OddNumber.

error[E0599]: the method `is_odd` exists for struct `MyStruct<u32>`, but
its trait bounds were not satisfied
 --> src\main.rs:22:36
 |
1 | struct MyStruct<T> {
 | ------------------
 | |
 | method `is_odd` not found for this struct
 | doesn't satisfy `MyStruct<u32>: OddNumber`
...
22 | println!("x is odd ? => {}", x.is_odd());
 | ^^^^^^ method cannot be called on
`MyStruct<u32>` due to unsatisfied trait bounds
 |

Error

Rust generics can conditionally implement some traits using the where keyword:

Generics

struct MyStruct<T> {
 data: T,
}
trait OddNumber {
 fn is_odd(&self) -> bool;
}
impl OddNumber for i32 {
 fn is_odd(&self) -> bool { (*self % 2) == 1 }
}
impl<T> OddNumber for MyStruct<T>
where
 T: OddNumber,
{
 fn is_odd(&self) -> bool { self.data.is_odd() }
}
fn main() {
 let x: MyStruct<u32> = MyStruct { data: 5 };
 println!("x = {}",x.data);
}

Rust

Notice that this code compiles correctly. This is because
OddNumber is only implemented for MyStruct<T> if only if T
implements OddNumber. Otherwise, the trait is is not
implemented and if is_odd method is not called the code compiles.

Output

5

This conditional implementation of traits for generics allows Rust to add a specific
behavior whenever #[derive] is being used over a generic. Let’s analyze the following
case:

Generics

fn main() {
 let x: Option<i32> = Some(1);
 let y = x;
 println!("x = {:?}, y = {:?}",x,y);
}

Rust

Output

x = Some(1), y = Some(1)

fn main() {
 let x: Option<String> = Some("123".to_string());
 let y = x;
 println!("x = {:?}, y = {:?}",x,y);
}

Rust

error[E0382]: borrow of moved value: `x`
 --> src\main.rs:4:35
 |
2 | let x: Option<String> = Some("123".to_string());
 | - move occurs because `x` has type `Option<String>`, which
 does not implement the `Copy` trait
3 | let y = x;
 | - value moved here
4 | println!("x = {:?}, y = {:?}",x,y);
 | ^ value borrowed here after move

Error

So … why the case with Option<i32> works, but the case with Option<String> does
not ?

Let’s see how Option is defined …

Generics

#[derive(Copy, PartialOrd, Eq, Ord, Debug, Hash)]
#[rustc_diagnostic_item = "Option"]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Option<T> {
 /// No value.
 #[lang = "None"]
 #[stable(feature = "rust1", since = "1.0.0")]
 None,
 /// Some value of type `T`.
 #[lang = "Some"]
 #[stable(feature = "rust1", since = "1.0.0")]
 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
}

Rust (option.rs)

So … why the case with Option<i32> works, but the case with Option<String> does
not ?

Let’s see how Option is defined …

Generics

#[derive(Copy, PartialOrd, Eq, Ord, Debug, Hash)]
#[rustc_diagnostic_item = "Option"]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Option<T> {
 /// No value.
 #[lang = "None"]
 #[stable(feature = "rust1", since = "1.0.0")]
 None,
 /// Some value of type `T`.
 #[lang = "Some"]
 #[stable(feature = "rust1", since = "1.0.0")]
 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
}

Rust (option.rs)

As you can see, Option generic implements the Copy trait. The #derive will add generate a code
in the following format:

impl<T> Copy for Option<T> Where T: Copy {…}
Since i32 implements Copy, so does Option<i32>. Similarly, since String does not implement
Copy, Option<String> will not implement Copy, thus explaining the different behavior in the
two presented cases.

Match

Rust has a specific keyword (match) designed for complex and efficient value
matching against various patterns. This is similar to the switch keyword from C++,
however it is more complex and can perform more complex matches.

The general format for a match is:

- where rulei has
 the following
 format:

A rule in a match is often called an arm of the pattern matching !

Match

match value {
 rule1,
 rule2,
 ….
 rulen,
}

- pattern => code
- pattern => { code }
- pattern if condition => code
- pattern if condition => { code }

“pattern if condition” is
also called a match guard

match value {
 rule1,
 rule2,
 ….
 rulen,
}

There are a couple of constraints that need to be followed for a match to be
correct:

1. At least one rule must be provided to a match construct

2. All possible values must be covered by the existing rules provided to a match
construct

3. No overlapping rules. There can not be two rules in the same match construct
that match the same value.

Character underline (‘_’) used as a pattern has a special meaning : everything else.
It is similar to the usage of default keyword in a C++ switch statement.

Match

The pattern used in a match constructs also has multiple forms:

1. A single constant value (e.g. a number, a string, etc)

2. Multiple constant values, separated by ‘|’ operator → (e.g. 1 | 2 | 3)

3. A range → (e.g. 1..=5)

4. An enum

5. An array

6. A slice

7. A tuple

8. A struct

9. A pointer or a reference

Match

Let’s see a very simple example:

Match

fn main() {
 for x in 1..10 {
 match x {
 1 => println!("one"),
 2 => println!("two"),
 3 => println!("three"),
 4 => println!("four"),
 5 => println!("five"),
 _ => println!("Another number"),
 }
 }
}

Rust Output

one
two
three
four
five
Another number
Another number
Another number
Another number

Let’s see a very simple example:

Notice that we have removed the arm/rule “_ => println!("Another number")”.
As a result, not all possible cases are covered, and a compile error is thrown. The
error also provides a list of values that were missed (values from i32::MIN to 0 and
values from 6 to i32::MAX)

Match

fn main() {
 for x in 1..10 {
 match x {
 1 => println!("one"),
 2 => println!("two"),
 3 => println!("three"),
 4 => println!("four"),
 5 => println!("five"),
 }
 }
}

Rust

error[E0004]: non-exhaustive patterns: `i32::MIN..=0_i32` and `6_i32..=i32::MAX`
not covered
 --> src\main.rs:3:15
 |
3 | match x {
 | ^ patterns `i32::MIN..=0_i32` and `6_i32..=i32::MAX` not covered
 |

Error

Let’s see a very simple example:

Notice that we can also match strings.

