
Course – 8
Gavrilut Dragos

Rust programming

rev 6

Agenda for today

1. Closures

2. Iterators

3. Vectors

4. Sorting data sequences

5. HashMap

6. HashSet

7. BTreeMap

8. BTreeSet

9. Map comparation between C++ and Rust

Closures

Closures (or lambda functions) are short functions that can be used in different
scenarios (e.g. when sorting, or filtering collection of elements).

Closures are widely used with iterators.

The general format of a closure is:

|Param1:Type1, Param2:Type2,…Paramn:Typen | -> ReturnType { code-block }

With some observations:
• ReturnType can be omitted. In this case Rust will try to infer it from the code-block return

value; ➔ |Param1, Param2,…Paramn| { code-block }

• Type1, Type2 …Typen can be omitted as well. Rust will try to infer them from the usage.

• The brackets from the code-code block can be omitted (in particular if the code-block is just a
simple expression). In this case, the code-block contains just the expression that evaluates
the return value; ➔ |Param1, Param2,…Paramn| return-value

• If brackets are omitted, the ReturnType must be omitted as well.

Closures

Let’s see some examples (with a parameter types and return type specified):

Closures

fn main() {
 let f1 = |x|->i32 { x+1 };
 let cmmdc = |x:i32,y:i32|->i32 {
 let mut a = x;
 let mut b = y;
 while a!=b {
 if a>b { a-=b; } else { b-=a;}
 }
 return a;
 };
 println!("{}",f1(10));
 println!("{}",cmmdc(18,24));
}

Rust

Output

11
6

Let’s see some examples (with any type specified):

Closures

fn main() {
 let f1 = |x| { x+1 };
 let f2 = |x,y| x+y;
 let cmmdc = |x,y| {
 let mut a = x;
 let mut b = y;
 while a!=b {
 if a>b { a-=b; } else { b-=a;}
 }
 a
 };
 println!("{}",f1(10));
 println!("{}",f2(10,20));
 println!("{}",cmmdc(18,24));
}

Rust

Output

11
30
6

Keep in mind that a closure is not a template (even if no type is specified). In the
next example, “x” and “y” from f1 are inferred to be of type |x:i32,y:i32|->i32 { x+y }
after the first call of printf! Macro.
As such, the usage of a float value will not be allowed.

Closures

fn main() {
 let f1 = |x,y| x+y;
 println!("{}",f1(10,20));
 println!("{}",f1(1.2,2.5));
}

Rust

error[E0308]: mismatched types
 --> src\main.rs:4:22
 |
4 | println!("{}",f1(1.2,2.5));
 | ^^^ expected integer, found floating-point number

error[E0308]: mismatched types
 --> src\main.rs:4:26
 |
4 | println!("{}",f1(1.2,2.5));
 | ^^^ expected integer, found floating-point number

Error

A closure does not need to have parameters, it can just be a simple function that
prints something on the screen.

OBS: This is in particular useful with captures.

Closures

fn main() {
 let r = || println!("Rust");
 println!("I like");
 r();
 println!("I like");
 r();
}

Rust

Output

I like
Rust
I like
Rust

A closure can capture local parameters. Let’s analyze the following example:

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

Closures

fn main() {
 let x = 1;
 let print_x = || println!("x={}",x);
 print_x();
}

Rust

Output

X=1

mov dword ptr [x],1

lea rax,[x]
mov qword ptr [print_x],rax

lea rcx,[print_x]
call main::closure$0

A closure can capture local parameters. Let’s analyze the following example:

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

Closures

fn main() {
 let x = 1;
 let print_x = || println!("x={}",x);
 print_x();
}

Rust

Output

X=1

mov dword ptr [x],1

lea rax,[x]
mov qword ptr [print_x],rax

lea rcx,[print_x]
call first::main::closure$0 It’s obvious that a reference to “x” is being

stored in print_x.

A closure can capture local parameters. Let’s analyze the following example:

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

Closures

fn main() {
 let x = 1;
 let print_x = || println!("x={}",x);
 print_x();
}

Rust

Output

X=1

mov dword ptr [x],1

lea rax,[x]
mov qword ptr [print_x],rax

lea rcx,[print_x]
call main::closure$0

The way this call is made, looks like a method call
from a class, where RCX register stores this/self.

A closure can capture local parameters. Let’s analyze the following example:

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

Closures

fn main() {
 let x = 1;
 let print_x = || println!("x={}",x);
 print_x();
}

Rust
struct TempClosure {
 int* x;
 void Run() {
 printf("x=%d",*x);
 }
};
void main() {
 int x = 1;
 TempClosure print_x;
 print_x.x = &x;
 print_x.Run();
}

C++ equivalent

Keep in mind that this is an approximation based
on how the assembly code looks like.

A closure can capture local parameters. Let’s analyze the following example:

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

Closures

fn main() {
 let x = 1;
 let print_x = || println!("x={}",x);
 print_x();
}

Rust

class TempClosure {
 int& x;
public:
 TempClosure(int& value): x(value) {}
 void operator() () {
 printf("x=%d",x);
 }
};
void main() {
 int x = 1;
 TempClosure print_x(x);
 print_x();
}

C++ equivalent (with classes)

This is how in reality the code from a
closure/lambda function is created.

So … a closure captures references to variables that are being used in its evaluation.

This also means that every rule that applies to borrowing variables apply here as well.

In reality, both print_x and main use immutable references to “x” and as such this
code will work just fine.

Closures

fn main() {
 let x = 1;
 let print_x = || println!("x={}",x);
 print_x();
 println!("x from main = {}",x);
 print_x();
}

Rust

Output

x=1
x from main = 1
x=1

Let’s consider this code:

“x” is a mutable variable. This code works so the way print_x capture “X” is by an
immutable reference (if it were to be a mutable reference, the println! macro would
not compile as it would imply the existence of both an immutable and a mutable
reference to the same variable).

OBS: In reality, Rust choses how it borrows references based on how those references are being used in
the closure.

Closures

fn main() {
 let mut x = 1;
 let print_x = || println!("x={}",x);
 println!("x from main = {}",x);
 print_x();
}

Rust

Output

x from main = 1
x=1

Let’s consider this code:

In this case, we have modified the closure
to increment the value of “x”. For this to
happen, “x” must be borrowed as mutable,
and as such the println!(…) macro can no
longer be used as it implies the existence of both immutable and mutable references
to the same variable.

Closures

fn main() {
 let mut x = 1;
 let print_x = || { println!("x={}",x); x+=1; };
 println!("x from main = {}",x);
 print_x();
}

Rust

error[E0502]: cannot borrow `x` as immutable because it is also
borrowed as mutable
 --> src\main.rs:4:33
 |
3 | let print_x = || { println!("x={}",x);x+=1; };
 | -- - first borrow occurs due
 | | to use of `x` in closure
 | |
 | mutable borrow occurs here
4 | println!("x from main = {}",x);
 | ^ immutable borrow occurs here
5 | print_x();
 | ------- mutable borrow later used here
 |

Error

Let’s consider this code:

Notice that print_x is mutable. This is required as in reality we change the value of one
of its data members (the mutable reference to “x”).

Closures

fn main() {
 let mut x = 1;
 let mut print_x = || { println!("x={}",x);x+=1; };
 print_x();
 print_x();
}

Rust

Output

x=1
x=2

Rust also has a special keyword (move) that can be used to move (assign) the value of
the captured elements into the lambda/closure.

Let’s see what happens in this case.

Closures

fn main() {
 let mut x = 1;
 let mut print_x = move || { println!("x={}",x);x+=1; };
 print_x();
 println!("x from main = {x}");
 print_x();
 println!("x from main = {x}");
}

Rust

Output

x=1
x from main = 1
x=2
x from main = 1

Rust also has a special keyword (move) that can be used to move (assign) the value of
the captured elements into the lambda/closure.

Let’s see what happens in this case.

Closures

fn main() {
 let mut x = 1;
 let mut print_x = move || { println!("x={}",x);x+=1; };
 print_x();
 println!("x from main = {x}");
 print_x();
 println!("x from main = {x}");
}

Rust

Output

x=1
x from main = 1
x=2
x from main = 1

mov eax,dword ptr [x]
mov dword ptr [print_x],eax

Notice the usage of mov instruction, instead of lea.
This means that the content of “x” is being transferred

to print_x and not a reference towards “x”.

