Rust programming
Course — 7/

Gavrilut Dragos

Agenda for today

1. Generics
2. Match

Generics

Generics

Generics are a way of describing how methods, structs, enums and traits can be
built based on a template where the type(s) that is(are) being used in those
constructs is/are unknown and will be replace by the compiler at built time.

Generics are very similar to C++ concept (C++20) or somehow similar cu C++
templates, but there are a couple of exceptions (for example, a generic in Rust has
the semantic ability to describe some limitations).

Keep in mind that generic work by build code based on a template (this means that
using multiple generics will increase the size of your final binary).

Generics

Generics can be applied for methods/functions or structures/enum and traits. The
general format is:

1. Functions
fn name <Type,:Bounds, Type,:Bounds,...Type_ :Bounds> (...) ->

fn name <Type,, Type,,...Type > (...) -> ReturnType
where Type,:Bounds,... Type, :Bounds {...}

2. Struct/Enum/Traits
struct name <Type,:Bounds, Type,:Bounds,...Type :Bounds> (...) ->

struct name <Type,, Type,,...Type, > (...) where Type,:Bounds,...Type :Bounds{...}

OBS: are a combination of traits and lifetime rules that explain some requirements for a type
used in a template.

Generics

Generics can be applied for methods/functions or structures/enum and traits. The
general format is:

3. Template/Generic methods within the implementation of a type

impl TypeName
{

fn name <Type,:Bounds, Type,:Bounds ,...Type :Bounds> (...) {...}

}

impl TypeName

{
fn name <Type,, Type,,...Type > (...) -> ReturnType

where Type,:Bounds,...Type :Bounds
{...}

Generics

Generics can be applied for methods/functions or structures/enum and traits. The
general format is:

4. Traits

trait TraitName <Type,:Bounds, Type,:Bounds ,...Type :Bounds>

{
fn method, (...);

fn method, (...);

fn method, (...);

Generics

1. Generic functions

Rust

fn pr‘int<T>(v: T) { error[E@277]: T doesn't implement "Debug

--> src\main.rs:4:21

rintln! ("{:?}",v); |
P ({ } ?) ? 4 println!("{:?}",v);
A T cannot be formatted using “{:?} because it doesn’t

|
|
| implement ~Debug®
|

fn main() {

pl"inti <132>(1@)) help: consider restricting type parameter "T°
3 o o ° |

pr‘],-nt. <-F32>(1:l5)’ . 3 | fn print<T: std::fmt::Debug>(v: T) {

print::<&str>("Hello"); | R

note: this error originates in the macro ~$crate::format_args nl® (in Nightly
builds, run with -Z macro-backtrace for more info)

Generics

1. Generic functions

Rust

error[EQ277]: T doesn't implement " Debug"
--> src\main.rs:4:21

4 println! ("{:?}",v);

A T cannot be formatted using “{:?} because it doesn’t

I
Notice that creating a stand-alone I implement "Debug’
I

template is not enough. Rust requires an
explicit restriction (In this case since we builds, run with -Z macro-backtrace for more info)

help: consider restricting type parameter "T°

are using println macro to output value |

o, . n

v’ type “1” must implement Debug 3 | fn print<T: std::fmt::Debug>(v: T) {

note: this error originates in the macro ~$crate::format_args nl® (in Nightly

| e

(due to the use of {:?}) in order to be
printable.

1. Generic functions

Rust
use std::fmt: :Debug;

fn print<T: Debug>(v: T) {
println! ("{:?}",v);
}

fn main() {
print::<i32>(10);
print::<f32>(1.5);
print::<&str>("Hello");

use std::fmt: :Debug;

fn print<T>(v: T)
where
T: Debug,

{

}
fn main() {

print::<i32>(10);
print::<f32>(1.5);
print::<&str>("Hello");

println! ("{:?}", v);

Generics

In reality, Rust actually builds 3 functions (one for each type T [i32,f32 and &str] used)

Rust equivalent code

fn print_i32(v: i132) {
println! ("{:?}",v);

Rust
use std::fmt: :Debug;

fn print<T: Debug>(v: T)
println! ("{:?}",v);
}

fn main() {
print::<i32>(10);
print::<f32>(1.5);
print::<&str>("Hello");

}
fn print_f32(v: 32) {

println! ("{:?}",v);
ad
fn print_str(v: &str)

println! ("{:?}",v);

}
fn main() {

print _132(10);
print £32(1.5);
print_str("Hello");

{

Generics

Generics

Generic are identical to using impl <trait> (except that turbofish can not be used).

Rust Rust
use std::fmt: :Debug; use std::fmt: :Debug;

fn print<T: Debug>(v: T) { fn print(v: impl Debug) {
println! ("{:?}",v); println!("{:?}",v);
} }

fn main() { fn main() {

print::<i32>(10); print::<i32>(10);
print::<f32>(1.5); print::<f32>(1.5);
print::<&str>("Hello"); print::<&str>("Hello");

error[EQ107]: function takes @ generic arguments but 1 generic argument was supplied
12 | print::<f32>(1.5);
help: remove these generics

expected @ generic arguments

Generics

Generic are identical to using impl <trait> (except that turbofish can not be used).

Rust Rust
use std::fmt: :Debug; use std::fmt: :Debug;

fn print<T: Debug>(v: T) { fn print(v: impl Debug) {
println!("{:?}",v); println! ("{:?}",v);
} }

fn main() { : fn main() {
print::<i32>(10); print(10);
print::<f32>(1.5); print(1.5);
print::<&str>("Hello"); print("Hello");

Outside of turbofish usage, the behavior is similar (using impl <trait> works like a
syntatictic sugar).

Generics

1. Generic functions (a more complex example)

Error

error[E@308]: mismatched types
--> src\main.rs:4:12

Rust
use std::ops::Add;

|
3 | fn compute sum<T: Add>(vl: T, v2: T) -> T {
| - this type parameter - expected
fn compute sum<T: Add>(vl: T, v2: T) -> T | *T° because of return type
| return vi1+v2;
{ | Anaaa expected type parameter T,
|
|

return vl + VZ; found associated type

}
fn main() {

let rl = compute sum::<i32>(10,5);
let r2 = compute sum::<f32>(10.5,5.5);
println!("{rl},{r2}");

So ... what happens in this case ?

Generics

1. Generic functions (a more complex example)

Rust

<T: Add> We need to specify that T must implement
the Add trait in order for the addition of
v1+v2 to be possible.

We have specified that T must support the Add trait as we know that we will add v1 with v2

Generics

1. Generic functions (a more complex example)
Rust

Rust (from ariths.rs)

pub trait Add<Rhs = Self> {

<T: Add> fype Output;

fn add(self, rhs: Rhs) -> Self::Output;

Notice that in order to use the Add trait
we need to specify the Output type.

We have specified that T must support the Add trait as we know that we will add v1 with v2

Generics

1. Generic functions (a more complex example)

Rust
use std::ops::Add;

fn compute sum<T: Add<Output=T>>(vl: T, v2: T) -> T {
return v1i+v2;

¥

fn main() {
let rl = compute sum::<i32>(10,5);
let r2 = compute sum::<f32>(10.5,5.5);
println! ("{rl},{r2}");

Notice that in order to properly explain how the template should work, we need to specify that the
result of the addition will be of type T as well ! We do this by adding the <Output=T> to the
specifications of Add trait.

Generics

But what if we want to add more restrictions (e.g. we want a specific type to
implement multiple traits). The actual format of [ellfglels allows this:

Format: : Trait, + Trait,+ ... Trait, + Lifetime

Where a trait can be defined in one of the following ways:

e With its name:
* With its name defined as a template:
* With its name and one or more inner types defined : : Trait<Output=...>

OBS: Keep in mind that - does not necessarily have to be a template type (it
could also be an existing type that requires a bound related to the current template:
for example: m means that i32 must implement

Generics

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Rust
use std::ops::Add;

fn compute sum<T1l, T2, T3>(vl: T1, v2: T2) -> T3
where
T3: Add<Output = T3> + From<T1l> + From<T2>,

{

}
fn main() {

let rl = compute sum::<i32, i8, i64>(10, 5);
let r2 = compute sum::<f32, i8, f64>(10.5, 5);
println! ("{rl1},{r2}");

return T3::from(vl) + T3::from(v2);

Generics

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Rust

Add<Output = T3> Trait Add is needed because we add
n two values of type T3

Generics

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Rust

lm—l: Trait From<T1> is needed because
we convert “v1” to type T3
T3::from(vl) v

Generics

Let’s consider a slightly more complex function (a function that adds two numbers
of potentially different types and return a value of a potentially different type.