Match

fn main() {
 let text = "three";
 let value: i32;
 match text {
 "one" => value = 1,
 "two" => value = 2,
 "three" => value = 3,
 "four" => value = 4,
 _ => value = 0,
 }
 println!("value = {value}");
}

Rust Output

value = 3

As a general rule, in case of strings, you have to check every one of them – so the
usual complexity is O(n). However, in some cases, Rust can make some
optimization:

Match

fn foo(x: &str) -> u32 {
 match x {
 "one" => 1,
 "two" => 2,
 "three" => 3,
 "four" => 4,
 _ => 0,
 }
}

Rust (1.73.0 – optimized) In this case Rust first checks the length and then the values. For
example, if the string has a length of 4 bytes, it only needs to check it
against the string “four”. Furthermore, if the string does not have the

length 3,4 or 5 than it return 0 (the default case).

foo:
 cmp rsi, 5 // rsi = length of x
 je has_length_of_5
 cmp rsi, 4
 je has_length_of_4
 xor eax, eax
 cmp rsi, 3
 jne default case

As a general rule, in case of strings, you have to check every one of them – so the
usual complexity is O(n). However, in some cases, Rust can make some
optimization:

Match

fn foo(x: &str) -> u32 {
 match x {
 "abcd" => 5,
 "ghij" => 15,
 "klmn" => 25,
 _ => 100,
 }
}

Rust (1.73.0 – optimized) In this case, since all strings have
size 4, and 4 bytes actually

represent an u32, the solution is
to check the value directly.

Simply put, the u32 with value
1684234849 is in fact the u32
value of a memory with 4 bytes

that are “abcd”

foo:
 mov eax, 100
 cmp rsi, 4
 jne SIZE_IS_NOT_4
 cmp dword ptr [rdi], 1684234849
 je TEXT_IS_abcd
 cmp dword ptr [rdi], 1785292903
 je TEXT_IS_ghij
 cmp dword ptr [rdi], 1852664939
 setne al
 test al, 1
 mov ecx, 100
 mov eax, 25
 cmovne eax, ecx

SIZE_IS_NOT_4:
 ret
TEXT_IS_abcd:
 mov eax, 5
 ret

TEXT_IS_ghij:
 mov eax, 15
 ret

You can initialize any kind of variable in a match construct:

In this we initialize variable “p” that is of type Point.

Match

struct Point {x: i32, y: i32}
fn main() {
 let text = "three";
 let p: Point;
 match text {
 "one" => p = Point{x:1,y:1},
 "two" => p = Point{x:2,y:2},
 "three" => p = Point{x:3,y:3},
 "four" => p = Point{x:4,y:14},
 _ => p = Point{x:0,y:0},
 }
 println!("P = ({},{})",p.x, p.y);
}

Rust Output

P = (3,3)

When initializing a variable through a match construct, that variable MUST be
initialized in all rules/match arms !

Notice that the default case ‘_’ does not initialize variable “p”

Match

struct Point {x: i32, y: i32}
fn main() {
 let text = "three";
 let p: Point;
 match text {
 "one" => p = Point{x:1,y:1},
 "two" => p = Point{x:2,y:2},
 "three" => p = Point{x:3,y:3},
 "four" => p = Point{x:4,y:14},
 _ => {},
 }
 println!("P = ({},{})",p.x, p.y);
}

Rust
error[E0381]: used binding `p` is possibly-uninitialized
 --> src\main.rs:12:28
 |
4 | let p: Point;
 | - binding declared here but left uninitialized
5 | match text {
6 | "one" => p = Point{x:1,y:1},
 | ------------------ binding initialized here in some conditions
7 | "two" => p = Point{x:2,y:2},
 | ------------------ binding initialized here in some conditions
8 | "three" => p = Point{x:3,y:3},
 | ------------------ binding initialized here in some conditions
9 | "four" => p = Point{x:4,y:14},
 | ------------------- binding initialized here in some conditions
...
12 | println!("P = ({},{})",p.x, p.y);
 | ^^^ `p.x` used here but it is possibly-uninitialized
 |

Error

Let’s see a match construct that uses the bool type.

Notice that there is no need for the rule/arm “_” (the default case) if all possible
cases are already covered ! (in case of a bool variable this means the case of value
true and the case of value false).

Match

fn main() {
 let v = true;
 match v {
 true => println!("Value is true"),
 false => println!("Value is false")
 }
}

Rust Output

Value is true

However, it is important to know that using the default case “_” when all possible
cases are already covered will not trigger an error but a warning.

Match

fn main() {
 let v = true;
 match v {
 true => println!("Value is true"),
 false => println!("Value is false"),
 _ => println!("something else")
 }
}

Rust Output

Value is true

warning: unreachable pattern
 --> src\main.rs:6:9
 |
6 | _ => println!("something else")
 | ^
 |
 = note: `#[warn(unreachable_patterns)]` on by default

Warning

Another particular case are floating point values. While right now they are allowed
in a match construct, they are going to be forbidden in future releases due to high
complexity around comparing floating point values (e.g. including NaN values).