Let’s see a C++ equivalent for this:

Closures

class TempClosure {
 int& x;
public:
 TempClosure(int& value): x(value) {}
 void operator() () {
 printf("x=%d",x);
 x+=1;
 }
};
void main() {
 int x = 1;
 TempClosure print_x(x);
 print_x();
}

C++ equivalent (with classes)
class TempClosure {
 int x;
public:
 TempClosure(int value): x(value) {}
 void operator() () {
 printf("x=%d",x);
 x+=1;
 }
};
void main() {
 int x = 1;
 TempClosure print_x(x);
 print_x();
}

C++ equivalent (with classes)

let mut print_x = move || { println!("x={}",x);x+=1; };let mut print_x = || { println!("x={}",x);x+=1; };

Let’s see a C++ equivalent for this:

Closures

class TempClosure {
 int& x;
public:
 TempClosure(int& value): x(value) {}
 void operator() () {
 printf("x=%d",x);
 x+=1;
 }
};
void main() {
 int x = 1;
 TempClosure print_x(x);
 print_x();
}

C++ equivalent (with classes)
class TempClosure {
 int x;
public:
 TempClosure(int value): x(value) {}
 void operator() () {
 printf("x=%d",x);
 x+=1;
 }
};
void main() {
 int x = 1;
 TempClosure print_x(x);
 print_x();
}

C++ equivalent (with classes)

let mut print_x = move || { println!("x={}",x);x+=1; };let mut print_x = || { println!("x={}",x);x+=1; };

In this case a reference is captured. In this case the value is captured.

This means that the previous example that uses move keyword worked (but only
because Copy trait is present on i32 type).

However, if we use a type that does not
have a Copy trait (e.g. a String) the code
will not compile !

Closures

fn main() {
 let mut x = String::from("abc");
 let mut print_x = move || { println!("x={}",x);x.push_str("1"); };
 print_x();
 println!("x from main = {x}");
 print_x();
 println!("x from main = {x}");
}

Rust

error[E0382]: borrow of moved value: `x`
 --> src\main.rs:5:30
 |
2 | let mut x = String::from("abc");
 | ----- move occurs because `x` has type `String`, which does not
 | implement the `Copy` trait
3 | let mut print_x = move || { println!("x={}",x);x.push_str("1"); };
 | ------- - variable moved due to
 | | use in closure
 | |
 | value moved into closure here
4 | print_x();
5 | println!("x from main = {x}");
 | ^ value borrowed here after move

Error

This means that the previous example that uses move keyword worked (but only
because Copy trait is present on i32 type).

Now the code works, but the ownership of “x” has been moved into the print_x
closure.

Closures

fn main() {
 let mut x = String::from("abc");
 let mut print_x = move || { println!("x={}",x);x.push_str("1"); };
 print_x();
 print_x();
 print_x();
}

Rust

Output

x=abc
x=abc1
x=abc11

One solution to move back a value that was captured by a closure is to return it.

In this example, first “X” is moved into print_x, then it is moved back.

OBS: In reality, these type of closures can only be called once (for example in this case, the moment the
value of “x” is moved back, the capture print_x can no longer be used).

Closures

fn main() {
 let mut x = String::from("abc");
 let mut print_x = move || { println!("x={}",x);x.push_str("1");return x; };
 x = print_x();
 println!("x = {}",x);
}

Rust

Output

x=abc
x = abc1

One solution to move back a value that was captured by a closure is to return it.

Closures

fn main() {
 let mut x = String::from("abc");
 let mut print_x = move || { println!("x={}",x);x.push_str("1");return x; };
 x = print_x();
 println!("x = {}",x);
 print_x();
}

Rust

error[E0382]: use of moved value: `print_x`
 --> src\main.rs:6:5
 |
4 | x = print_x();
 | --------- `print_x` moved due to this call
5 | println!("x = {}",x);
6 | print_x();
 | ^^^^^^^ value used here after move
 |
note: closure cannot be invoked more than once because it moves the variable `x` out of its
environment
 --> src\main.rs:3:75
 |
3 | let mut print_x = move || { println!("x={}",x);x.push_str("1");return x; };
 | ^
note: this value implements `FnOnce`, which causes it to be moved when called
 --> src\main.rs:4:9
4 | x = print_x();

Error

What is FnOnce trait ?

Each closure implicitly implements at least one of the following 3 traits. The decision
on what to implement belongs to the compiler, based on the operation and how
capture is being used in the closure.

1. FnOnce → closures that can be called only one time (usually a closure that moves
a value through the return type out of its context)

2. FnMut → closures that don’t move values out of their context but might change
the value of a mutable reference that they capture.

3. Fn → closures that don’t move values out of their context and don’t modify any
reference that they capture (they capture immutable references)

Closures

So … what if we want to create a function that returns a closure. Well … the first thing
that we need to understand is how to define a pointer/reference to a function (similar
to how this is defined in C/C++).

To do this, we will use the keyword fn in the following way:

fn (Type1,Type2, … Typen)->ReturnType

Some examples:
• fn(i32)->i32 ➔ a function that receives a i32 value and returns another i32 value

• fn(&str,usize)->String ➔ a function that receives a &str and an usize value and returns an object
of type String

• type name = fn(char)->i32 ➔ creates a type that represents a pointer to a function that receives
a parameter of type char and returns an i32

Closures

Let’s see one example that returns a pointer to a function:

In this example, MyFunction is a type that defines a pointer to a function that takes
two i32 parameters and returns an i32 value.

Closures

type MyFunction = fn(i32,i32)->i32;

fn create_add_function() -> MyFunction {
 return |x:i32,y:i32|->i32 { return x+y; }
}
fn main() {
 let add = create_add_function();
 let sub: MyFunction = |x,y| x-y;
 println!("{}, {}",add(1,2),sub(10,4));
}

Rust

Output

3, 6

But what if we want to do something more complex (e.g. to return a closure that
captures some variables/parameters):

Closures

fn create_closure(value: i32)-> fn (i32)->i32 {
 return |x:i32|->i32 { return x / value; };
}

fn main() {
 let f = create_closure(10);
 println!("res = {}",f(50));
}

Rust

error[E0308]: mismatched types
 --> src\main.rs:2:12
 |
1 | fn create_closure(value: i32)-> fn (i32)->i32 {
 | ------------- expected `fn(i32) -> i32` because of
 | return type
2 | return |x:i32|->i32 { return x / value; };
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected fn pointer, found closure
 |
 = note: expected fn pointer `fn(i32) -> i32`
 found closure `[closure@src\main.rs:2:12: 2:46]`
note: closures can only be coerced to `fn` types if they do not capture any variables
 --> src\main.rs:2:38
 |
2 | return |x:i32|->i32 { return x / value; };
 | ^^^^^ `value` captured here

Error

The short answer is that we
can’t.

That is because a fn(…) is just a pointer while a closure is a struct and its size its
unknown (pending on what variables it has captured). The solution is to explain the
output based on what it implements: Fn, FnOnce or FnMut

The approach is ok, but since value
is not copied, but only borrowed,
when function create_closure ends, “value” lifetime ends and as a result, it can not
exist in the returned closure.

Closures

fn create_closure(value: i32)-> impl Fn(i32)->i32 {
 return |x:i32|->i32 { return x / value; };
}
fn main() {
 let f = create_closure(10);
 println!("res = {}",f(50));
}

Rust

error[E0373]: closure may outlive the current function, but it borrows
`value`, which is owned by the current function
 --> src\main.rs:2:12
 |
2 | return |x:i32|->i32 { return x / value; };
 | ^^^^^^^^^^^^ ----- `value` is borrowed here
 | |
 | may outlive borrowed value `value`

Error

The solution is to move the value that is being capture into the closure. In this case,
there is no concern related to lifetime as the result is copied.

The code could be written with FnOnce (as we are using move and FnOnce is also
implemented).

Closures

fn create_closure(value: i32)-> impl Fn(i32)->i32 {
 return move |x:i32|->i32 { return x / value; };
}
fn main() {
 let f = create_closure(10);
 println!("res = {}",f(50));
}

Rust

Output

res = 5

But … what happens when we use the impl keyword ? To answer this, let’s analyze the
following code:

Closures

fn create_closure(value: i32) -> impl Fn(i32)->i32 {
 return move |x: i32| -> i32 { return x / value; };
}
fn create_closure2(value: i32) -> impl Fn(i32)->i32 {
 return move |x: i32| -> i32 { return x / value; };
}
fn main() {
 let x1 = create_closure(10);
 let x2 = create_closure2(10);
 let value = 10;
 let x3 = move |x: i32| -> i32 { return x / value; };
 let y1 = x1(20);
 let y2 = x2(20);
 let y3 = x3(20);
 println!("{},{},{}",y1,y2,y3);
}

Rust

Output

2,2,2

All of these 3 closures are identical
in terms of their code.