Rust

FE Trait From<T2> is needed because
we convert “v2” to type T3
T3::from(v2); .

Let’s analyze another example:
Rust

use std::fmt::Display;
use std::ops::Add;
fn compute sum<T1l, T2, T3>(vl: T1, v2: T2) -> T3
where
T1l: Display + Copy,
T2: Display + Copy,
T3: Add<Output = T3> + From<T1l> + From<T2> + Display,

let result = T3::from(vl) + T3::from(v2);
println! ("{}+{}={}", v1, v2, result);
return result;

}

fn main() {
let rl = compute_sum::<i32, i8, i64>(10, 5);
let r2 = compute sum::<f32, i8, f64>(10.5, 5);
println!("{rl1},{r2}");

Generics

Output

10+5=15
10.5+5=15.5
15,15.5

Generics

Let’s analyze another example:
Rust

Output

10+5=15
10.5+5=15.5
15,15.5

. o L
orintln! ("{1+{}={}", V1, v2, result); Displayitrait |srrr]1:cer(ied for printin!

Generics

Let’s analyze another example:
Rust

Output

10+5=15
10.5+5=15.5
15,15.5

T3::f 1 . .
Pom\(/\ll) The ownership of “v1” is transferred

when T3::from(...) is called. As such,
printing v1 is no longer possible,
except for the case where “v1”
implements the Copy trait.

Generics

Bounds have another advantage. While in C++, its not that easy to enforce a
specific type/list of types for a template variable, in Rust this can be easily obtained
with a combination of bounds and traits.

Let’s analyze the following problem: we want to create a generic/template where
one of the parameters can only be selected from a specific set of types. In C++, we
would have to use static_assert to achieve this, and even in this case we would still
be limited by the fact that everything is written in a header and as such it can be
easily modified.

In Rust, we will use a combination of traits and bounds to achieve the same result.

Generics

Let’s consider the following snippet and assume that we would like to make sure
that type T is just some signed integer (one of I8, 132 or 1128).

Rust

use std::fmt::Display;
fn print<T>(value: T)
where

T: Display,

{
println! ("{}", value);

}
fn main() {

print::<i32>(-5);
print::<i8>(100);

Generics

The solution is to create a special trait (that does not have to do anything),
implement it for i8, i32 or {128, and finally add a bound for type T.

-5

use std::fmt::Display;

fn main() {
trait JustIntegers {} print::<i32>(-5);
impl JustIntegers for i8 {} print::<i8>(100);
impl JustIntegers for 132 {}
impl JustIntegers for 1128 {}

fn print<T>(value: T)
where
T: Display + JustIntegers

{
}

println! ("{}", value);

Generics

The solution is to create a special trait (that does not have to do anything),
implement it for I8, 132 or i128, and finally add a bound for type T.

-5

trait JustIntegers {}
impl JustIntegers for i8 {}

impl JustIntegers for i32 {} Trait Justintegers is implemented for i8, i32 and i128
impl JustIntegers for 1128 {}

JustIntegers Type T must have the trait Justintegers

Generics

The solution is to create a special trait (that does not have to do anything),
implement it for i8, i32 or {128, and finally add a bound for type T.

B Error

error[E@277]: the trait bound “u32: JustIntegers™ 1is not satisfied
--> src\main.rs:14:18

14 print::<u32>(1);

A the trait " JustIntegers™ is not implemented for ~u32°

required by a bound introduced by this call

help: the following implementations were found:
<1128 as JustIntegers>
<i32 as JustIntegers>
<i8 as JustIntegers>

--> src\main.rs:9:16

7 fn print<T>(value: T)

required by a bound in this

J

|
|
. 8 where
fn main() { 9 | T: Display+
print: {<u32>(1); |

}

Generics

2. Structures

Rust

derive()

struct Point<T> {
x: T, Point{x:1,y:2}

y: T Point {x:1.2,y:2.3}

}
fn main() {

let pl = Point::<i32>{ x:1,
let p2 = Point::<f32>{ x:1.2,
println!("{:?}",pl);

println! ("{:?}",p2);

In this example we have create two objects: p1 that has “x” and “y” of type i32, and p2 where both
“x” and “y” are of type f32.

Generics

In reality, Rust will construct two completely different structures:

Rust

derive()
struct Point<T> {
x: T,
y: T
}
fn main() {
let pl = Point::<i32>{ x:1,
let p2 = Point::<f32>{ x:1.2,
println! ("{:?}",pl);
println! ("{:?}",p2);

}s
3}

y:2
y:2

Rust (approximation)

derive()

struct Point i32 { x: 132, y: i32 }
derive()

struct Point 32 { x: 32, y: 32 }

fn main() {
let pl1 = Point i32{ x:1,
let p2 = Point f32{ x:1.2,
println! ("{:?}",pl);
println! ("{:?}",p2);

s

y:2
y:2.3 };

Generics

eneric structure or enum, use the
{lll\WleP-RielgnEIMiMpl<T , T,,... T > StructureName<T,, T,,... T.>{ ... }
Rust

derive()
struct Point<T> {

x: T, Point {x:1,y:2}

} y: T Point {x:1.2,y: 2.3}
impl<T> Point<T> {

fn new(x: T, y: T)->Self { Point {x:x, y:y} }

}
fn main() {

let pl = Point::<i32>::new(1,2);

let p2 = Point::<f32>::new(1.2,2.3);
println! ("{:?}",pl);

println! ("{:?}",p2);

Generics

Types can be inferred from the parameters used. For example, in this case, p1 is of
type Point<i32> because “x” is 1 (ani32) and “y” is 2 (an i32).

Rust
derive()
struct Point<T> {

x: T, Point {x:1,y:2}
y: T,

} Point {x:1.2,y:2.3}
impl<T> Point<T> {
fn new(x: T, y: T) -> Self {
Point { x: x, y: vy }
}

}
fn main() {

let pl = Point::new(1, 2);

let p2 = Point::new(1.2, 2.3);
println! ("{:?}", pl);

println! ("{:?}", p2);

Generics

If parameters do not match the template, the compiler will throw an error.

Rust

let pl

Point::new(1, 2.5);

Error

error[EQ308]: mismatched types
--> src\main.rs:12:28

let pl = Point::new(1, 2.5);
Ann expected integer, found floating-point number

Generics

o

You can also use (underline) as a template parameter to ask Rust to infer the

type:
Rust

fn f<K: From<T>, T>(x: T) -> K {
K::from(x)

}
fn main() {

let x = f::<i64, >(5);
println! ("{x}");

In this case, we did not provide the type “T”, but we’ve asked Rust to infer the type.

Rust does not support specialized templates (like C++ does).

Rust

derive()
struct Point<T> {
x: T,
y: T,
}
impl<T> Point<T> {
fn new(x: T, y: T) -> Self {

Point { x: X, y: vy }

}

}
impl Point<i32> {

fn new(x: 132, y: i32) -> Self {
Point { x: x * x, y:y *vy }

}

Error

Generics

error[EQ592]: duplicate definitions with name “new’
--> src\main.rs:7:5

7

fn new(x: T, y: T) -> Self {

ANNNANNNNNNNNNNNNNNNNNNNNANNN duplicate de.FinitionS .For\ ‘new‘

fn new(x: i32, y: i32) -> Self

{

other definition for “new’

Generics

However, certain functions can be implemented specifically for a type:
Rust

struct Point<T> { x: T, y: T, }
impl<T> Point<T> {
fn new(x: T, y: T) -> Self { Output
Point { x: X, y: vy } Point {x: 1,y: 4}
1 } Point {x: 1.2,y: 2.3 }
impl Point<i32> {
fn new_i32(x: i32, y: i32) -> Self {
Point { x: x * x, y: vy * vy}

¥

¥
th main() 1

let pl = Point::<i32>::new_1i32(1, 2);
let p2 = Point::<f32>::new(1.2, 2.3);
println!("{:?}", pl);
println! ("{:?}", p2);

Generics

However, certain functions can be implemented specifically for a type:
Rust
Error

error[E®599]: no function or associated item named "new 132" found for struct
"Point<f32>" in the current scope
--> src\main.rs:18:28
|

2 | struct Point<T> {
function or associated item "new_i32" not found for this

imp]_ Point<i32> { 18 I let p2 = Point::<f32>::new_i32(i.2,t%.3); ted it ¢ found
. . . ANNAAAN function or associated item no ound 1n
fn new_1i32(x: 132, y: i32) -> Self { | Point<f32s"
Point X: X * x : * I
{ > Yy y } = note: the function or associated item was found for

- "Point<i32>” other definition for
‘new

new_i32 exists only for templates of Point where

Point::<f32>::new _i32(1.2, 2.3); : - .
T =1i32. As such, this line can not compile.