More info on this topic on: https://github.com/rust-lang/rust/issues/41620

Match

fn main() {
 let v = 1.2;
 match v {
 1.2 => println!("Found 1.2"),
 1.1 => println!("Found 1.1"),
 0.0 => println!("Found 0"),
 f64::NAN => println!("found NAN"),
 _ => println!("another value")
 }
}

Rust Output

Found 1.2

warning: floating-point types cannot be used in patterns
 --> src\main.rs:4:9
 |
4 | 1.2 => println!("Found 1.2"),
 | ^^^
 |
 = note: `#[warn(illegal_floating_point_literal_pattern)]` on by default
 = warning: this was previously accepted by the compiler but is being phased
out; it will become a hard error in a future release!

Warning

https://github.com/rust-lang/rust/issues/41620
https://github.com/rust-lang/rust/issues/41620
https://github.com/rust-lang/rust/issues/41620

To match multiple values, use the `|` operator like in the following example:

The same logic where every possible value has to be matched by one of the rules
has to be present in this case as well (this is why we need the final ‘_’ (default)
rule).

Match

fn main() {
 let v = 19;
 match v {
 2 => println!("An odd prime number"),
 3|5|7 => println!("Prime numbers under 10"),
 11|13|17|19 => println!("Prime numbers under 20"),
 _ => println!("Another value")
 }
}

Rust
Output

Prime numbers under 20

However, it is possible to duplicate a value when using the OR (‘|’) operator. The
code will compile and will use the match rule that first uses that value. At the same
time, a warning will be thrown to explain that the second value is unreachable.

In this case, the second 19 value is considered an unreachable pattern. Notice that
the output now is “Prime numbers under 10” as the match is done for the rule that
first uses 19 (rule with 3|5|7|19)

Match

fn main() {
 let v = 19;
 match v {
 2 => println!("An odd prime number"),
 3|5|7|19 => println!("Prime numbers under 10"),
 11|13|17|19 => println!("Prime numbers under 20"),
 _ => println!("Another value")
 }
}

Rust
Output

Prime numbers under 10

warning: unreachable pattern
 --> src\main.rs:6:18
 |
6 | 11|13|17|19=> println!("Prime numbers under 20"),
 | ^^
 |
 = note: `#[warn(unreachable_patterns)]` on by default

Warning

It is also possible to match entire intervals (by using the operator ..=). However,
keep in mind that matching an entire interval (or several of them) is not always a
simple job (if you want to improve matching performance).

As such, it is preferred to use inclusive intervals (a..=b) rather than exclusive ones.

Match

fn main() {
 let grade = 5;
 match grade {
 1..=4 => println!("Class failed"),
 5..=10 => println!("Class passed"),
 _ => println!("Invalid grade"),
 }
}

Rust
Output

Class passed

Partial intervals can be used (notice the 5.. usage in the next code).

Keep in mind that default value “_” has to be used in this case to cover all possible
cases (for example value 0 or negative values).

Match

fn main() {
 let grade = 5;
 match grade {
 1..=4 => println!("Class failed"),
 5.. => println!("Class passed"),
 _ => println!("Invalid grade"),
 }
}

Rust
Output

Class passed

Overlapping intervals are also possible !

OBS: Keep in mind that intervals are hard to optimize and that the goal of a
matcher is to obtain an O(1) access/check time.

Match

fn main() {
 let grade = 5;
 match grade {
 1..=4 => println!("Class failed"),
 0..=10 => println!("Class passed"),
 _ => println!("Invalid grade"),
 }
}

Rust
Output

Class passed

For range/interval-based rules only numerical and char values and patterns can be
used. As such constructs like the next one that attempt to match intervals based on
strings are not possible !

Match

fn main() {
 let name = "John";
 match name {
 "abc"..="zzz" => println!("Interval one"),
 " "..="aaa" => println!("Interval two"),
 _ => println!("Another interval"),
 }
}

Rust

error[E0029]: only `char` and numeric types are allowed in range patterns
 --> src\main.rs:4:9
 |
4 | "abc"..="zzz" => println!("Class failed"),
 | -----^^^-----
 | | |
 | | this is of type `&'static str` but it should be `char` or numeric
 | this is of type `&'static str` but it should be `char` or numeric

Error

Match constructs are often used with enums. Notice that since an enum has a
finite set of possible values, the default “_” case is not needed.

Match

enum Color {
 Red,
 Green,
 Blue,
 Black,
}
fn main() {
 let c = Color::Red;
 match c {
 Color::Red => println!("Red"),
 Color::Green => println!("Green"),
 Color::Blue => println!("Blue"),
 Color::Black => println!("Black"),
 }
}

Rust

Output

Red

If a specific case from an enum is not covered, the Rust compiler can also provide
insights into what is missing and what needs to be added.

Match

enum Color {
 Red,
 Green,
 Blue,
 Black,
}
fn main() {
 let c = Color::Red;
 match c {
 Color::Red => println!("Red"),
 Color::Green => println!("Green"),
 Color::Blue => println!("Blue"),
 }
}

Rust

error[E0004]: non-exhaustive patterns: `Color::Black` not covered
 --> src\main.rs:9:11
 |
9 | match c {
 | ^ pattern `Color::Black` not covered
 |
note: `Color` defined here
 --> src\main.rs:5:5
 |
1 | enum Color {
 | -----
...
5 | Black,
 | ^^^^^ not covered
 = note: the matched value is of type `Color`
help: ensure that all possible cases are being handled by adding a
match arm with a wildcard pattern or an explicit pattern as shown
 |
12~ Color::Blue => println!("Blue"),
13~ Color::Black => todo!(),
 |

Error

Let’s discuss another case that involves a match construct and an enum.