Does this mean that they have the
same type ?

But … what actually happens when we use the impl keyword ? To answer this, let’s
analyze the following code:

Closures

fn create_closure(value: i32) -> impl Fn(i32)->i32 {
 return move |x: i32| -> i32 { return x / value; };
}
fn create_closure2(value: i32) -> impl Fn(i32)->i32 {
 return move |x: i32| -> i32 { return x / value; };
}
fn main() {
 let x1 = create_closure(10);
 let x2 = create_closure2(10);
 let value = 10;
 let x3 = move |x: i32| -> i32 { return x / value; };
 let y1 = x1(20);
 let y2 = x2(20);
 let y3 = x3(20);
 println!("{},{},{}",y1,y2,y3);
}

Rust

mov edx,20
lea rcx,[x1]
call first::create_closure::closure$0 (07FF664C31250h)
mov dword ptr [y1],eax

mov edx,20
lea rcx,[x2]
call first::create_closure2::closure$0 (07FF664C312E0h)
mov dword ptr [y2],eax

mov edx,20
lea rcx,[x3]
call first::main::closure$0 (07FF664C31370h)
mov dword ptr [y3],eax

But … what actually happens when we use the impl keyword ? To answer this, let’s
analyze the following code:

Closures

fn create_closure(value: i32) -> impl Fn(i32)->i32 {
 return move |x: i32| -> i32 { return x / value; };
}
fn create_closure2(value: i32) -> impl Fn(i32)->i32 {
 return move |x: i32| -> i32 { return x / value; };
}
fn main() {
 let x1 = create_closure(10);
 let x2 = create_closure2(10);
 let value = 10;
 let x3 = move |x: i32| -> i32 { return x / value; };
 let y1 = x1(20);
 let y2 = x2(20);
 let y3 = x3(20);
 println!("{},{},{}",y1,y2,y3);
}

Rust

mov edx,20
lea rcx,[x1]
call first::create_closure::closure$0 (07FF664C31250h)
mov dword ptr [y1],eax

mov edx,20
lea rcx,[x2]
call first::create_closure2::closure$0 (07FF664C312E0h)
mov dword ptr [y2],eax

mov edx,20
lea rcx,[x3]
call first::main::closure$0 (07FF664C31370h)
mov dword ptr [y3],eax

Notice that even if all closures are identical,
each one of them has a different address of
the code that needs to be run → even if that

code is identical on all 3 closures.

This actually means that each closure is a separate type. From this point of view, two
identical closures (in terms of code, parameters, capture and return value) are
different from Rust point of view. This is similar to how C++ implements lambda
functions, and it also explains why the next code does not compile !

Closures

fn create_closure(value: i32) -> impl Fn(i32) -> i32 {
 if value>10 {
 return move |x: i32| -> i32 { return x / value; };
 } else {
 return move |x: i32| -> i32 { return x / value; };
 }
}
fn main() {
 let c = create_closure(10);
}

Rust

error[E0308]: mismatched types
 --> src\main.rs:5:16
1 | fn create_closure(value: i32) -> impl Fn(i32) -> i32 {
 |
5 | return move |x: i32| -> i32 { return x / value; };
 | ^^
 | expected closure, found a different closure

 = note: no two closures, even if identical, have the same type
 = help: consider boxing your closure and/or using it as a trait object

Error

Since we can not have a function that returns two different type, the next code can
not be compiled.

But… what is the relation between “impl Fn(i32)->i32” and those two closures ?

Closures

fn create_closure(value: i32) -> impl Fn(i32) -> i32 {
 if value>10 {
 return move |x: i32| -> i32 { return x / value; };
 } else {
 return move |x: i32| -> i32 { return x / value; };
 }
}
fn main() {
 let c = create_closure(10);
}

Rust

Closure of type A

Closure of type B

Let’s assume the following function: create_closure

When the compiler sees that the return type uses impl keyword, it search any return
type from the function code and assumes that the return type is what the function
returns. This means that the previous code will be translated by Rust as follows:

After this, Rust checks to see if ABCD implements the trait Fn (with one parameter of
type i32) and if it returns an i32 as well. If this is so, then the function is correct, and
its return type was inferred from the type of the closure. Furthermore:

Closures

fn create_closure(value: i32) -> impl Fn(i32) -> i32 {
 return move |x: i32| -> i32 { return x / value; };
}

Let’s assume that this closure hase type ABCD;

fn create_closure(value: i32) -> ABCD {
 return move |x: i32| -> i32 { return x / value; };
}

let c = create_closure(10); Variable “c” will be of type ABCD as well.

The main advantage of this technique is that it allows static linkage of the closure
calling method. This means that since we know the type in the compiling phase, we
know the memory offset where the calling method of that type lies, and we can call it
directly.

However, let’s analyze one of the previous errors and see what Rust suggest:

Closures

error[E0308]: mismatched types
 --> src\main.rs:5:16
1 | fn create_closure(value: i32) -> impl Fn(i32) -> i32 {
 |
5 | return move |x: i32| -> i32 { return x / value; };
 | ^^
 | expected closure, found a different closure
 = note: no two closures, even if identical, have the same type

 = help: consider boxing your closure and/or using it as a trait object

Error

So, what does Boxing means in this context ? Well … its like the usage of virtual
methods from C++ !

Notice the usage of the keyword dyn in the definition and the fact that we don’t
return from the stack but rather allocate a space on heap (a box) from where we will
return an object.

We will talk more about dyn (short from dynamic ☺) on another course.

Closures

fn create_closure(value: i32) -> Box<dyn Fn(i32) -> i32> {
 return Box::new(move |x: i32| -> i32 { return x / value; });
}
fn main() {
 let c = create_closure(10);
 println!("{}",c(50));
}

Rust

Output

5

With this change, we can now return two different closure (one that uses multiply,
and another one that uses division).

Closures

fn create_closure(value: i32) -> Box<dyn Fn(i32) -> i32> {
 if value % 2 == 0 {
 return Box::new(move |x: i32| -> i32 { return x / value; });
 } else {
 return Box::new(move |x: i32| -> i32 { return x * value; });
 }
}
fn main() {
 let c1 = create_closure(11);
 let c2 = create_closure(10);
 println!("{},{}",c1(50),c2(50));
}

Rust

Output

550,5

Iterators

Iterators are object that can be used to iterate over an existing collection. They are
efficient for cases where index access requires a boundary check, or for collections
where index access is not possible (e.g. a linked list – std::collections::LinkedList)

Collection that use iterators:
• Arrays

• Vectors

• Maps (BTreeMap, HashMap)

• Sets (BTreeSet, HashSet)

All collections that implement iterators use the trait Iterator defined in
std::iter::Iterator

Iterators

Basic operation for iterators

Iterators

Method Usage

fn next(&mut self) -> Option<Self::Item> Moves to the next element from the collections.
This is a virtual method that must be implemented
by collection that implements this trait.

fn count(self) -> usize Iterates until the final element and returns the
number of iterations.

fn last(self) -> Option<Self::Item> Iterates until the last element from the collections
and returns it.

fn nth(&mut self, n: usize) -> Option<Self::Item> Returns the nth items from the current position.

fn max(self) -> Option<Self::Item>
fn min(self) -> Option<Self::Item>

Returns the maximum/minimum number from the
current position

Let’s see how an iterator works:

Let’s see how iterators work in this case:

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7,8,9];
 let mut i = a.iter();
 println!("{:?}",i.next());
 println!("{:?}",i.next());
 println!("{:?}",i.nth(3));
 println!("{:?}",i.count());
}

Rust

Output

Some(1)
Some(2)
Some(6)
3

1 2 3 4 5 6 7 8 9

When “I” is created, it points
to the first element in the

array.