Generics

3. Generic methods implemented in a structure/enum

Rust

struct Point {
X: 132,
y: 132,

}

impl Point {
fn add<T>(&mut self, value: T)
where
i32: From<T>,
T: Copy

self.x += i32::from(value);
self.y += i32::from(value);

fn main() {
let mut p = Point { x: 5, y: 10 };
p.add::<132>(10);
println!("P is ({},{})",p.x,p.y¥);
p.add::<i8>(5);
println!("P is ({},{})",p.X,p.Y¥);

Output

Pis (15,20)
P is (20,25)

Generics

3. Generic methods implemented in a structure/enum
Rust

fn add<T>(&mut self, value: T)
where
i32: From<T>,
T: Copy “add” is a generic method within the
implementation for structure Point
self.x += i32::from(value);
self.y += i32::from(value);

Generics

3. Generic methods implemented in a structure/enum
Rust

where
i32: From<T>,
T: Copy

Since we need to convert a value of type T into an i32, then i32
must implement From<T>.

Generics

3. Generic methods implemented in a structure/enum
Rust

where
i32: From<T>, Since we call i32::from twice, and the value’s ownership is
T: Copy transferred the first time, T must implement Copy so that the
second i32::from could be valid.

Generics

3. Generic methods implemented in a structure/enum

Rust

p.add: :<&str>("test");

Error

error[E@277]: the trait bound “i32: From<&str>" is not satisfied
--> src\main.rs:17:7

|
17 | p.add::<&str>("test");
| AN the trait "~ From<&str>™ is not implemented for ~i32°
|
= help: the following implementations were found:
<i32 as From<NonZeroI32>>
<132 as From<bool>>
<132 as From<ilé>>
<132 as From<i8>>
and 71 others
note: required by a bound in “Point::add"
--> src\main.rs:8:14
|
| fn add<T>(&mut self, value: T)
| --- required by a bound in this
| where
| i32: From<T>,
| AAAANAN pequired by this bound in “Point

Generics

4. Generic traits

Rust

trait ConvertorToType<T> { Output
fn convert _to(self) -> T;
} 61.5,246
impl ConvertorToType<i32> for 18 {
fn convert to(self) -> i32 { (self as i32) * 2 }

}
impl ConvertorToType<f32> for 18 {

fn convert to(self) -> 32 { (self as f32) / 2.0 }
}

fn main() {
let x: 32 = 123i8.convert_to();
let y: i32 = 123i8.convert_to();

printIn! ("{x},{y}");

Generics

4. Generic traits

Rust

impl ConvertorToType<i32> for 18 {
fn convert to(self) -> i32 { (self as i32) * 2 }
}
impl ConvertorToType<f32> for 18 {
fn convert to(self) -> 32 { (self as f32) / 2.0 }

This behavior is very similar to a
specialized template from C++.

¥

Generics

4. Generic traits

Rust

Output
61.5,246

Another similar way of writing the same thing is:

let x: 32 = 123i8.convert_to(); :
= let x = ConvertorToType::<f32>::convert to(123i8);

Generics

At the same time, default implementation for a trait can be used as well.

Rust

trait ConvertorToType<T>
where Output

Self: Sized, 123,123
T: From<Self>

fn convert_to(self) -> T {
T::from(self)
}
}
impl ConvertorToType<i32> for i8 {}
impl ConvertorToType<f32> for i8 {}

fn main() {
let x = ConvertorToType::<f32>::convert to(123i8);

let y: 132 = 123i8.convert_to();
printIn! ("{x},{y}");

Generics

It is also possible to overwrite the original implementation:
Rust

trait ConvertorToType<T>
where Output

Self: Sized,
T: From<Self> 1.2345,123

{
}

fn convert_to(self) -> T { T::from(self) }

impl ConvertorToType<f32> for i8 {

fn convert_to(self) -> 32 { This behavior is very similar to a
1.2345

} specialized template from C++.

It is also possible to overwrite the original implementation:
Rust

Self: Sized, Why do we need this Sized trait here ?

When compiling the code, the compiler needs to know the size of a type
in order to implement operation over it that might imply copy-ing an
object. Since we already require for T to implement From<Self> and this
implies ownership transfer of Self, Self must have a known size.

Generics

trait SomeValue {
fn get some_value()->Self;

}
impl SomeValue for i32 {

fn get_some_value()->i32 { 12345 }
}

trait Initialize<T> where T: SomeValue

{
fn convert _to(&self) -> T {

T::get_some_value()
}

}
impl Initialize<i32> for i8 {}

fn main() {

Output

12345

Notice that we don’t need to use Sized anymore in this case:

* method convert_to receives a reference

* default implementation of convert to does not require
any ownership transfer (assignments or From methods
called)

let x = Initialize::<i32>::convert to(&123i8);

println! ("{x}");

Generics

When using generics (methods, functions, structures, etc) we might need to use
turbofish (::<...>) notation to refer to a specific implementation of a generic.

In many cases, Rust is able to infer the type (based on parameters) but sometimes
(if several matches for the same generic exists) you might be required to use either
this notation or other forms.

As a generic observation, it is preferred NOT TO use turbofish notation (except for
cases where there is no other way around).

Let’s see some scenarios where this notation can be used. Pay close attention for
alternative situations where a different syntax can be used.

Generics

Case 1:
Rust One case where turbofish can be used is if the structure
is a template/generic and upon creation you need to

struct MyNumber<T> { _ '
explain to Rust the generic parameter(s).

value: T

} In this particular case, we need to explain what is “T”
1mpl<T> MyNumber<T> { when initializing a MyNumber object.
Alternatives:

let mut x = MyNumber{ value:0 };

fn set(&mut self,x: T) {
self.value = x;

}

}
fn main() {

let mut x = MyNumber::<i32>{value:0};
x.set(123);
println!("{}",x.value);

let mut x:MyNumber<i32> = MyNumber{ value:0 };

OBS: Notice that “x.set(123)” does not need to use turbofish notation as we already
know

Case 2:
Rust

struct MyNumber {
value: 132

}
impl MyNumber {

fn set<T>(&mut self,x: T) where i32:

self.value = i132::from(x);

}

}
fn main() {

let mut x = MyNumber{value:10};
x.set::<18>(100i8);
println!("{}",x.value);

From<T>{

Generics

In this case, method set from the implementation of
MyNumber is generic and as such type “T” must be
specified or inferred (if possible).

Alternatives:

x.set(100i8);

Generics

Case 3:

Rust Notice that we did not use turbofish notation. This is
struct MyNumber { because method set is not generic/template and as
value: 132, such using something like set::<i8>:: (...) is not a valid

) . semantic expression.
trait ValueSetter<T> {

fn set(value: T) -> Self;
}
impl ValueSetter<i8> for MyNumber {
fn set(x: i8)->Self
{
MyNumber {
value: i32::from(x),
}
}

}
fn main() A

let x = MyNumber::set(12i8);
println!("{}", x.value);

Generics

Case 4:

Rust In this case, we need turbofish to specify the template
struct MyNumber<T> { for MyNumber. Type “V” will be inferred by Rust from
y value: T, the argument value of set method.

trait ValueSetter<V> {
fn set(value: V) -> Self; Alternatives:

}
impl<T> ValueSetter<i8> for MyNumber<T>

where
T: From<i8>,

let x: MyNumber::<i8> = MyNumber::set(123i8);

{

fn set(x: i8) -> Self {
MyNumber {
value: T::from(x),

}
}
}
fn main() {

let x = MyNumber::<i8>::set(123i8);
println!("{}", x.value);

Case 5:

Rust

struct MyNumber<T> { value: T }
trait ValueSetter<V> { fn set(value: V) -> Self;}
impl<T> ValueSetter<i8> for MyNumber<T>
Where T: From<i8>,
{

fn set(x: i8) -> Self {

MyNumber { value: T::from(x) }
}

}
impl<T> ValueSetter<il6> for MyNumber<T>

Where T: From<il6>,

{

fn set(x: i16) -> Self {
MyNumber { value: T::from(x) }

}
}
fn main() {

let x = MyNumber::<i32>::set(123 as il6);
println! ("{}", x.value);

Generics

In this case, we need to specify the type of MyNumber
and we need to make sure that we specifically explain
the parameter type of the method set.