Let’s consider library “A” that exports an enum with a list of possible errors defined
like in the following way:

Let’s also consider application “B” that uses library “A” as a dependency and has a
code that matches the errors from library (crate) “A”:

Match

enum Error { Format, IO, Parameters }

match error {
 Error::Format => {…},
 Error::IO => {…},
 Error::Parameters => {…},
}

What happens if library “A” decides to add a new value in the error list ?

The immediate result will be that application “B” will not compile anymore:

So … what are the solutions in this case ?

Match

enum Error { Format, IO, Parameters, Critical }

match error {
 Error::Format => {…},
 Error::IO => {…},
 Error::Parameters => {…},
}

Rust will show an error because this match construct from
application “B” does not match all possible values of Error.

So … what are the solutions in this case ?

1. Application “B” has to refactor its code to match the new constraints from
library “A”. This is possible, but if library “A” changes its enum often, this might
be an issue for the developers of application “A”

2. Library “A” uses the non-exhaustive attribute for their enum:

This flag will force the compiler to explicitly request that application “A” adds
the default case (_) on every match even if all cases are already treated. This
will however make sure that if newer versions of library “A” adds new variants
to the enum, they will be treated application “B”.

Match

#[non_exhaustive]
enum Error { Format, IO, Parameters }

So … what are the solutions in this case ?

2. Library “A” uses the non-exhaustive attribute for their enum:

This flag will force the compiler to explicitly request that application “A” adds
the default case (_) on every match even if all cases are already treated.

As such, the code from application “B” will be changed into something like this:

Match

#[non_exhaustive]
enum Error { Format, IO, Parameters }

match error {
 Error::Format => {…},
 Error::IO => {…},
 Error::Parameters => {…},
 _ => { <default processing for future errors> }
}

Let’s try a more complex enum (one that contains specific values as well). You will
notice that this code does not compile as it requires as to specify the value as well.

Match

enum Distance {
 Inch(i32),
 Cm(i32),
 Km(i32)
}
fn main() {
 let d = Distance::Km(100);
 match d {
 Distance::Inch => println!("Distance is in inch"),
 Distance::Cm => println!("Distance is in cm"),
 Distance::Km => println!("Distance is in km"),
 }
}

Rust

error[E0532]: expected unit struct, unit variant or constant, found tuple variant `Distance::Inch`
 --> src\main.rs:9:9
 |
2 | Inch(i32),
 | --------- `Distance::Inch` defined here
...
9 | Distance::Inch => println!("Distance is in inch"),
 | ^^^^^^^^^^^^^^ help: use the tuple variant pattern syntax instead: `Distance::Inch(_)`

Error

In this context, the underline character ‘_’ means to match any value as long as the
variant type is the one specified. While this code is correct, we might want to get
the actual value as well (e.g. in out case value 100)

Match

enum Distance {
 Inch(i32),
 Cm(i32),
 Km(i32)
}
fn main() {
 let d = Distance::Km(100);
 match d {
 Distance::Inch(_) => println!("Distance is in inch"),
 Distance::Cm(_) => println!("Distance is in cm"),
 Distance::Km(_) => println!("Distance is in km"),
 }
}

Rust
Output

Distance is in km

The general format to get the actual value associated with an enum variant is:
enum::variant(variable_name) => {code}

Match

enum Distance {
 Inch(i32),
 Cm(i32),
 Km(i32)
}
fn main() {
 let d = Distance::Km(100);
 match d {
 Distance::Inch(value) => println!("Distance is {} inch", value),
 Distance::Cm(value) => println!("Distance is {} cm", value),
 Distance::Km(value) => println!("Distance is {} km", value),
 }
}

Rust
Output

Distance is 100 km

We can also match an exact value associated with a variant (in this case for variant
Km we have two rules/match-arms:

• Km(90) that will match cases where Distance type is Km and its value is 90

• Km(value) that will match the rest of the cases where Distance type is Km

Match

enum Distance {
 Inch(i32),
 Cm(i32),
 Km(i32)
}
fn main() {
 let d = Distance::Km(100);
 match d {
 Distance::Inch(value) => println!("Distance is {} inch", value),
 Distance::Cm(value) => println!("Distance is {} cm", value),
 Distance::Km(90) => println!("Particular case (90 Km)"),
 Distance::Km(value) => println!("Distance is {} km", value),
 }
}

Rust
Output

Distance is 100 km

Match constructs are often used with Option<…> and Result<…> enums to match
the two cases those two enums can provide.

Match

fn get_odd_number(value: u32)->Option<u32> {
 if value % 2 != 0 {
 Some(value)
 } else {
 None
 }
}
fn main() {
 let d = get_odd_number(11);
 match d {
 None => println!("Not an odd number"),
 Some(x) => {
 println!("this is an odd number {}",x);
 }
 }
}

Rust

Output

this is an odd number 11

Similar to how enums matching works, a structure and its value can be matched in
a match construct. In this case , the underline character “_” has a special meaning
(it implies that a specific field from a structure can have whatever value we want,
and we don’t need to know its value).

Let’s consider that we have a 2-dimensional screen of size 100 x 100 where points
can be written.