Let’s see how an iterator works:

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7,8,9];
 let mut i = a.iter();
 println!("{:?}",i.next());
 println!("{:?}",i.next());
 println!("{:?}",i.nth(3));
 println!("{:?}",i.count());
}

Rust

Output

Some(1)
Some(2)
Some(6)
3

1 2 3 4 5 6 7 8 9

Reads the value from current
position, and then advances

to the next one

Let’s see how an iterator works:

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7,8,9];
 let mut i = a.iter();
 println!("{:?}",i.next());
 println!("{:?}",i.next());
 println!("{:?}",i.nth(3));
 println!("{:?}",i.count());
}

Rust

Output

Some(1)
Some(2)
Some(6)
3

1 2 3 4 5 6 7 8 9

Reads the value from the 2nd
position, and then advances

to the next one

Let’s see how an iterator works:

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7,8,9];
 let mut i = a.iter();
 println!("{:?}",i.next());
 println!("{:?}",i.next());
 println!("{:?}",i.nth(3));
 println!("{:?}",i.count());
}

Rust

Output

Some(1)
Some(2)
Some(6)
3

1 2 3 4 5 6 7 8 9

Advances 3 positions and
reads the value, then move

to the next position.

Let’s see how an iterator works:

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7,8,9];
 let mut i = a.iter();
 println!("{:?}",i.next());
 println!("{:?}",i.next());
 println!("{:?}",i.nth(3));
 println!("{:?}",i.count());
}

Rust

Output

Some(1)
Some(2)
Some(6)
3

1 2 3 4 5 6 7 8 9

Counts how many elements
are until the final !

Keep in mind that some methods (like count, last, min or max) consume
the iterator after using it (notice that count need self and not a reference
to self : fn count(self) -> usize). This means that the iterator can
not be used anymore after calling these methods.

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7,8,9];
 let mut i = a.iter();
 println!("{:?}",i.count());
 i.next();
}

Rust

error[E0382]: borrow of moved value: `i`
 --> src\main.rs:5:5
 |
3 | let mut i = a.iter();
 | ----- move occurs because `i` has type `std::slice::Iter<'_, i32>`,
 | which does not implement the `Copy` trait
4 | println!("{:?}",i.count());
 | ------- `i` moved due to this method call
5 | i.next();
 | ^^^^^^^^ value borrowed here after move
 |
note: this function takes ownership of the receiver `self`, which moves `i`

Error

This behavior is different than next() method that does not consume the
iterator (even after it reaches the end of the sequence of elements).

Iterators

fn main() {
 let a = vec![1,2,3];
 let mut i = a.iter();
 for _ in 0..10 {
 println!("{:?}",i.next());
 }
}

Rust

Output

Some(1)
Some(2)
Some(3)
None
None
None
None
None
None
None

Iterators are often used in a for loop. There are 3 forms of iterators that are
usually used in such a context:

OBS: Keep in mind that without any explicit specification, the for loop will use the
into_iter form (e.g for x in a {…}). This means that the for loop will consume the
element, and “a” will not be available anymore after the for-loop ends.

Iterators

Method Usage

fn iter(&self) -> Iter<T> Creates an iterator that return a reference to each element from a collection

fn iter_mut(&mut self) -> IterMut<T> Similar to the previous one, but the reference is mutable, and the value can be
modified.

fn into_iter(self) -> Self::IntoIter Notice that this iterator has a parameter of type self (and not &self). This means
that this iterator consumes the content of the collection.

Let's see some cases where .iter() , .iter_mut() and .into_iter() are used.

In this case x is an immutable reference to every String element from array
“a”.

Iterators

fn main() {
 let a = [String::from("abc"),String::from("xyz")];
 for x in a.iter() {
 println!("{x}"); // x is a &String
 }
 println!("{a:?}");
}

Rust

Output

abc
xyz
["abc", "xyz"]

Let's see some cases where .iter() , .iter_mut() and .into_iter() are used.

Notice that since we have used iter_mut for this example, we can modify
each element from the array “a”.

Iterators

fn main() {
 let mut a = [String::from("abc"),String::from("xyz")];
 for x in a.iter_mut() {
 println!("{x}"); // x is a &mut String
 x.push_str("+++");
 }
 println!("{a:?}");
}

Rust

Output

abc
xyz
["abc+++", "xyz+++"]

Let's see some cases where .iter() , .iter_mut() and .into_iter() are used.

In this case, each element from
array “a” is moved. As a result,
the last println!(…) can not
work, as “a” was moved.

Iterators

fn main() {
 let a = [String::from("abc"),String::from("xyz")];
 for x in a.into_iter() {
 println!("{x}"); // x is a String (takes ownership)
 }
 println!("{a:?}");
}

Rust

error[E0382]: borrow of moved value: `a`
 --> src\main.rs:6:16
 |
2 | let a = [String::from("abc"),String::from("xyz")];
 | - move occurs because `a` has type `[String; 2]`, which does not
 | implement the `Copy` trait
3 | for x in a.into_iter() {
 | ----------- `a` moved due to this method call
...
6 | println!("{a:?}");
 | ^ value borrowed here after move

Error

Let's see some cases where .iter() , .iter_mut() and .into_iter() are used.

Keep in mind that into_iter tries uses assignment for each element in the
collection. If the element has the Copy trait, it will be copied, otherwise it
will be moved. This means that for these cases, the code will compile as
the element is not moved !!!

Iterators

fn main() {
 let a = [1,2,3];
 for x in a.into_iter() {
 println!("{x}"); // x is a i32 (a copy !)
 }
 println!("{a:?}");
}

Rust

Output

1
2
3
[1, 2, 3]

If none of these forms are being used, a for-loop uses .into_iter() !

Because of this, elements from “a”
will be moved and will no longer be
available when println!(…) macro is
being called.

Iterators

fn main() {
 let a = [String::from("abc"),String::from("xyz")];
 for x in a {
 println!("{x}"); // x is a String (takes ownership)
 }
 println!("{a:?}");
}

Rust

error[E0382]: borrow of moved value: `a`
 --> src\main.rs:6:16
 |
2 | let a = [String::from("abc"),String::from("xyz")];
 | - move occurs because `a` has type `[String; 2]`, which does not
 | implement the `Copy` trait
3 | for x in a {
 | - `a` moved due to this implicit call to `.into_iter()`
...
6 | println!("{a:?}");
 | ^ value borrowed here after move

Error

If none of these forms are being used, a for-loop uses .into_iter() !

One solution for this cases is to use the & operator to indicate the for loop
to use references instead of moving the entire value.

Iterators

fn main() {
 let a = [String::from("abc"),String::from("xyz")];
 for x in &a {
 println!("{x}"); // x is a &String
 }
 println!("{a:?}");
}

Rust

Output

abc
xyz
["abc", "xyz"]

Rust also support various adaptors over an existing iterator, that can allow
one to perform quick actions over a data set. Such a construct usually
translates into another iterator that can in turn be further used with a
different set of adaptors.

Iterators

Iterator

Adaptor

Iterator

In this point, data from the original adaptor
can be modified, skipped, filtered, etc.

Adaptors:

Iterators

Method Usage

fn step_by(self, step: usize) -> StepBy<Self> Creates a new iterator where every elements will be read
from the original use using a step

fn filter(self, predicate: P) -> Filter<Self, P> Filters all elements from the original iterator and returns
a new one where only the elements that pass the filter
are present

fn map (self, function: F) -> Map<Self, F> Maps all items from an existing iterator into another one,
applying a conversion over each element.

fn skip_while(self, predicate: P) -> SkipWhile<Self, P>
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>

Skips/Takes a number of elements based on a predicated

fn skip(self, n: usize) -> Skip<Self>
fn take(self, n: usize) -> Take<Self>

Skips/takes a number of “n” elements from the original
iterator

fn inspect(self, f: F) -> Inspect<Self, F> Runs function “f” for each element, and then pass it on.
Useful for debugging purposes.

Iterate over a list with step 2:

 or

Iterators

fn main()
{
 let a = vec![1,2,3,4,5,6,7,8,9];
 for i in a.iter().step_by(2)
 {
 println!("{}",*i);
 }
}

Rust

Output

1
3
5
7
9

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 let i = a.iter()
 .step_by(2)
 .inspect(|x| println!{"{:?}",*x});
 for _ in i {}
}

Rust

Notice that we have chained
several iterators to obtain

the same result.

Rust also has a for_each adaptor that iterates over all elements. While it
has the same purpose as a regular for keyword, it can also be used in large
chains of adaptors as the final one to trigger the iteration.

Iterators

fn main() {
 let a = vec![1, 2, 3, 4, 5];
 a.iter()
 .inspect(|x| println! {"Before step: {:?}",*x})
 .step_by(2)
 .for_each(|x| println! {"After step: {:?}",*x});
}

Rust
Output

Before step: 1
After step: 1
Before step: 2
Before step: 3
After step: 3
Before step: 4
Before step: 5
After step: 5

Method Usage

fn for_each(self, f: F) Iterates over a collection and calls function “f” for each element.