Keep in mind that ::set::<i16>(...) is not valid as method
set is not generic.

Alternatives:

let x: MyNumber::<i32> = MyNumber::set(123 as il1l6);

Generics

Case 6:

Rust In this case, both “V” and “T” template parameters
struct MyNumber<T> { must be deducted. For “T” we can use turbofish
y value: T, notation, “V” will be obtained from the parameter of

trait ValueSetter<V> { set method.
fn set(value: V) -> Self;
}
impl<T,V> ValueSetter<V> for MyNumber<T>
where
T: From<V>,

Alternatives:

let x: MyNumber::<i32> = MyNumber::set(123 as 116);

{

fn set(x: V) -> Self {
MyNumber {
value: T::from(x),

}
}
}
fn main() {

let x = MyNumber::<i32>::set(123 as il6);
println! ("{}", x.value);

Generics

Finally, let’s discuss a little bit what is the advantage of requiring a strict list of traits
within the definition of a Generic. Let’s analyze the following two cases (Rust and C++)

Rust C++

struct Test {

struct Test { int x:
J

X: 132, .

} })

template <typename T>

T add_values(T& v1, T& v2) {
return vl + v2;

fn add_values<T>(vl: &T, v2: &T) -> T {
return vl + v2;

} }

fn main() {
let t1 = Test { x: 10 };
let t2 = Test { x: 20 };
let t3 = Test { x: @ };
t3 = add values(&tl, &t2);

Test

Test

Test 5
= add_values(tl,);

{ 10 };
{ 20 };

void main() {

Generics

Now - let’s look at how errors are presented in both cases (notice that structure Test
has no add operator in both cases, and as such “v1+v2” where v1,v2 is T is not possible.

Rust C++

error[E@369]: cannot add "&T to "&T"
--> src\main.rs:5:15

|
5 | return vl + v2;
| -- A - &T
| |
|

&T

help: consider restricting type parameter "T°

|
4 | fn add_values (vl: &T, v2: &T) -> T {
| e

error C2676: binary '+': 'T' does not

define this operator or a conversion to a
type acceptable to the predefined operator

Generics

Rust also support constants as a generic parameter (similar to the ones from C++). A
constant parameter must de defined in the template declaration with the keyword
const followed by the generic parameter name and its type (const N: type). Type N can
be one of the following: u8, ul6, u32, ub4, ul2s8, i8, il6, i32, i64, i128, usize , isize, char

and bool.
Rust

derive()
struct FixArray <T,const N: usize> {

} elements: [T;N] FixArray { elements: [0, 0, 0, 0, 0] }
£ main() { FixArray { elements: ['A", 'A', ‘A", 'A", 'A', 'AY, A 'AY A)

let a:FixArray<i32,5> = FixArray {elements: [0;5]};
let b:FixArray<char,9> = FixArray {elements: ['A';9]};
println! ("{:?}",a);

println! ("{:?}",b);

Generics

Let’s see a more complex example:
Rust (Generic structure declaration) (Generic structure implementation)

derive() impl<T, const N: usize> FixArray<T, N>
struct FixArray<T, const N: usize> where
where T: std::ops::AddAssign,
T: std::ops::AddAssign, T: From<u8>,
T: From<u8>, T: Copy
T: Copy
fn new(value: T) -> Self {
elements: [T; N], FixArray::<T, N> {
elements: [value; N],
}
}

fn consecutive(start: T) -> Self {
let mut x: FixArray<T, N> = FixArray::new(start);
let mut temp = start;
for 1 in &mut x.elements {
*1 = temp;
temp += T::from(1u8);

Let’s see a more complex example:
Rust

fn main() {
let a: FixArray<i32, 5> = FixArray::new(1);
let b: FixArray<u8, 7> = FixArray::consecutive(10);
println!("{:?}", a);
println!("{:?}", b);

FixArray { elements: [1,1,1, 1, 1] }
FixArray { elements: [10, 11, 12, 13, 14, 15, 16] }

Generics

Generics

Rust generics can conditionally implement some traits using the where keyword:
Rust

struct MyStruct<T> { Output
data: T, x is odd ? => true

}
trait OddNumber {

fn is_odd(&self) -> bool;
}
impl OddNumber for 132 {
fn is odd(&self) -> bool { (*self % 2) == 1 }
}
impl<T> OddNumber for MyStruct<T>

where
T oddNumber, This tells the compiler to implement the trait

{ OddNumber over MyStruct<T> only if T'also

fn is_odd(&self) -> bool { self.data.is_odd() } implements OddNumber trait.
}

fnmain() {
let x: MyStruct<i32> = MyStruct { data: 5 };
println!("x is odd ? => {}", x.is odd());

Generics

Rust generics can conditionally implement some traits using the where keyword:
Rust

struct MyStruct<T> { Output
data: T, x is odd ? => true

}
trait OddNumber {

fn is_odd(&self) -> bool;
}
impl OddNumber for 132 {
fn is _odd(&self) -> bool { (*self % 2) == 1 } [+
}
impl<T> OddNumber tor MyStruct<I>
where . o _
T: OddNumber, Since 132 implements OddNumber, so will

{ MyStruct<i32> implement OddNumberias well.
fn is_odd(&self) -> bool { self.data.is_odd() } As a result, we can call x.is_odd|()
}) S .

fn main() {
let x: MyStruct<i32> = MyStruct { data: 5 };
println!("x is odd ? => {}", x.is odd());

Pi——

:)) ° . . . - . - - . - > : -a - - a . '
[J
Error
struct MyStruct<T> { error[E@599]: the method "is_odd™ exists for struct “MyStruct<u32>", but
data: T its trait bounds were not satisfied
) Y --> src\main.rs:22:36
|
trait OddNumber { 1 | struct MyStruct<T> {
fn is_odd(&self) -> bool; | T
method "is_odd™ not found for this struct
d

|
; |
impl OddNumber for i32 { |

oesn't satisfy “MyStruct<u32>: OddNumber”
fn is odd(&self) -> bool { (*self % 2) == 1 }

} éi.| println!("x is odd ? => {}", x.is_odd());
impl<T> OddNumber for MyStruct<T> |
where |
T: OddNumber,
{
fn is_odd(&self) -> bool { self.data.is_odd() }
}
fn main() { .
let x:|MyStruct<u32>| = MyStruct { data: 5 }; In this case, we can not call x.is_odd() as the trait
printlnl("x 1s odd ¢ => {}",| x.is_odd()); OddNumber was not implemented over MyStruct<u32> due

) to the fact that u32 does not implement OddNumber.

Generics

Rust generics can conditionally implement some traits using the where keyword:
Rust

struct MyStruct<T> { Output
data: T, 5

}
trait OddNumber {

fn is_odd(&self) -> bool;

}
impl OddNumber for 132 {

fn is odd(&self) -> bool { (*self % 2) == 1 }

}
impl<T> OddNumber for MyStruct<T>

where
T: OddNumber,

{

}
fn main() { Notice that this code compiles correctly. This is because

let x: "I"yft'“UCt<ff32> = MyStrugt { data: 5 } EQddNumber is only implemented for MyStruct<T>fif only if T
printini("x = {}",x.data); implements OddNumber. Otherwise, the trait is is not
implemented and if is_odd method is not called the code compiles.

fn is_odd(&self) -> bool { self.data.is_odd() }

Generics

This conditional implementation of traits for generics allows Rust to add a specific
behavior whenever #[derive] is being used over a generic. Let’s analyze the following
case:

Rust Rust

fn main() { fn main() {
let x: Option<i32> = Some(1); let x: Option<String> = Some("123".to_string());
let y = x; let y = x;
println! ("x = {:?}, y = {:?}",x,¥); println!("x = {:?}, vy {:2}%y);

error[E@382]: borrow of moved value: "X’

X= Some(l), y= Some(l --> src\main.rs:4:35

let x: Option<String> = Some("123".to_string());

let y = x;
- value moved here
println!("x = {:?}, y = {:?}",x,¥);
A value borrowed here after move

Generics

So ... why the case with Option<i32> works, but the case with [@)sidle]sE S idlgf=$= does
not ?