Each point is represented by a structure with two coordonates (X and Y) and we are
interested in knowing if a point is:

• The origin (0,0)

• On one of the margins (X = 0 or X = 100 or Y = 0 or Y = 100)

• The center (50,50)

Match

Let’s see how we can use a match construct to build this rules:

Match

struct Point {
 x: i32,
 y: i32,
}
fn main() {
 let p = Point { x: 0, y: 0 };
 match p {
 Point{x:0,y:0} => println!("Origin"),
 Point{x:50,y:50} => println!("Center"),
 Point{x:0,y:_} => println!("Bottom margin"),
 Point{x:100,y:_} => println!("Top margin"),
 Point{x:_,y:0} => println!("Left margin"),
 Point{x:_,y:100} => println!("Right margin"),
 _ => println!("Other point")
 }
}

Rust
Output

Origin

Let’s see how we can use a match construct to build this rules:

Match

struct Point {
 x: i32,
 y: i32,
}
fn main() {
 let p = Point { x: 0, y: 0 };
 match p {
 Point{x:0,y:0} => println!("Origin"),
 Point{x:50,y:50} => println!("Center"),
 Point{x:0,y:_} => println!("Bottom margin"),
 Point{x:100,y:_} => println!("Top margin"),
 Point{x:_,y:0} => println!("Left margin"),
 Point{x:_,y:100} => println!("Right margin"),
 _ => println!("Other point")
 }
}

Rust
Output

Origin

This matches any Point that has int Y-axes set up to value 0

It is also possible to associate the name of the field to its value by NOT specifying
the expected value (e.g instead of “x:<value>” or “x:_” just use “x”)

Match

struct Point {
 x: i32,
 y: i32,
}
fn main() {
 let p = Point { x: 0, y: 23 };
 match p {
 Point{x:0,y:0} => println!("Origin"),
 Point{x:50,y:50} => println!("Center"),
 Point{x:0,y} => println!("Bottom margin (0,{})",y),
 Point{x:100,y:_} => println!("Top margin"),
 Point{x:_,y:0} => println!("Left margin"),
 Point{x:_,y:100} => println!("Right margin"),
 _ => println!("Other point")
 }
}

Rust
Output

Bottom margin (0,23)

It is also possible to associate the name of the field to its value by NOT specifying
the expected value (e.g instead of “x:<value>” or “x:_” just use “x”)

Match

struct Point {
 x: i32,
 y: i32,
}
fn main() {
 let p = Point { x: 0, y: 23 };
 match p {
 Point{x:0,y:0} => println!("Origin"),
 Point{x:50,y:50} => println!("Center"),
 Point{x:0,y} => println!("Bottom margin (0,{})",y),
 Point{x:100,y:_} => println!("Top margin"),
 Point{x:_,y:0} => println!("Left margin"),
 Point{x:_,y:100} => println!("Right margin"),
 _ => println!("Other point")
 }
}

Rust
Output

Bottom margin (0,23)

Notice that we have not specified a value for the field “y” (in the form of y:value). As
such, it is considered that any value can match “Point::y” and that value is

linked/bounded to the variable “y” that can further be used in the rule code.

It is also possible to associate the name of the field to its value by NOT specifying
the expected value (e.g instead of “x:<value>” or “x:_” just use “x”)

Match

struct Point {
 x: i32,
 y: i32,
}
fn main() {
 let p = Point { x: 0, y: 23 };
 match p {
 Point{x:0,y:0} => println!("Origin"),
 Point{x:50,y:50} => println!("Center"),
 Point{x:0,y} => println!("Bottom margin (0,{})",y),
 Point{x:100,y:_} => println!("Top margin"),
 Point{x:_,y:0} => println!("Left margin"),
 Point{x:_,y:100} => println!("Right margin"),
 _ => println!("Other point")
 }
}

Rust
Output

Bottom margin (0,23)

A similar result can be obtained if we use an alias:
Point{x:0,y:my_var} => println!("Bottom margin (0,{})",my_var),

If a structure has multiple parameters and you are interested in matching only one
of them, you can use “..” to specify that the rest of them should be ignored.

Match

struct Point4D {
 x: i32,
 y: i32,
 z: i32,
 t: i32
}
fn main() {
 let p = Point4D { x: 5, y: 23, z:15, t:30 };
 match p {
 Point4D{x:0,y:0,z:0,t:0} => println!("Origin"),
 Point4D{x:50,y:50,z:50,t:50} => println!("Center"),
 Point4D{x:5, ..} => println!("Some point with x=5"),
 _ => println!("Other point")
 }
}

Rust
Output

Some point with x = 5

If a structure has multiple parameters and you are interested in matching only one
of them, you can use “..” to specify that the rest of them should be ignored.

Match

struct Point4D {
 x: i32,
 y: i32,
 z: i32,
 t: i32
}
fn main() {
 let p = Point4D { x: 5, y: 23, z:15, t:30 };
 match p {
 Point4D{x:0,y:0,z:0,t:0} => println!("Origin"),
 Point4D{x:50,y:50,z:50,t:50} => println!("Center"),
 Point4D{x:5, ..} => println!("Some point with x=5"),
 _ => println!("Other point")
 }
}

Rust
Output

Some point with x = 5

A similar result can be obtained if we use an alias:
Point4D{x:5,y:_,z:_,t:_} => println!("Some point with x=5"),

 or
Point4D{x:5,y,z,t} => println!("Some point with x=5"),

A similar logic to what happens in case of a structure can be applied any tuple. Let’s
consider the previous example with Point4D defined as a tuple:

Match

fn main() {
 // A Point4D with tuples (X,Y,Z,T)
 let p = (0,0,0,0);
 match p {
 (0,0,0,0) => println!("Origin"),
 (0,..) => println!("X-axis is 0 "),
 (1,2,..) => println!("X axis is 0 and Y axis is 2"),
 (_,_,_,10) => println!("T axis is 10"),
 (9,y,z,_) => println!("X is 0, Y = {}, z = {}, t is ignored",y,z),
 (7,..,t) => println!("X is 7, X and Y are ignored, T is {}",t),
 _ => println!("Other point")
 }
}

Rust
Output

Origin

A similar logic to what happens in case of a structure can be applied any tuple. Let’s
consider the previous example with Point4D defined as a tuple:

Match

fn main() {
 // A Point4D with tuples (X,Y,Z,T)
 let p = (7,6,5,4);
 match p {
 (0,0,0,0) => println!("Origin"),
 (0,..) => println!("X-axis is 0 "),
 (1,2,..) => println!("X axis is 0 and Y axis is 2"),
 (_,_,_,10) => println!("T axis is 10"),
 (9,y,z,_) => println!("X is 0, Y = {}, z = {}, t is ignored",y,z),
 (7,..,t) => println!("X is 7, X and Y are ignored, T is {}",t),
 _ => println!("Other point")
 }
}

Rust
Output

X is 7, X and Y are ignored, T is 4

You can use “..” or “_” to ignore
one or multiple values. At the

same time, using a variable
name will assign the value from

the tuple to that variable for
usage in the rule code

A similar logic to what happens in case of a structure can be applied any tuple. Let’s
consider the previous example with Point4D defined as a tuple:

Match

fn main() {
 // A Point4D with tuples (X,Y,Z,T)
 let p = (2,0,0,10);
 match p {
 (0,0,0,0) => println!("Origin"),
 (0,..) => println!("X-axis is 0 "),
 (1,2,..) => println!("X axis is 0 and Y axis is 2"),
 (_,_,_,10) => println!("T axis is 10"),
 (9,y,z,_) => println!("X is 0, Y = {}, z = {}, t is ignored",y,z),
 (7,..,t) => println!("X is 7, X and Y are ignored, T is {}",t),
 _ => println!("Other point")
 }
}

Rust
Output

T axis is 10

A similar result can be obtained if we use the “..” operator:
(..,10) => println!("T axis is 10"),

Keep in mind that the order of the rules matters. If two rules match the same case,
the first one (in terms of the definition order) will be used. In our case, (0,0,0,10)
matches both (0,..) and (_,_,_,10). However, the result will be the first one that its
being matched → (0,..)

Match

fn main() {
 // A Point4D with tuples (X,Y,Z,T)
 let p = (0,0,0,10);
 match p {
 (0,0,0,0) => println!("Origin"),
 (0,..) => println!("X-axis is 0 "),
 (1,2,..) => println!("X axis is 0 and Y axis is 2"),
 (_,_,_,10) => println!("T axis is 10"),
 (9,y,z,_) => println!("X is 0, Y = {}, z = {}, t is ignored",y,z),
 (7,..,t) => println!("X is 7, X and Y are ignored, T is {}",t),
 _ => println!("Other point")
 }
}

Rust
Output

X-axis is 0

Just like in the case of tuples, a similar logic can be applied for array as well. Lets
consider the following example:

OBS: Just like in the previous cases, .. can be used to match multiple consecutive
elements.

Match

fn main() {
 let a = [1,2,3,4];
 match a {
 [0,0,0,0] => println!("A vector with Zeros"),
 [0,..] => println!("A vector with first element Zero"),
 [..,5] => println!("A vector with last element 5"),
 [2,..,3] => println!("A vector with first element 2 and last one 3"),
 [_,2,_,4] => println!("A vector with second element 2 and last one 4"),
 _ => println!("Something else")
 }
}

Rust
Output

A vector with second element 2 and last one 4

You can also capture the value of an element from the array, and/or combine this
method with the usage of _ and .. to ignore one or multiple values.

OBS: Notice that we don’t need the final rule/match-arm for the default value (_).
This is because [_,m,..] will match everything else and will provide the value of the
second parameter in variable “m”

Match

fn main() {
 let a = [0,2,3,4];
 match a {
 [0,0,0,0] => println!("A vector with Zeros"),
 [0,x,y,z] => println!("A vector with [0,{},{},{}]",x,y,z),
 [..,l,5] => println!("A vector with last elements: {} and 5",l),
 [_,m,..] => println!("A vector with the second element {}",m)
 }
}

Rust
Output

A vector with [0,2,3,4]

Keep in mind that in case of arrays, the number of elements described in each rule
must match the number of elements in the array. In this next example, the second
rule/match-arm has 3 elements instead of 4 (the number of elements from “a”)

Match

fn main() {
 let a = [0,2,3,4];
 match a {
 [0,0,0,0] => println!("A vector with Zeros"),
 [0,x,y] => println!("A vector with [0,{},{}]",x,y),
 _ => println!("Something else")
 }
}

Rust

error[E0527]: pattern requires 3 elements but array has 4
 --> src\main.rs:5:9
 |
5 | [0,x,y] => println!("A vector with [0,{},{}]",x,y),
 | ^^^^^^^ expected 4 elements

Error

While in case of arrays, the number of elements must be matched by all patterns,
in case of slices, there is no such rule. Let’s analyze the next example:

Match

fn check_slice(slice: &[u8]) {
 println!("Testing: {:?}",slice);
 match slice {
 [_] => { println!(" Match: a slice with one element "); },
 [a,0] => { println!(" Match: two elements (first is {a}, last is 0)"); },
 [a,b] => { println!(" Match: two elements ({a} and {b})"); },
 [a,_,b] => { println!(" Match: three elements: first:{a}, last:{b}"); },
 [1,..,5] => { println!(" Match: starts with 1 and ends with 5"); }
 _ => { println!(" Match: other cases "); }
 }
}
fn main() {
 let x = [1u8,0,5];
 check_slice(&x);
 check_slice(&x[..1]);
 check_slice(&x[..2]);
}

Rust

Output

Testing: [1, 0, 5]
 Match: three elements: first:1, last:5
Testing: [1]
 Match: a slice with one element
Testing: [1, 0]
 Match: two elements (first is 1, last is 0)

Notice that we have called function
check_slice with slices of various size

(3,1 and 2 elements)

While in case of arrays, the number of elements must be matched by all patterns,
in case of slices, there is no such rule. Let’s analyze the next example:

Match

fn check_slice(slice: &[u8]) {
 println!("Testing: {:?}",slice);
 match slice {
 [_] => { println!(" Match: a slice with one element "); },
 [a,0] => { println!(" Match: two elements (first is {a}, last is 0)"); },
 [a,b] => { println!(" Match: two elements ({a} and {b})"); },
 [a,_,b] => { println!(" Match: three elements: first:{a}, last:{b}"); },
 [1,..,5] => { println!(" Match: starts with 1 and ends with 5"); }
 _ => { println!(" Match: other cases "); }
 }
}
fn main() {
 let x = [1u8,0,5];
 check_slice(&x);
 check_slice(&x[..1]);
 check_slice(&x[..2]);
}

Rust

Notice that there are two arms that match the slice [1,0,5].
Rust will stop at the first match (so the order of the rules

matters).

It is also possible to capture a slice from the array by using the sigil character (@) to
bind a part of the array into a new slice that can be used in the rule/arm code.

In case of arrays, the general format for this type of binding is:

<variable_name> @ ..

Keep in mind that <variable_name> @ _ (to bind a variable name to a single
position) is also possible but unnecessary as you can use the variable name directly.

Match

fn main() {
 let a = [0,1,2,3,4];
 match a {
 [0,0,0,0,0] => println!("A vector with Zeros"),
 [0,middle @..,0] => println!("Middle of the vector is: {:?}",middle),
 [first_3 @ ..,3,4] => println!("First three elements: {:?}", first_3),
 _ => println!("Something else")
 }
}

Rust
Output

First three elements: [0, 1, 2]

However, binding a value with a sigil character (@) is useful for cases where that
value is not stored in a local variable (but it is the result of an expression). Let's
consider the following case:

Notice that the result of get_a_random_value() function is not stored in function
main. As such if we want to use the actual value in one of the match construct
arms, we can’t.

Match

fn get_a_random_value() -> u8 { rand::random::<u8>() % 101u8 }
fn main() {
 match get_a_random_value() {
 0 => println!("Zero"),
 1..=49 => println!("Less than half"),
 50..=99 => println!("Better than half"),
 100 => println!("100"),
 _ => println!("Impossible value")
 }
}

Rust
Output (possible)

Better than half

However, binding a value with a sigil character (@) is useful for cases where that
value is not stored in a local variable (but it is the result of an expression). Let's
consider the following case:

Notice that the result of get_a_random_value() function is not stored in function
main. As such if we want to use the actual value in one of the match construct
arms, we can’t.

Match

fn get_a_random_value() -> u8 { rand::random::<u8>() % 101u8 }
fn main() {
 match get_a_random_value() {
 0 => println!("Zero"),
 n @ 1..=49 => println!("Less than half with value: {}",n),
 n @ 50..=99 => println!("Better than half with value: {}",n),
 100 => println!("100"),
 _ => println!("Impossible value")
 }
}

Rust Output (possible)

Better than half with value: 57

You can also bind with enums variants values. Let’s change the previous example to
use an Option instead of an u8 value.

Match

fn get_a_random_value() -> Option<u8> {
 let x = rand::random::<u8>();
 if x<101u8 { Some(x) } else { None }
}
fn main() {
 match get_a_random_value() {
 Some(0) => println!("Zero"),
 Some(n @ 1..=49) => println!("Less than half with value: {}",n),
 Some(n @ 50..=99) => println!("Better than half with value: {}",n),
 Some(100) => println!("100"),
 Some(_) => println!("Other cases"),
 None => println!("Higher than 100 value")
 }
}

Rust
Output (possible)

Better than half with value: 57

You can also bind with enums variants values. Let’s change the previous example to
use an Option instead of an u8 value.

Match

fn get_a_random_value() -> Option<u8> {
 let x = rand::random::<u8>();
 if x<101u8 { Some(x) } else { None }
}
fn main() {
 match get_a_random_value() {
 Some(0) => println!("Zero"),
 Some(n @ 1..=49) => println!("Less than half with value: {}",n),
 Some(n @ 50..=99) => println!("Better than half with vaue: {}",n),
 Some(100) => println!("100"),
 Some(_) => println!("Other cases"),
 None => println!("Higher than 100 value")
 }
}

Rust
Output (possible)

Better than half with value: 57

Notice that in reality, Some(_) case is not needed
as all possible values are already covered.

However, as all possible u8 values for the Some
case must be covered we have to add it otherwise

we will not be able to compile the code.

Rust also support guards for a rule/match-arm. This allows using a more complex
checks than the one than the ones allowed by the pattern rule/matching arm.

OBS: Keep in mind that guards might have a performance impact (use them
carefully !)