Rust also has a for_each adaptor that iterates over all elements. While it
has the same purpose as a regular for keyword, it can also be used in large
chains of adaptors as the final one to trigger the iteration.

Iterators

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 a.iter()
 .step_by(2)
 .inspect(|x| println!{"{:?}",*x})
 .for_each(|_|{});
}

Rust

Output

1
3
5
7
9

Method Usage

fn for_each(self, f: F) Iterates over a collection and calls function “f” for each element.

Notice the usage of |_|{} ➔ this is called an empty closure
(a function that does nothing)

Let’s see a more complex example that takes a vector, filters out all even
elements, multiply the rest of the elements by 2 and then sums them all
up.

Iterators

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 let s:i32 = a.iter()
 .filter(|x| *x % 2 == 0)
 .inspect(|x| println!{"Filtered {:?}",*x})
 .map(|x| x*2)
 .inspect(|x| println!{"Mapped to {:?}",*x})
 .sum();
 println!("sum is {}",s);
}

Rust

Output

Filtered 2
Mapped to 4
Filtered 4
Mapped to 8
Filtered 6
Mapped to 12
Filtered 8
Mapped to 16
sum is 40

You can also use .skip and .take to perform operations over a continuous
sub-set from a collection. The next example sums up the next four
elements from the 3rd element in a collection:

Iterators

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 let s:i32 = a.iter()
 .skip(3)
 .take(4)
 .inspect(|x| println!{"Value {:?}",*x})
 .sum();
 println!("sum is {}",s);
}

Rust

Output

Value 4
Value 5
Value 6
Value 7
sum is 22

Another wildly use adaptor is .collect(). This adaptor allows transforming a
collection into another one.

How to use .collect():
1. let var:type = …iterators chain.. .collect();

2. let var = …iterators chain.. .collect::<type>();

Usually, the first version is preferred as it avoids the turbo-fish format.

Iterators

Method Usage

fn collect(self) -> B Iterates over a collection and converts it into another collection.

Let’s take the previous example and build a new vector instead of
computing a sum:

Iterators

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 let s = a.iter()
 .skip(2)
 .take(3)
 .collect::<Vec<_>>();
 println!("result is {:?}",s);
}

Rust

Output

result is [3, 4, 5]

fn main() {
 let a = vec![1,2,3,4,5,6,7,8,9];
 let s: Vec<_> = a.iter()
 .skip(2)
 .take(3)
 .collect();
 println!("result is {:?}",s);
}

Rust

This method is often used to convert an array into a vector:

Notice the Vec<_> notation. The underline (_) tells Rust that the type of
the vector must be inferred from the result. We should also mention that
since .iter() uses references, vector b will be of type Vec<&i32> !

Iterators

fn main() {
 let a = [1,2,3,4,5];
 let b: Vec<_> = a.iter().collect();
 println!("a = {:?}",a);
 println!("b = {:?}",b);
}

Rust

Output

a = [1, 2, 3, 4, 5]
b = [1, 2, 3, 4, 5]

Another adaptor is partition. It has a similar purpose as collect , but in this
case, it tries to split an existing collection into two partitions. The closure
function serves this purpose (elements where it returns true will be added
to the first partition, and the rest of them to the second partition).

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7];
 let (p1,p2): (Vec<_>,Vec<_>) = a.into_iter().partition(|x| *x>4);
 println!("Partition 1 = {:?}",p1);
 println!("Partition 2 = {:?}",p2);
}

Rust

Output

Partition 1 = [5, 6, 7]
Partition 2 = [1, 2, 3, 4]

You may have noticed that for the previous example we have used
into_iter instead of the regular iter. So … what is the difference.

1. into_iter() is an iterator that moves the element (meaning that after
you iterate over it, all elements from the sequence are no longer
available

2. iter() uses references (meaning that after you iterate over a sequence
of data, that sequence is still available).

Iterators

Let’s consider the following example:

Iterators

fn main() {
 let a = [String::from("ABC"),String::from("123")];
 for i in a.into_iter() {
 println!("{:?}",i);
 }
 println!("a = {:?}",a);
}

Rust

error[E0382]: borrow of moved value: `a`
 --> src\main.rs:7:25
 |
3 | let a = [String::from("ABC"),String::from("123")];
 | - move occurs because `a` has type `[String; 2]`, which does not implement the
 | `Copy` trait
4 | for i in a.into_iter() {
 | ----------- `a` moved due to this method call
...
7 | println!("a = {:?}",a);
 | ^ value borrowed here after move
 |
note: this function takes ownership of the receiver `self`, which moves `a`
 |
267 | fn into_iter(self) -> Self::IntoIter;

Error

However, if we change the previous example from using iter() instead of
into_iter() it works as we will no longer move the object when iterating but
use a reference instead.

Iterators

fn main() {
 let a = [String::from("ABC"),String::from("123")];
 for i in a.iter() {
 println!("{:?}",i);
 }
 println!("a = {:?}",a);
}

Rust

Output

"ABC"
"123"
a = ["ABC", "123"]

Another useful adaptor is .find() that can be used to search for a specific
item that matches a criteria.

OBS: .find(f) is equivalent to filter(f).next()
OBS: find predicate is defined as P: FnMut(&Self::Item) -> bool . This means that if an iterator uses
references the closer will have to use a double reference (a reference over the reference provided by the
original iterator).

Iterators

fn main() {
 let a = [1,2,3,4,5,6,7];
 let b = a.iter().find(|&&x| x==4);
 println!("{:?}",b);
}

Rust

Output

Some(4)

Method Usage

fn find<P>(&mut self, predicate: P) -> Option<Self::Item> Finds an element that is matched by the
predicate P

All of the iterators and adaptors previously described solve some problems.

However, there are some cases that require a different type of functionality.
1. Peekable

2. enumerate

3. DoubleEndedIterator

4. ExactSizeIterator

5. Infinite iterator loops

Other functionalities

One problem with iterators is that once .next() is called you can not go
back. This in fact is a problem as you need the value that if you need the
value you get from .next() to decide if you want to iterate further or not.

To solve this, Rust added a new adaptor called Peekable (that allows one to
read the next value, but not move to the next position).

Let’s analyze the following problem:

- We have a list of numbers: 1,2,3,….

- We want to find number 3, but we don’t want to move next to it (to number 4).

Iterators (Peekable)

Let’s analyze the following problem:

- We have a list of numbers: 1,2,3,….

- We want to find number 3, but we don’t want to move next to it (to number 4).

Iterators (Peekable)

fn main() {
 let a = [1,2,3,4,5,6,7];
 let mut i = a.iter().peekable();
 loop {
 if i.peek().is_none() { break; }
 let v = **i.peek().unwrap();
 if v == 3 { break; }
 i.next();
 }
 println!("{}",i.next().unwrap());
}

Rust

Output

3

There are situation where while during iteration an index is required. While
these sort of scenarios can easily be solved by creating an external index,
and incrementing it after each iteration, Rust also provides an adaptor
(called enumerate) that does the same thing.

Iterators (enumerate)

fn main() {
 let a = ["John", "Mary", "Mike", "George"];
 for i in a.iter().enumerate() {
 println!("{:?}",i);
 }
}

Rust

Output

(0, "John")
(1, "Mary")
(2, "Mike")
(3, "George")

Iterators can be used to create infinite loops via .cycle() method. This
method creates an iterator that when it reaches the last element will reset
itself to point to the first one, thus creating an infinite cycle.

Iterators (Infinite loops)

fn main() {
 let a = [1,2,3,4,5];
 for x in a.iter().cycle() {
 print!("{x},");
 }
}

Rust

Output

1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,
4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,
2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,
5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1, …….

There are cases where you might need to read elements from both ends of
a collection. For this cases, there is a special trait (called
DoubleEndedIterator) that if implemented allows one to also read
elements from the end of the collection via:

OBS: It is important to notice that back and forward iterator can not meet
(one can not go beyond the other one).

Iterators (DoubleEndedIterator)

Method Usage

fn next_back(&mut self) -> Option<Self::Item> Moves to the previous element from the
collections starting from its end.

fn nth_back(&mut self, n: usize) -> Option<Self::Item> Returns the previous nth items from the current
position.

Let’s see some example:

Keep in mind that this is not an iterator, but a trait (meaning that not all types that
implement Iterator trait also implement DoubleEndedIterator trait). That depends on
how the data is store in that collection. For example, a single linked list can not
implement such a trait, while a vector, array or a double linked list can.