Let’s see how Option is defined ...
Rust (option.rs)

derive(, B
= "Option"
(= "rustl",

pub enum Option<T> {

"None"

Generics

So ... why the case with _ works, but the case with [@JusleliEsSitglyfsg does
not ?

KM ES=T= e [o)VAO®] As you can see, Option generic implements the Copy trait. The #derive will add generate a code
Rust (option.rs) in the following format:
<1 <T> : {.}
Since i32 implements Copy, so does Option<i32>. Similarly, since String does not implement

Copy, Option<String> will not implement Copy, thus explaining the different behavior in the
two presented cases.

Match

Match

Rust has a specific keyword (-) designed for complex and efficient value
matching against various patterns. This is similar to the switch keyword from C++,
however it is more complex and can perform more complex matches.

The general format for a match is:

match value { g
rule,, - pattern => code
rule,, where rUIei has - pattern =>{ code }
the fOHOWing < - pattern if condition => code “pattern if condition” is
: rule,, format: - pattern if condition => { code }
\~

A rule in a match is often called an arm of the pattern matching !

Match

There are a couple of constraints that need to be followed for a match to be
correct:

1. At least one rule must be provided to a match construct

2. All possible values must be covered by the existing rules provided to a match
construct

3. No overlapping rules. There can not be two rules in the same match construct
that match the same value.

Character underline (') used as a pattern has a special meaning : everything else.
It is similar to the usage of default keyword in a C++ switch statement.

Match

The pattern used in a match constructs also has multiple forms:

1. Asingle constant value (e.g. a number, a string, etc)

2. Multiple constant values, separated by ‘|’ operator 2 (e.g. 1| 2 | 3)
3. Arange =2 (e.g. 1..=5)

4. An enum

5. Anarray

6. Aslice

7. Atuple

8. Astruct

0.

A pointer or a reference

Let’s see a very simple example:
Rust

fn main() {
for x in 1..10 {
match x {
1 println!("one"),
println!("two"),

println!("three"),
println!("four"),
println!("five"),
println! ("Another number"),

Match

one

two

three

four

five

Another number
Another number
Another number
Another number

Match

Let’s see a very simple example:
Rust

fn main() { error[EQ004]: non-exhaustive patterns: "132::MIN..=0 i32" and "6 _i32..=132::MAX’
for x in 1..10 { not covered
match x { --> src\main.rs:3:15

println! (" A patterns “i32::MIN..=0_i32° and “6_i32..=i32::MAX’ not covered
println! ("
println! ("
println! ("

. " |

1 => println!(3 | match x {
|
|

ui b WN
[| I | I I
vV V VvV Vv

Notice that we have removed the arm/rule “IEESEEIST A RGNl 3TN IIaD)]
As a result, not all possible cases are covered, and a compile error is thrown. The
error also provides a list of values that were missed (values from i32::MIN to 0 and
values from 6 to i32::MAX)

Let’s see a very simple example:
Rust

fn main() {

let text = "three";

let value: 132;

match text {
"one" => value s
"two" => value ,
"three" => value 3,
"four" => value = 4,
_ => value = 0,

}

println!("value = {value}");

Notice that we can also match strings.

Match

Match

As a general rule, in case of strings, you have to check every one of them — so the
usual complexity is O(n). However, in some cases, Rust can make some
optimization:

Rust (1.73.0 — optimized)

In this case Rust first checks the length and then the values. For
example, if the string has a length of 4 bytes, it only needs to check it
against the string “four”. Furthermore, if the string does not have the

length 3,4 or 5 than it return O (the default case).

> 5

has length of 5
, 4
has_length _of 4

, 3
default case

Match

As a general rule, in case of strings, you have to check every one of them — so the
usual complexity is O(n). However, in some cases, Rust can make some

optimization:
mov

Rust (1.73.0 — optimized) cmp

fn foo(x: &str) -> Jne
x { ;ne]p
"abcd" => 5, cp
"ghij" => 15, je
cmp
setne
test
mov
mov
cmovne
SIZE IS NOT 4:
ret
TEXT_IS abcd:
mov
ret
TEXT_IS ghij:
mov
ret

"klmn" => 25,

, 100

, 4
SIZE_IS_NOT 4
dword ptr [rdi], 1684234849
TEXT_IS_abcd
dword ptr [rdi], 1785292903
TEXT_IS_ ghij
dword ptr [rdi], 1852664939

, 1

25

In this case, since all strings have
size 4, and 4 bytes actually
represent an u32, the solution is
to check the value directly.
Simply put, the u32 with value
16842348490 s in fact the u32
value of a memory with 4 bytes
that are “abcd”

Match

You can initialize any kind of variable in a match construct:

Rust

struct Point {x: i32, y: i32}
fn main() {
let text = "three";
let p: Point;
match text {
Point{x:1,y:1},
Point{x:2,y:2},

p = Point{x:3,y:3},
> p = Point{x:4,y:14},
Point{x:0,y:0},

({H{N"p.x, p.y);

ow.7

In this we initialize variable “p” that is of type Point.

Match

When initializing a variable through a match construct, that variable MUST be

initialized in all rules/match arms !

Rust

Error

error[E@381]: used binding “p° is possibly-uninitialized
--> src\main.rs:12:28

let p: Point;
- binding declared here but left uninitialized
match text {
"one" Point{x:1,y:1},
binding initialized here in some conditions
Point{x:2,y:2},
binding initialized here in some conditions
Point{x:3,y:3},
binding initialized here in some conditions
“four" => p = Point{x:4,y:14},
binding initialized here in some conditions

println!("P = ({}J{})"Jp‘xJ p°y)3
AAN “p.x used here but it is possibly-uninitialized

Notice that the default case " does not initialize variable “p”

Match

Let’s see a match construct that uses the bool type.
Rust

fn main() { Value is true
let v = true;

match v {

true => println!("Value is true"),
false => println!("Value is false")

o n

Notice that there is no need for the rule/arm “_” (the default case) if all possible
cases are already covered ! (in case of a bool variable this means the case of value
true and the case of value false).

Match

However, it is important to know that using the default case “ ” when all possible
cases are already covered will not trigger an error but a warning.

Rust

fn main() {
let v = true;
match v {

true => println!("Value is true"),
false => println!("Value is false"),
_ => println!("something else")

Value is true

Warning

warning: unreachable pattern
--> src\main.rs:6:9

6 => println!("something else")

| A

note: “#[warn(unreachable_patterns)] on by default

Match

Another particular case are floating point values. While right now they are allowed
in @ match construct, they are going to be forbidden in future releases due to high
complexity around comparing floating point values (e.g. including NaN values).

Rust

fn main() {

Found 1.2
let v 2;

1.
{ ,
=> println!("Found 1.2"), Warning

=> println!("Found 1.1"), warning: floating-point types cannot be used in patterns

=S println!("Found @")) -I>SPCWHinJS:4ﬂ
::NAN => println!("found NAN"), |

_ => println!("another value") | AR
|

1.2 => println!("Found 1.2"),

note: “#[warn(illegal floating point_literal pattern)]” on by default
warning: this was previously accepted by the compiler but is being phased
out; it will become a hard error in a future release!

More info on this topic on:

https://github.com/rust-lang/rust/issues/41620
https://github.com/rust-lang/rust/issues/41620
https://github.com/rust-lang/rust/issues/41620

Match

To match multiple values, use the | operator like in the following example:

Rust

fn main() {

let v = 19; Prime numbers under 20
match v {

p => println!("An odd prime number"),

3|57 => println!("Prime numbers under 10"),
11|13|17|19 => println!("Prime numbers under 20"),
=> println!("Another value")

The same logic where every possible value has to be matched by one of the rules

has to be present in this case as well (this is why we need the final *_’ (default)
rule).

Match

However, it is possible to duplicate a value when using the OR (|’) operator. The
code will compile and will use the match rule that first uses that value. At the same
time, a warning will be thrown to explain that the second value is unreachable.