Match

fn get_a_random_value() -> u8 {
 rand::random::<u8>() % 101u8
}
fn main() {
 match get_a_random_value() {
 v if v == 0 => println!("Zero"),
 v if v < 49 => println!("Less than half with value: {}",v),
 v if v < 99 => println!("Better than half with value: {}",v),
 v if v == 100 => println!("100"),
 _ => println!("Impossible value")
 }
}

Rust
Output (possible)

Better than half with value: 95

Let’s consider an even more complex example where we use the match guard to
filter out prime numbers.

Match

fn get_a_random_value() -> u8 {
 rand::random::<u8>() % 20u8
}
fn is_prime(value: u8) -> bool {
 if value < 2 { return false; }
 if value == 2 { return true; }
 for i in 2..=(value/2) {
 if (value % i) == 0 { return false; }
 }
 return true;
}
fn main() {
 match get_a_random_value() {
 v if v == 0 => println!("Zero"),
 v if is_prime(v) => println!("A prime number: {}",v),
 v => println!("Other values: {}",v)
 }
}

Rust
Output (possible)

A prime number: 5

Match (C++ vs Rust)

Option/Feature Rust C++

Match numerical value (e.g. integers) YES YES

Match strings constants (literals) → “…” YES -

Match enums (classical) YES YES

Match enums (variant style) YES -

Match structs YES -

Match tuples YES -

Match arrays YES -

Match multiple values YES YES

Match intervals YES -

Guards YES -

Variable binding YES -

Continue to next rule/match arm - YES

Keep in mind that a match construct is desired to be fast (ideally with O(1) access time),
but these optimization will not always be possible. Some of the limitations of C++ are
because they can not obtain a better performance with a switch for some cases (other
than a linear O(n) one).

Examples where using a match should provide best performance:
• Constant numbers (ideally consecutive numbers: 0,1,2, ….)

• Enum values (but not variants)

Examples where using a match will probably translate into a chained if…else constructs
• Strings → it is more efficient to use an automata

• Multiple numeric intervals (especially if they have gaps)

• Guards

Match

Q
A&

	Default Section
	Slide 1: Course – 7 Gavrilut Dragos
	Slide 2: Agenda for today

	Generics
	Slide 3: Generics
	Slide 4: Generics
	Slide 5: Generics
	Slide 6: Generics
	Slide 7: Generics
	Slide 8: Generics
	Slide 9: Generics
	Slide 10: Generics
	Slide 11: Generics
	Slide 12: Generics
	Slide 13: Generics
	Slide 14: Generics
	Slide 15: Generics
	Slide 16: Generics
	Slide 17: Generics
	Slide 18: Generics
	Slide 19: Generics
	Slide 20: Generics
	Slide 21: Generics
	Slide 22: Generics
	Slide 23: Generics
	Slide 24: Generics
	Slide 25: Generics
	Slide 26: Generics
	Slide 27: Generics
	Slide 28: Generics
	Slide 29: Generics
	Slide 30: Generics
	Slide 31: Generics
	Slide 32: Generics
	Slide 33: Generics
	Slide 34: Generics
	Slide 35: Generics
	Slide 36: Generics
	Slide 37: Generics
	Slide 38: Generics
	Slide 39: Generics
	Slide 40: Generics
	Slide 41: Generics
	Slide 42: Generics
	Slide 43: Generics
	Slide 44: Generics
	Slide 45: Generics
	Slide 46: Generics
	Slide 47: Generics
	Slide 48: Generics
	Slide 49: Generics
	Slide 50: Generics
	Slide 51: Generics
	Slide 52: Generics
	Slide 53: Generics
	Slide 54: Generics
	Slide 55: Generics
	Slide 56: Generics
	Slide 57: Generics
	Slide 58: Generics
	Slide 59: Generics
	Slide 60: Generics
	Slide 61: Generics
	Slide 62: Generics
	Slide 63: Generics
	Slide 64: Generics
	Slide 65: Generics
	Slide 66: Generics
	Slide 67: Generics
	Slide 68: Generics
	Slide 69: Generics
	Slide 70: Generics

	Match
	Slide 71: Match
	Slide 72: Match
	Slide 73: Match
	Slide 74: Match
	Slide 75: Match
	Slide 76: Match
	Slide 77: Match
	Slide 78: Match
	Slide 79: Match
	Slide 80: Match
	Slide 81: Match
	Slide 82: Match
	Slide 83: Match
	Slide 84: Match
	Slide 85: Match
	Slide 86: Match
	Slide 87: Match
	Slide 88: Match
	Slide 89: Match
	Slide 90: Match
	Slide 91: Match
	Slide 92: Match
	Slide 93: Match
	Slide 94: Match
	Slide 95: Match
	Slide 96: Match
	Slide 97: Match
	Slide 98: Match
	Slide 99: Match
	Slide 100: Match
	Slide 101: Match
	Slide 102: Match
	Slide 103: Match
	Slide 104: Match
	Slide 105: Match
	Slide 106: Match
	Slide 107: Match
	Slide 108: Match
	Slide 109: Match
	Slide 110: Match
	Slide 111: Match
	Slide 112: Match
	Slide 113: Match
	Slide 114: Match
	Slide 115: Match
	Slide 116: Match
	Slide 117: Match
	Slide 118: Match
	Slide 119: Match
	Slide 120: Match
	Slide 121: Match
	Slide 122: Match
	Slide 123: Match
	Slide 124: Match
	Slide 125: Match
	Slide 126: Match (C++ vs Rust)
	Slide 127: Match

	Q&A
	Slide 128