Iterators (DoubleEndedIterator)

fn main() {
 let a = [1,2,3,4,5,6];
 let mut it = a.iter();
 while let Some(x) = it.next_back() {
 print!("{x},");
 }
}

Rust

Output

6,5,4,3,2,1

Let’s see some example:

Notice that once back and front iteration reach the middle of the array, the result of
both .next and .next_back methods is None ! This is because back and next iteration can
not go beyond the other one.

Iterators (DoubleEndedIterator)

fn main() {
 let a = [1,2,3,4,5,6];
 let mut it = a.iter();
 for i in 0..5 {
 println!("Next from Front => {:?}",it.next());
 println!("Previous from Back => {:?}",it.next_back());
 println!("-----------------------------");
 }
}

Rust

Output

Next from Front => Some(1)
Previous from Back => Some(6)

Next from Front => Some(2)
Previous from Back => Some(5)

Next from Front => Some(3)
Previous from Back => Some(4)

Next from Front => None
Previous from Back => None

Next from Front => None
Previous from Back => None

Another interesting trait is ExactSizeIterator. This trait provides a function
(len) that returns the number of steps until the end of the iteration (the
moment from when .next() method will start returning None instead of
Some.

Iterators (ExactSizeIterator)

fn main() {
 let a = ["A","B","C","D"];
 let mut it = a.iter();
 while let Some(i) = it.next() {
 println!("Element: {i}, {} steps until end", it.len());
 }
}

Rust
Output

Element: A, 3 steps until end
Element: B, 2 steps until end
Element: C, 1 steps until end
Element: D, 0 steps until end

Vectors

Vectors are sequences of elements of the same type that can increase or decrease
in size dynamically. Just like std::vector from C++ standard, a vector in Rust is a
template/generic object.

To create a vector, use one of the following forms:
a) let mut a: Vec<type> = Vec::new()

b) let mut a = Vec::<type>::new()

c) let mut a: Vec<type> = Vec::with_capacity(capacity)

d) let mut a = Vec::<type>::with_capacity(capacity)

e) let mut a = Vec::from(array)

f) or use the macro vec! for quick initialization of a vector.

Vectors

Let’s see some examples on how to build a vector.

Vectors

fn main() {
 let mut v1 = Vec::<i32>::new();
 let v2 = Vec::<u32>::with_capacity(100);
 let v3 = vec![1u8, 2,3,4]; // type is Vec<u8>
 let v4 = vec!["123","abc","xyz"]; // type is Vec<&str>
 let v5 = Vec::from([1,2,3]); // type is Vec<i32>
 println!("{:?}",v1);
 println!("{:?}",v2);
 println!("{:?}",v3);
 println!("{:?}",v4);
 println!("{:?}",v5);
}

Rust

Output

[]
[]
[1, 2, 3, 4]
["123", "abc", "xyz"]
[1, 2, 3]

Basic operations (insert/add/remove) for vectors

Vectors

Method Usage

fn push(&mut self, value: T) Adds a new elements at the end of the vector

fn insert(&mut self, index:usize, element: T) Inserts an element at a specific position in the
vector. This function panics If index is outside vector
boundaries.

fn append(&mut self, other: &mut Self) Appends the element of another vector of the same
type to the current one.

fn pop(&mut self) -> Option<T> Returns the last element in the vector (if any) or
None for empty vectors

fn remove(&mut self, index: usize) -> T
fn swap_remove(&mut self, index: usize) -> T

Removes the element from a specific index in the
vector. This function panics If index is outside vector
boundaries.

fn clear(&mut self) Clears the content of the vector leaving the capacity
of the vector un-affected.

Let’s see some examples on how to build a vector.

Vectors

fn main() {
 let mut v = Vec::<i32>::new();
 for i in 1..10 {
 v.push(i);
 }
 println!("remove from index #2 => {}",v.remove(2));
 while let Some(i) = v.pop() {
 println!("Pop element: {i}")
 }
}

Rust

Output

remove from index #2 => 3
Pop element: 9
Pop element: 8
Pop element: 7
Pop element: 6
Pop element: 5
Pop element: 4
Pop element: 2
Pop element: 1

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

remove(…)

* We want to remove element with index 3 (the 4th element)

Vectors

+0 +1 +2 +3 +4 +5

A B C D E F

Length

Capacity

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

remove(…)

* After we delete the element, we will move all of the existing elements after
index 3 one position to the left

Vectors

+0 +1 +2 +4 +5

A B C E F

Length

Capacity

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

remove(…)

* Length is decreased by one, the capacity remains the same
* Operation cost: O(n)

Vectors

+0 +1 +2 +3 +4

A B C E F

Length

Capacity

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

swap_remove(…)

* We want to remove element with index 3 (the 4th element)

Vectors

+0 +1 +2 +3 +4 +5

A B C D E F

Length

Capacity

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

swap_remove(…)

* After we delete the element, we swap the last element with the one that we
have just removed

Vectors

+0 +1 +2 +4 +5

A B C E F

Length

Capacity

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

swap_remove(…)

* Length is decreased by one, the capacity remains the same
* Operation cost: O(1) ; notice that the order has changed !

Vectors

+0 +1 +2 +3 +4

A B C F E

Length

Capacity

Vector has 2 remove methods to remove an element from a specific position:

1) remove(…)

2) swap_remove()

Overview:

1) Use swap_remove if you are not interested in the order of the elements from
the vector, otherwise use remove

2) swap_remove has a complexity of O(1)

3) remove has a complexity of O(n)

Vectors

Generic allocation/resize and infos for vectors

Vectors

Method Usage

fn len(&self) -> usize Returns the length of the vector

fn capacity(&self) -> usize Returns the capacity of the vector

fn is_empty(&self) -> bool True if vector length is 0, false otherwise

fn reserve(&mut self, additional: usize) Reserve additional elements (on top of the existing one)

fn truncate(&mut self, len: usize) Truncates a vector to a specific len, dropping the extra
elements.

fn try_reserve(&mut self, additional: usize)
 -> Result<(), TryReserveError>

Tries to reserve some space (if allocation fails it does not
panic like reserve method does); instead, it returns Err.

fn shrink_to_fit(&mut self) Reduces the capacity of the vector to match the exact
number of elements from the vector.

Example using previous methods.

Vectors

fn add_range(v:&mut Vec<i32>,start:i32, end:i32) {
 for i in start..end+1 { v.push(i); }
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
}
fn main() {
 let mut v = Vec::<i32>::new();
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
 add_range(&mut v, 1, 2);
 v.reserve(32);
 add_range(&mut v, 3, 8);
 v.shrink_to_fit();
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
 v.truncate(4);
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
}

Rust

Output

size=0, capacity=0, v=[]
size=2, capacity=4, v=[1, 2]
size=8, capacity=34, v=[1, 2, 3, 4, 5, 6, 7, 8]
size=8, capacity=8, v=[1, 2, 3, 4, 5, 6, 7, 8]
size=4, capacity=8, v=[1, 2, 3, 4]

Example using previous methods.

Vectors

fn add_range(v:&mut Vec<i32>,start:i32, end:i32) {
 for i in start..end+1 { v.push(i); }
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
}
fn main() {
 let mut v = Vec::<i32>::new();
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
 add_range(&mut v, 1, 2);
 v.reserve(32);
 add_range(&mut v, 3, 8);
 v.shrink_to_fit();
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
 v.truncate(4);
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
}

Rust

Output

size=0, capacity=0, v=[]
size=2, capacity=4, v=[1, 2]
size=8, capacity=34, v=[1, 2, 3, 4, 5, 6, 7, 8]
size=8, capacity=8, v=[1, 2, 3, 4, 5, 6, 7, 8]
size=4, capacity=8, v=[1, 2, 3, 4]

A close range can be enforced by using ..=

for i in start..=end { v.push(i); }

Keep in mind that transferring a variable into a vector might imply
change of ownership (in this case after v.push(t) is executed, variable
“t” lifetime has ended as a result of “t” being moved into the vector).

Vectors

#[derive(Debug)]
struct Test { v1: i32, v2: f32, v3: char }
fn main() {
 let mut v: Vec<Test> = Vec::new();
 let t = Test{v1:5,v2:1.3,v3:'A'};
 v.push(t);
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
 println!("t = {:?}",t);
}

Rust
error[E0382]: borrow of moved value: `t`
 --> src\main.rs:12:25
 |
9 | let t = Test{v1:5,v2:1.3,v3:'A'};
 | - move occurs because `t` has type `Test`, which does
 | not implement the `Copy` trait
10 | v.push(t);
 | - value moved here
12 | println!("t = {:?}",t);
 | ^ value borrowed here after move

Error

However, if we implement the Copy trait, the code will compile.