Rust

Prime numbers under 10

: e ., Warning
19 => println!("Prime numbers under 10"), warning: unreachable pattern

--> src\main.rs:6:18

11|13|17|19=> println!("Prime numbers under 20"),

AN

: “#[warn(unreachable patterns)] on by default

In this case, the second 19 value is considered an unreachable pattern. Notice that
the output now is “Prime numbers under 10” as the match is done for the rule that
first uses 19 (rule with 3151719)

Match

It is also possible to match entire intervals (by using the operator ..=). However,
keep in mind that matching an entire interval (or several of them) is not always a
simple job (if you want to improve matching performance).

Rust

fn main() {
let grade = 5; Class passed
match grade {
1..=4 => println!("Class failed"),

5..=10 => println!("Class passed"),
_ => println!("Invalid grade"),

As such, it is preferred to use inclusive intervals (a..=b) rather than exclusive ones.

Match

Partial intervals can be used (notice the 5.. usage in the next code).
Rust

Class passed

5.. => println!("Class passed"),

Keep in mind that default value “[.” has to be used in this case to cover all possible
cases (for example value 0 or negative values).

Match

Overlapping intervals are also possible !

Rust

fn main() {
let grade =
match grade {

1..=4 => println!("Class failed"),

Class passed

0..=10 => println!("Class passed"),
_ => println!("Invalid grade"),

OBS: Keep in mind that intervals are hard to optimize and that the goal of a
matcher is to obtain an O(1) access/check time.

Match

For range/interval-based rules only numerical and char values and patterns can be
used. As such constructs like the next one that attempt to match intervals based on
strings are not possible !

Rust

fn main() {
let name = "John";
match name {
"abc"..="zzz" => println!("Interval one"),
"..="aaa" => println!("Interval two"),
_ => println!("Another interval"),

error[E0029]: only “char® and numeric types are allowed in range patterns
--> src\main.rs:4:9

"abc"..="zzz" => println!("Class failed"),

this is of type "&'static str” but it should be “char® or numeric
this is of type "&'static str” but it should be “char® or numeric

Match

Match constructs are often used with enums. Notice that since an enum has a
finite set of possible values, the default “[.” case is not needed.

Rust

enum Color {
Red,
Green,
Blue,
Black,

}
fn main() {

let ¢ = Color::Red;

match ¢ {
Color::Red => println!("Red"),
Color::Green => println!("Green"),
Color::Blue => println!("Blue"),
Color::Black => println!("Black"),

Match

If a specific case from an enum is not covered, the Rust compiler can also provide
insights into what is missing and what needs to be added.

i

enum Color { error[E@004]: non-exhaustive patterns: “Color::Black™ not covered
Red, --> src\main.rs:9:11

Green,

Blue,

Black,
} note: ~Color™ defined here
fn rnajiw() { --> src\main.rs:5:5

I

let ¢ = Color::Red; 1 | enum Color {

match c { [

Color::Red => println!("Red"),

match c {
A pattern “Color::Black™ not covered

Black,
ANAAN not covered
note: the matched value is of type "“Color’
help: ensure that all possible cases are being handled by adding a
match arm with a wildcard pattern or an explicit pattern as shown
I
12~ Color::Blue => println!("Blue"),
13~ Color::Black => todo!(),

Color::Green => println!("Green"), I
Color::Blue => println!("Blue"), -

Match

Let’s discuss another case that involves a match construct and an enum.

Let’s consider library “A” that exports an enum with a list of possible errors defined
like in the following way:

enum Error { Format, IO, Parameters }

Let’s also consider application “B” that uses library “A” as a dependency and has a
code that matches the errors from library (crate) “A”:

match error {
Error::Format

-

Error::I0
Error: :Parameters

I n

vV VvV Vv

e s o)
A\

-

Match

What happens if library “A” decides to add a new value in the error list ?

{ Format, IO, Parameters, }

The immediate result will be that application “B” will not compile anymore:

error {
. :Format

-

Rust will show an error because this match construct from
application “B” does not match all possible values of Error.

::I0
: :Parameters

in 1
VERVERVS
A m
A ™)

-

So ... what are the solutions in this case ?

Match

So ... what are the solutions in this case ?

1. Application “B” has to refactor its code to match the new constraints from
library “A”. This is possible, but if library “A” changes its enum often, this might
be an issue for the developers of application “A”

2. Library “A” uses the non-exhaustive attribute for their enum:

enum Error { Format, IO, Parameters }

This flag will force the compiler to explicitly request that application “A” adds
the default case ({]) on every match even if all cases are already treated. This
will however make sure that if newer versions of library “A” adds new variants
to the enum, they will be treated application “B”.

Match

So ... what are the solutions in this case ?

2. Library “A” uses the non-exhaustive attribute for their enum:

enum Error { Format, IO, Parameters }

This flag will force the compiler to explicitly request that application “A” adds
the default case ({)) on every match even if all cases are already treated.

As such, the code from application “B” will be changed into something like this:

match error {
Error::Format
Error::I0

{15
{15
{15

{ <default processing for future errors> }

Error: :Parameters

i
vV V V VvV

Match

Let’s try a more complex enum (one that contains specific values as well). You will
notice that this code does not compile as it requires as to specify the value as well.
Rust

. error[E@532]: expected unit struct, unit variant or constant, found tuple variant “Distance::Inch’
enum Distance { --> src\main.rs:9:9

Inch(i32), |

Cm(i32), 2 | Inch(iSZ),‘ .) .

Km(i32) | Distance::Inch™ defined here
} 9 |
fn main() {

Distance::Inch => println!("Distance is in inch"),
help: use the tuple variant pattern syntax instead: “Distance::Inch(_)’

let d = Distance::Km(100);
match d {
Distance::Inch => println!("Distance is in inch"),
Distance::Cm => println!("Distance is in cm"),
Distance::Km => println!("Distance is in km"),

Match

In this context, the underline character " means to match any value as long as the
variant type is the one specified. While this code is correct, we might want to get
the actual value as well (e.g. in out case value 100)

Rust

enum Distance {
Inch(i32),
Cm(i32),
Km(i32)

Distance is in km

}
fn main() {

let d = Distance::Km(100);

match d {
Distance::Inch(_) => println!("Distance is in inch"),
Distance::Cm(_) => println!("Distance is in cm"),
Distance: :Km(_) => println!("Distance is in km"),

Match

The general format to get the actual value associated with an enum variant is:
::variant(variable_name) => {code}

enumIgi;Eiggi,{ Distance is 100 km
Cm(i32),
Km(1i32)

}

fn main() {

let d = Distance::Km(100);
match d {

Distance::Inch(value) => println!("Distance is {} inch", value),
Distance::Cm(value) => println!("Distance is {} cm", value),
Distance: :Km(value) => println!("Distance is {} km", value),

Match

We can also match an exact value associated with a variant (in this case for variant
Km we have two rules/match-arms:

* Km(90) that will match cases where Distance type is Km and its value is 90
* Km(value) that will match the rest of the cases where Distance type is Km
Rust

enum Distance {
Inch(i32), Distance is 100 km
Cm(1i32),
Km(i32)

}
fn main() {

let d = Distance::Km(100);

match d {
Distance::Inch(value)
Distance::Cm(value)
Distance: :Km(990)
Distance: :Km(value)

println!("Distance is {} inch", value),
println! ("Distance is {} cm", value),
println! ("Particular case (90 Km)"),
println! ("Distance is {} km", value),

vV V |V VvV

Match constructs are often used with Option<
the two cases those two enums can provide.

Rust

fn get_odd_number(value: u32)->Option<u32> {
if value % 2 1= 0 {
Some(value)
} else {
None

}
}
fn main() {

let d = get_odd_number(11);
match d {
None => println!("Not an odd number"),
Some(x) => {
println!("this is an odd number {}",x);

Match

...> and Result<...> enums to match

this is an odd number 11

Match

Similar to how enums matching works, a structure and its value can be matched in
a match construct. In this case, the underline character “_” has a special meaning

(it implies that a specific field from a structure can have whatever value we want,
and we don’t need to know its value).

Let’s consider that we have a 2-dimensional screen of size 100 x 100 where points
can be written.