Vectors

#[derive(Debug,Copy,Clone)]
struct Test { v1: i32, v2: f32, v3: char }
fn main() {
 let mut v: Vec<Test> = Vec::new();
 let t = Test{v1:5,v2:1.3,v3:'A'};
 v.push(t);
 println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
 println!("t = {:?}",t);
}

Rust

Output

size=1, capacity=4, v=[Test { v1: 5, v2: 1.3, v3: 'A' }]
t = Test { v1: 5, v2: 1.3, v3: 'A' }

Let’s compare how efficient vector push method is for both C++ and Rust.

Vectors

extern "system" {
 fn GetTickCount64 () -> u64;
}
fn get_time () -> u64 {
 unsafe { GetTickCount64() }
}
#[derive(Debug,Copy,Clone)]
struct Test { v1: i32, v2: f32, v3: char, v4: [u8;256] }
fn main() {
 let mut v: Vec<Test> = Vec::new();
 let t = Test{v1:5,v2:1.3,v3:'A',v4:[48u8;256]};
 let start = get_time();
 for i in 0..10_000_000 {
 v.push(t);
 }
 let end = get_time();
 println!("{}",end-start);
}

Rust

#include <Windows.h>
#include <vector>
struct Test {
 int v1;
 float v2;
 char32_t v3;
 uint8_t v4[256];
};
void main() {
 std::vector<Test> v;
 Test t;
 auto start = GetTickCount64();
 for (auto i = 0; i < 10000000; i++) {
 v.push_back(t);
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

Both codes were teste in the same environment, for 10 times and the
average was recorded. All tests were run on x64 architecture (Debug and
Release). Times are measures in milliseconds.
Keep in mind that GetTickCount function has an error margin of 16ms.

Vectors

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
C++

(Debug) 2562 2562 2640 2578 2578 2515 2562 2578 2562 2547 2568
Rust

(Debug) 1922 1844 1860 1843 1812 1813 1797 1781 1828 1813 1831
C++

(Release) 1828 1781 1797 1781 1781 1781 1797 1797 1821 1797 1796
Rust

(Release) 1750 1750 1688 1719 1687 1703 1719 1687 1703 1687 1709

As a general conclusion, when it comes to vectors (and copying object not
moving them), Rust is faster than C/C++ (in both debug and release
modes).

We should point out that the build that was tested for C++ was compiled
with Microsoft compiler (cl.exe) and it does not reflect results for gcc or
clang (that might optimize the C++ code in a different way).

However, the question still remains on what's different in Rust vs C++ in
terms of how vector works ?

Vectors

Let’s see how Rust allocates memory for the previous case.

Vectors

struct Test {
 v1: i32,
 v2: f32,
 v3: char,
 v4: [u8;256]
}
fn main() {
 let mut v: Vec<Test> = Vec::new();
 let t = Test{v1:5,v2:1.3,v3:'A',v4:[48u8;256]};
 let mut capacity = v.capacity();
 for i in 0..10_000_000 {
 v.push(t);
 let c = v.capacity();
 if c>capacity {
 println!("Size={:08X},Capacity={:08X}",v.len(), c);
 capacity = c;
 }
 }
}

Rust
Output

Size=00000001,Capacity=00000004
Size=00000005,Capacity=00000008
Size=00000009,Capacity=00000010
Size=00000011,Capacity=00000020
Size=00000021,Capacity=00000040
…
Size=00040001,Capacity=00080000
Size=00080001,Capacity=00100000
Size=00100001,Capacity=00200000
Size=00200001,Capacity=00400000
Size=00400001,Capacity=00800000
Size=00800001,Capacity=01000000

Let’s see how Rust allocates memory for the previous case.

Vectors

struct Test {
 v1: i32,
 v2: f32,
 v3: char,
 v4: [u8;256]
}
fn main() {
 let mut v: Vec<Test> = Vec::new();
 let t = Test{v1:5,v2:1.3,v3:'A',v4:[48u8;256]};
 let mut capacity = v.capacity();
 for i in 0..10_000_000 {
 v.push(t);
 let c = v.capacity();
 if c>capacity {
 println!("Size={:08X},Capacity={:08X}",v.len(), c);
 capacity = c;
 }
 }
}

Rust
Output

Size=00000001,Capacity=00000004
Size=00000005,Capacity=00000008
Size=00000009,Capacity=00000010
Size=00000011,Capacity=00000020
Size=00000021,Capacity=00000040
…
Size=00040001,Capacity=00080000
Size=00080001,Capacity=00100000
Size=00100001,Capacity=00200000
Size=00200001,Capacity=00400000
Size=00400001,Capacity=00800000
Size=00800001,Capacity=01000000

Rust uses an allocator that
doubles the capacity, with the
start capacity of 4 elements.

Let’s see how C++ allocates memory for the previous case.

Vectors

#include <vector>
struct Test {
 int v1;
 float v2;
 char32_t v3;
 uint8_t v4[256];
};
void main() {
 std::vector<Test> v;
 Test t;
 auto capacity = v.capacity();
 for (auto i = 0; i < 10000000; i++) {
 v.push_back(t);
 auto c = v.capacity();
 if (c > capacity) {
 printf("Size=%08X, Capacity=%08X\n", (uint32_t)v.size(), (uint32_t)c);
 capacity = c;
 }
 }
}

C++ Output

Size=00000001, Capacity=00000001
Size=00000002, Capacity=00000002
Size=00000003, Capacity=00000003
Size=00000004, Capacity=00000004
Size=00000005, Capacity=00000006
Size=00000007, Capacity=00000009
Size=0000000A, Capacity=0000000D
Size=0000000E, Capacity=00000013
Size=00000014, Capacity=0000001C
Size=0000001D, Capacity=0000002A
Size=0000002B, Capacity=0000003F
…
Size=00240B5D, Capacity=0036110A
Size=0036110B, Capacity=0051198F
Size=00511990, Capacity=0079A656
Size=0079A657, Capacity=00B67981

Let’s see how C++ allocates memory for the previous case.

Vectors

#include <vector>
struct Test {
 int v1;
 float v2;
 char32_t v3;
 uint8_t v4[256];
};
void main() {
 std::vector<Test> v;
 Test t;
 auto capacity = v.capacity();
 for (auto i = 0; i < 10000000; i++) {
 v.push_back(t);
 auto c = v.capacity();
 if (c > capacity) {
 printf("Size=%08X, Capacity=%08X\n", (uint32_t)v.size(), (uint32_t)c);
 capacity = c;
 }
 }
}

C++ Output

Size=00000001, Capacity=00000001
Size=00000002, Capacity=00000002
Size=00000003, Capacity=00000003
Size=00000004, Capacity=00000004
Size=00000005, Capacity=00000006
Size=00000007, Capacity=00000009
Size=0000000A, Capacity=0000000D
Size=0000000E, Capacity=00000013
Size=00000014, Capacity=0000001C
Size=0000001D, Capacity=0000002A
Size=0000002B, Capacity=0000003F
…
Size=00240B5D, Capacity=0036110A
Size=0036110B, Capacity=0051198F
Size=00511990, Capacity=0079A656
Size=0079A657, Capacity=00B67981

C++ has a different strategy where the
growth factor is 1.5 (for the cl.exe/MS

implementation)

So … the difference lies in how growth algorithm works for those two
cases (Rust and C++).

Vectors

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0

3
0

0
0

0
0

6
0

0
0

0
0

9
0

0
0

0
0

1
2

0
0

0
0

0

1
5

0
0

0
0

0

1
8

0
0

0
0

0

2
1

0
0

0
0

0

2
4

0
0

0
0

0

2
7

0
0

0
0

0

3
0

0
0

0
0

0

3
3

0
0

0
0

0

3
6

0
0

0
0

0

3
9

0
0

0
0

0

4
2

0
0

0
0

0

4
5

0
0

0
0

0

4
8

0
0

0
0

0

5
1

0
0

0
0

0

5
4

0
0

0
0

0

5
7

0
0

0
0

0

6
0

0
0

0
0

0

6
3

0
0

0
0

0

6
6

0
0

0
0

0

6
9

0
0

0
0

0

7
2

0
0

0
0

0

7
5

0
0

0
0

0

7
8

0
0

0
0

0

8
1

0
0

0
0

0

8
4

0
0

0
0

0

8
7

0
0

0
0

0

9
0

0
0

0
0

0

9
3

0
0

0
0

0

9
6

0
0

0
0

0

9
9

0
0

0
0

0

C
ap

ac
it

y

Insertion

Rust

C++

So … lets see the behavior if we reserve the memory from the start.