Each point is represented by a structure with two coordonates (X and Y) and we are
interested in knowing if a point is:

* The origin (0,0)

* On one of the margins (X=0orX=1000orY=0o0rY =100)

* The center (50,50)

Match

Let’s see how we can use a match construct to build this rules:
Rust

struct Point {
X: 132,
y: 132,

}
fn main() {

let p = Point { x: 0, y: 0 };

match p {
Point{x:0,y:0}
Point{x:50,y:50}
Point{x:0,y: }
Point{x:100,y: }
Point{x: ,y:0}
Point{x: ,y:100}

println!("Origin"),
println! ("Center"),
println!("Bottom margin"),
println!("Top margin"),
println!("Left margin"),
println!("Right margin"),
println! ("Other point")

>
>
>
>
>
>
>

Match

Let’s see how we can use a match construct to build this rules:
Rust

Point{x: ,y:0} This matches any Point that has int Y-axes set up to value O

Match

It is also possible to associate the name of the field to its value by NOT specifying

o N)

the expected value (e.g instead of “x:<value>" or “x:_” just use “X

Rust

Stru)c(:c Eg;?t { Bottom margin (0,23)
y: 132,

}

fn main() {
let p = Point { x: @, y: 23 };
match p {

Point{x:0,y:0} => println!("Origin"),
Point{x:50,y:50} => println!("Center"),
Point{x:0,y} => println!("Bottom margin (0,{})",y),
Point{x:100,y: } => println!("Top margin"),
Point{x: _,y:0} => println!("Left margin"),
Point{x:_,y:100} => println!("Right margin"),

=> println!("Other point")

Match

It is also possible to associate the name of the field to its value by NOT specifying

o II)

the expected value (e.g instead of “x:<value>" or “x:_” just use “X

Rust

Bottom margin (0,23)

let p = Point { x: @, y: 23 };

Point{x:0,y} => println!("Bottom margin (0,{})",y).

[y et e s), 1

Notice that we have not specified a value for the field “y” (in the form of y:value). As
such, it is considered that any value can match “Point::y” and that value is
linked/bounded to the variable “y” that can further be used in the rule code.

Match

It is also possible to associate the name of the field to its value by NOT specifying

o II)

the expected value (e.g instead of “x:<value>" or “x:_” just use “X

Rust

Bottom margin (0,23)

let p = Point { x: @, y: 23 };

Point{x:0,y} => println!("Bottom margin (0,{})",y),

A similar result can be obtained if we use an alias:
Point{x:0,y:my _var} => println!("Bottom margin (0,{})",my var),

Match

If a structure has multiple parameters and you are interested in matching only one

o

of them, you can use “..” to specify that the rest of them should be ignored.

Rust

struct Point4D {
x: i32, Some point with x=5
: 132,
: 132,
: 132
}
fn main() {

let p = Point4dD { x: 5, y: 23, z:15, t:30 };
match p {
Point4D{x:0,y:0,z:0,t:0} => println!("Origin"),
Point4D{x:50,y:50,z:50,t:50} => println!("Center"),
Point4D{x:5, ..} => println!("Some point with x=5"),
=> println!("Other point")

Match

If a structure has multiple parameters and you are interested in matching only one

o

of them, you can use “..” to specify that the rest of them should be ignored.

Rust

Some point with x=5

A similar result can be obtained if we use an alias:
Point4D{x:5,y: ,z: ,t: } => println!("Some point with x=5"),
or
Point4D{x:5,y,z,t} => println!("Some point with x=5"),

Point4D{x:5, ..} => println!("Some point with x=5"),

Match

A similar logic to what happens in case of a structure can be applied any tuple. Let’s
consider the previous example with Point4D defined as a tuple:

Rust

let p = (@)@)@J@);

match p {
(0,0,0,0) => println!("Origin"),
I => println!("X-axis is @ "),

(1,2,..) => println! ("X axis is @ and Y axis is 2"),

(_,_,_,10) => println!("T axis is 10"),

(9,y,z,) => println! ("X is @, Y = {}, z = {}, t is ignored",y,z),

(7,..,%t) => println! ("X is 7, X and Y are ignored, T is {}",t),
=> println!("Other point")

Match

A similar logic to what happens in case of a structure can be applied any tuple. Let’s
consider the previous example with Point4D defined as a tuple:

Rust

Xis7,Xand Y areignored, Tis 4

let p = (7,6,5,4); i
p = (7,6,5,4); You can use “.” or “_” to ignore

one or multiple values. At the
same time, using a variable

name will assign the value from
the tuple to that variable for
(7,..,t) => println!("X is 7, X and Y are ignored, T is {}",t), usage in the rule code

Match

A similar logic to what happens in case of a structure can be applied any tuple. Let’s
consider the previous example with Point4D defined as a tuple:

Rust

T axisis 10
let p = (2,0,0,10);

(_s_»_,10) => println!("T axis is 10"),

o n

A similar result can be obtained if we use the “.” operator:
(..,10) => println!("T axis is 10"),

Match

Keep in mind that the order of the rules matters. If two rules match the same case,
the first one (in terms of the definition order) will be used. In our case, (0,0,0,10)
matches both (0,..) and (_,_, ,10). However, the result will be the first one that its
being matched - (O0,..)

Rust

X-axisis O
let p = (0,0,0,10);

(0,..) => println!("X-axis is @ "),

=> println!("T axis is 10"),

Match

Just like in the case of tuples, a similar logic can be applied for array as well. Lets
consider the following example:

Rust
fn main() { .
let a = [1,2,3,4]; A vector with second element 2 and last one 4
match a {
println! ("
println! ("

vector with Zeros"),
vector with first element Zero"),

println! ("
println! ("
println! ("

vector with first element 2 and last one 3"),
vector with second element 2 and last one 4"),
omething else")

A
A
println! ("A vector with last element 5"),
JA
JA
S

OBS: Just like in the previous cases, .| can be used to match multiple consecutive
elements.

Match

You can also capture the value of an element from the array, and/or combine this
method with the usage of | and ./ to ignore one or multiple values.

Rust
fn main() { :
let a = [0,2,3,4]; A vector with [0,2,3,4]
match a {
println! ("A vector with Zeros"),

println! ("A vector with [0,{},{},{}]1",x,y,2),
println! ("A vector with last elements: {} and 5",1),
println! ("A vector with the second element {}",m)

OBS: Notice that we don’t need the final rule/match-arm for the default value ().
This is because [_,m,..] will match everything else and will provide the value of the
second parameter in variable “m”

Match

Keep in mind that in case of arrays, the number of elements described in each rule
must match the number of elements in the array. In this next example, the second
rule/match-arm has 3 elements instead of 4 (the number of elements from “@”)

Rust

fn main() {
let a = [0,2,3,4];
match a {
[0,0,0,0] => println!("A vector with Zeros"),
[0,X,Y] => println!("A vector with [0,{},{}]",X,Y¥),
_ => println!("Something else")

error[EG527]: pattern requires 3 elements but array has 4
--> src\main.rs:5:9

5 [0,%,y] => println!("A vector with [0,{},{}]1",x,y),
expected 4 elements

Match

While in case of arrays, the number of elements must be matched by all patterns,
in case of slices, there is no such rule. Let’s analyze the next example:

Rust

fn check slice(slice: &[u8]) {
println! ("Testing: {:?}",slice);
match slice {
[] => { println!(" Match: a slice with one element "); },
[a,0] => { println!(" Match: two elements (first is {a}, last is 0)"); },
[a,b] => { println!(" Match: two elements ({a} and {b})"); },
[a, ,b] => { println! (" Match: three elements: first:{a}, last:{b}"); },
[1,..,5] => { println!(" Match: starts with 1 and ends with 5"); }
_ =>{ println!(" Match: other cases "); }
}
} .
fn main() { Testing: [1, 0, 5]
let x = [1u8,0,5]; Match: three elements: first:1, last:5

check_slice(&x); } Notice that we have called function Testing: {1}

check_slice(&x[..1]); I\/Ia.tch: a slice with one element
check slice(8x[..2]): check_slice with slices of various size Testing: [1, 0]

(3,1 and 2 elements) Match: two elements (first is 1, last is 0)

Match

While in case of arrays, the number of elements must be matched by all patterns,
in case of slices, there is no such rule. Let’s analyze the next example:

Rust

[a,_,b] => { println!(" Match: three elements: first:{a}, last:{b}"); },
[1,..,5] => { println!(" Match: starts with 1 and ends with 5"); }

4

A

check _slice(&x);

Notice that there are two arms that match the slice [1,0,5].
Rust will stop at the first match (so the order of the rules
matters).

Match

It is also possible to capture a slice from the array by using the sigil character (@) to
bind a part of the array into a new slice that can be used in the rule/arm code.

In case of arrays, the general format for this type of binding is:

Keep in mind that (to bind a variable name to a single

position) is also possible but unnecessary as you can use the variable name directly.

Rust

fn main() {
let a = [0,1,2,3,4];
match a {
[0,0,0,0,0] => println!("A vector with Zeros"),

First three elements: [0, 1, 2]

[0,middle @..,0] => println!("Middle of the vector is: {:?}",middle),
[first 3 @ ..,3,4] => println!("First three elements: {:?}", first 3),
=> println!("Something else")

Match

However, binding a value with a sigil character (@) is useful for cases where that
value is not stored in a local variable (but it is the result of an expression). Let's
consider the following case:

Rust
fn get_a_random_value() -> u8 { rand::random::<u8>() % 101u8 } Output (possible)

fn main() {
match get _a_random value() { Better than half
0 => println!("Zero"),
1..=49 => println!("Less than half"),

50..=99 => println!("Better than half"),
100 => println!("100"),
=> println!("Impossible value")

Notice that the result of get_a_random_value() function is not stored in function
main. As such if we want to use the actual value in one of the match construct
arms, we can'’t.

Match

However, binding a value with a sigil character (@) is useful for cases where that
value is not stored in a local variable (but it is the result of an expression). Let's
consider the following case:

Output (possible)
Better than half with value: 57

=> println!("Less than half with value: {}",n),
0..=99 => println!("Better than half with value: {}",n),

Notice that the result of get_a_random_value() function is not stored in function
main. As such if we want to use the actual value in one of the match construct
arms, we can'’t.

Match

You can also bind with enums variants values. Let’s change the previous example to
use an Option instead of an u8 value.

Rust

fn get _a random_value() -> Option<u8> {
let x = rand::random: :<u8>();
if x<101u8 { Some(x) } else { None }

}
fn main() {

match get a _random value() {

Some(9) =>

Some(n @ 1..=49) =>
Some(n @ 50..=99) =>
Some (100) =>
Some(_) =>
None =>

println! ("
println! ("
println! ("
println! ("
println! ("
println! ("

Zero"),

Less than half with value: {}",n),
Better than half with value: {}",n),
100"),

Other cases"),

Higher than 100 value")

Output (possible)
Better than half with value: 57

Match

You can also bind with enums variants values. Let’s change the previous example to
use an Option instead of an u8 value.

Rust

Output (possible)

Better than half with value: 57
x<101u8 { Some(x) } { None }

Notice that in reality, Some(_) case is not needed
as all possible values are already covered.

However, as all possible u8 values for the Some
case must be covered we have to add it otherwise
we will not be able to compile the code.

=> println!("Other cases"),

Match

Rust also support guards for a rule/match-arm. This allows using a more complex
checks than the one than the ones allowed by the pattern rule/matching arm.

Rust

fn get_a random_value() -> u8 {
rand: :random: :<u8>() % 101u8 Better than half with value: 95

Output (possible)

}
fn main() {

match get _a random_value() {
v if => println!("Zero"),
if println!("Less than half with value: {}",v),
println!("Better than half with value: {}",v),
println!("100"),
println!("Impossible value")

< < < <|
N A A 1|

v
v if
v if

OBS: Keep in mind that guards might have a performance impact (use them
carefully !)

Match

Let’s consider an even more complex example where we use the match guard to
filter out prime numbers.

Rust

fn get_a_random_value() -> u8 { Output (possible)

rand: :random: :<u8>() % 20u8 A prime number: 5
} X
fn is_prime(value: u8) -> bool {

if value < 2 { return false; }

if value == 2 { return true; }

for i in 2..=(value/2) {

if (value % i) == @ { return false; }

}

return true;
}
fn main() {
match get _a random_value() {
v if v == => println!("Zero"),
v if is prime(v) => println!("A prime number: {}",v),
=> println!("Other values: {}",v)

Match (C++ vs Rust)

Option/Feature m C++

Match numerical value (e.g. integers) YES YES
Match strings constants (literals) 2> “...” YES -
Match enums (classical) YES YES
Match enums (variant style) YES -
Match structs YES -
Match tuples YES -
Match arrays YES -
Match multiple values YES YES
Match intervals YES -
Guards YES -
Variable binding YES -

Continue to next rule/match arm - YES

Match

Keep in mind that a match construct is desired to be fast (ideally with O(1) access time),
but these optimization will not always be possible. Some of the limitations of C++ are
because they can not obtain a better performance with a switch for some cases (other
than 2 [EYTES] one).

Examples where using a match should provide best performance:
e Constant numbers (ideally consecutive numbers: 0,1,2,)
 Enum values (but not variants)

Examples where using a match will probably translate into a chained if...else constructs
 Strings =2 it is more efficient to use an automata
* Multiple numeric intervals (especially if they have gaps)
* Guards

	Default Section
	Slide 1: Course – 7 Gavrilut Dragos
	Slide 2: Agenda for today

	Generics
	Slide 3: Generics
	Slide 4: Generics
	Slide 5: Generics
	Slide 6: Generics
	Slide 7: Generics
	Slide 8: Generics
	Slide 9: Generics
	Slide 10: Generics
	Slide 11: Generics
	Slide 12: Generics
	Slide 13: Generics
	Slide 14: Generics
	Slide 15: Generics
	Slide 16: Generics
	Slide 17: Generics
	Slide 18: Generics
	Slide 19: Generics
	Slide 20: Generics
	Slide 21: Generics
	Slide 22: Generics
	Slide 23: Generics
	Slide 24: Generics
	Slide 25: Generics
	Slide 26: Generics
	Slide 27: Generics
	Slide 28: Generics
	Slide 29: Generics
	Slide 30: Generics
	Slide 31: Generics
	Slide 32: Generics
	Slide 33: Generics
	Slide 34: Generics
	Slide 35: Generics
	Slide 36: Generics
	Slide 37: Generics
	Slide 38: Generics
	Slide 39: Generics
	Slide 40: Generics
	Slide 41: Generics
	Slide 42: Generics
	Slide 43: Generics
	Slide 44: Generics
	Slide 45: Generics
	Slide 46: Generics
	Slide 47: Generics
	Slide 48: Generics
	Slide 49: Generics
	Slide 50: Generics
	Slide 51: Generics
	Slide 52: Generics
	Slide 53: Generics
	Slide 54: Generics
	Slide 55: Generics
	Slide 56: Generics
	Slide 57: Generics
	Slide 58: Generics
	Slide 59: Generics
	Slide 60: Generics
	Slide 61: Generics
	Slide 62: Generics
	Slide 63: Generics
	Slide 64: Generics
	Slide 65: Generics
	Slide 66: Generics
	Slide 67: Generics
	Slide 68: Generics
	Slide 69: Generics
	Slide 70: Generics

	Match
	Slide 71: Match
	Slide 72: Match
	Slide 73: Match
	Slide 74: Match
	Slide 75: Match
	Slide 76: Match
	Slide 77: Match
	Slide 78: Match
	Slide 79: Match
	Slide 80: Match
	Slide 81: Match
	Slide 82: Match
	Slide 83: Match
	Slide 84: Match
	Slide 85: Match
	Slide 86: Match
	Slide 87: Match
	Slide 88: Match
	Slide 89: Match
	Slide 90: Match
	Slide 91: Match
	Slide 92: Match
	Slide 93: Match
	Slide 94: Match
	Slide 95: Match
	Slide 96: Match
	Slide 97: Match
	Slide 98: Match
	Slide 99: Match
	Slide 100: Match
	Slide 101: Match
	Slide 102: Match
	Slide 103: Match
	Slide 104: Match
	Slide 105: Match
	Slide 106: Match
	Slide 107: Match
	Slide 108: Match
	Slide 109: Match
	Slide 110: Match
	Slide 111: Match
	Slide 112: Match
	Slide 113: Match
	Slide 114: Match
	Slide 115: Match
	Slide 116: Match
	Slide 117: Match
	Slide 118: Match
	Slide 119: Match
	Slide 120: Match
	Slide 121: Match
	Slide 122: Match
	Slide 123: Match
	Slide 124: Match
	Slide 125: Match
	Slide 126: Match (C++ vs Rust)
	Slide 127: Match

	Q&A
	Slide 128