Vectors

extern "system" {
 fn GetTickCount64 () -> u64;
}
fn get_time () -> u64 {
 unsafe { GetTickCount64() }
}
#[derive(Debug,Copy,Clone)]
struct Test { v1: i32, v2: f32, v3: char, v4: [u8;256] }
fn main() {
 let mut v: Vec<Test> = Vec::with_capacity(10_000_000);
 let t = Test{v1:5,v2:1.3,v3:'A',v4:[48u8;256]};
 let start = get_time();
 for i in 0..10_000_000 {
 v.push(t);
 }
 let end = get_time();
 println!("{}",end-start);
}

Rust
#include <Windows.h>
#include <vector>
struct Test {
 int v1;
 float v2;
 char32_t v3;
 uint8_t v4[256];
};
void main() {
 std::vector<Test> v;
 Test t;
 v.reserve(10000000);
 auto start = GetTickCount64();
 for (auto i = 0; i < 10000000; i++) {
 v.push_back(t);
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

Test were performed in a similar manner like the previous ones (Debug
and Release, 10 iterations and we compute the average).

Keep in mind that there is an error margin of 16 ms for GetTickCount API.
This means that the difference between C++ and Rust is insignificant (we
can consider both at the same level).

Vectors

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
C++

(Debug) 782 766 781 766 781 766 797 797 828 781 784
Rust

(Debug) 984 1094 1063 1031 875 1032 1016 860 906 859 972
C++

(Release) 547 532 531 515 500 515 516 500 531 531 521
Rust

(Release) 532 500 531 516 562 531 547 547 547 515 532

To access an element from an index in the vector use the […] index
operator. if the index is out of range, the code will panic.

In this particular case, the code will not compile because the assignment is
equivalent to moving an element from the vector.

Vectors

#[derive(Debug)]
struct Test {
 v1: i32,
 v2: f32,
 v3: char,
 v4: [u8;256]
}
fn main() {
 let mut v = Vec::<Test>::new();
 v.push(Test{v1:1,v2:1.2,v3:'A',v4:[15;256]});
 let b = v[0];
 println!("{:?}",b);
}

Rust

error[E0507]: cannot move out of index of `Vec<Test>`
 --> src\main.rs:6:13
 |
6 | let b = v[0];
 | ^^^^
 | |
 | move occurs because value has type `Test`, which
 | does not implement the `Copy` trait
 | help: consider borrowing here: `&v[0]`

Error

There are two solution to the previous problem:
1. borrow the value of the element from index 0

Vectors

#[derive(Debug)]
struct Test {
 v1: i32,
 v2: f32,
 v3: char,
 v4: [u8;256]
}
fn main() {
 let mut v = Vec::<Test>::new();
 v.push(Test{v1:1,v2:1.2,v3:'A',v4:[15;256]});
 let b = &v[0];
 println!("{:?}",b);
}

Rust

Output

Test { v1: 1, v2: 1.2, v3: 'A',
v4: [15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
…
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15] }

There are two solution to the previous problem:
2. implement the Copy trait for structure Test

Vectors

#[derive(Debug,Copy,Clone)]
struct Test {
 v1: i32,
 v2: f32,
 v3: char,
 v4: [u8;256]
}
fn main() {
 let mut v = Vec::<Test>::new();
 v.push(Test{v1:1,v2:1.2,v3:'A',v4:[15;256]});
 let b = v[0];
 println!("{:?}",b);
}

Rust

Output

Test { v1: 1, v2: 1.2, v3: 'A',
v4: [15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
…
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15] }

A vector is iterable (for read and write):

Vectors

fn main() {
 let v = vec![1,2,3,4,5];
 let mut s = 0;
 for i in v {
 s+=i;
 }
 println!("{}",s);
}

Rust

Output

15

Read

fn main() {
 let mut v = vec![1,2,3,4,5];
 let mut s = 0;
 for i in &mut v {
 *i = (*i) * 2;
 }
 for i in v {
 s+=i;
 }
 println!("{}",s);
}

Rust

Output

30

Write

A vector has a special function (call retain) that can be used to keep only some
elements that have a specific characteristics:

Vectors

fn odd(value: &i32)->bool {
 return value % 2 == 1;
}
fn main() {
 let mut v = vec![1,2,3,4,5];
 v.retain(odd);
 println!("{:?}",v);
}

Rust

Output

[1,3,5]

Method Usage

fn retain<F>(&mut self, mut f: Function) Retains all elements that for which a function
replies with truefn retain_mut<F>(&mut self, mut f: Function)

Vectors can be easily converted into slices (much like an array can). We can do this
via the range operator .. or via as_slice() / as_mut_slice() methods.

Vectors

fn sum(list: &[i32])->i32 {
 let mut s = 0;
 for i in list {
 s+=*i;
 }
 s
}
fn main() {
 let mut v = vec![1,8,3,9,10,6,4];
 println!("Sum = {}",sum(v.as_slice()));
 let slice = &v[1..4];
 println!("Slice = {:?}, sum = {}",slice,sum(slice));
 println!("Vector = {:?}",v);
}

Rust

Output

Sum = 41
Slice = [8, 3, 9], sum = 20
Vector = [1, 8, 3, 9, 10, 6, 4]

A vector can also be split off into two parts resulting two vectors. For this use the
method .split_off(index).

In this case, we split from the index 2 (meaning that the first two elements will
remain in the original vector, and the rest of them will be transferred to another
vector).

The first vector capacity remains untouched (in this case 5).

Keep in mind that this method creates another vector (and allocates memory for it).

Vectors

fn main() {
 let mut v = vec![1,2,3,4,5];
 let mut b = v.split_off(2);
 println!("v={:?}, capacity={}",v,v.capacity());
 println!("b={:?}, capacity={}",b,b.capacity());
}

Rust

Output

v=[1, 2], capacity=5
b=[3, 4, 5], capacity=3

A vector also has a set of methods called drain that can be used to remove some
elements from the vector based on a specific logic or range.

Note that drain methods return an iterator over the elements that need to be
removed → and if used in conjunction with the .collect() method from the iterator,
these methods can be used to split a vector in a different way.

* drain_filter is considered an unstable feature (we will not discuss about this method)

Vectors

Method Usage

fn drain<R>(&mut self, range: R) ->
 Drain<'_, T, A>

Removes all elements from a vector within a specific
range

fn drain_filter<F>(&mut self, filter: F) ->
 DrainFilter<'_, T, F, A>

Removes all element from a vector that are filtered
by a given function.

Let’s see some examples:

Vectors

fn main() {
 let mut v = vec![1,2,3,4,5];
 v.drain(3..);
 println!("{:?}",v)
}

Rust

Output

[1, 2, 3]

fn main() {
 let mut v = vec![1,2,3,4,5];
 let mut b: Vec<i32> = v.drain(3..).collect();
 println!("{:?}",v);
 println!("{:?}",b);
}

Rust

Output

[1, 2, 3]
[4, 5]

Its also important to notice that drain(Range) method keeps a mutable reference to
the vector. This is more efficient as it does not allocate extra space for the elements
that are being drained. It also means that if you obtain this iterator, you can not
modify the existing vector until you consume the drain or you drop it.

Vectors

fn main() {
 let mut v = vec![1,2,3,4,5];
 let d = v.drain(3..);
 println!("{:?}",v);
 let mut s = 0;
 for i in d { s+= i; }
}

Rust

error[E0502]: cannot borrow `v` as immutable because it is also
borrowed as mutable
 --> src\main.rs:5:21
 |
4 | let d = v.drain(3..);
 | ------------ mutable borrow occurs here
5 | println!("{:?}",v);
 | ^ immutable borrow occurs here
6 | let mut s = 0;
7 | for i in d { s+= i; }
 | - mutable borrow later used here

Error

Sorting

One of the most common problem when dealing with data sequences
(e.g. a vector, an array, a slice) is to be able to sort them.

Rust has several sort algorithms in place that take into consideration:
• If the sort is stable or not

• Worst case

• Memory consumption

• Sort using a key

Sorting

Any mutable vector , array or slice have several sort related methods:

Sorting

Method (Vector/Slice/Array) Usage

fn sort(&mut self)
fn sort_by<F>(&mut self, mut compare: F)
fn sort_by_key<K, F>(&mut self, mut f: F)
fn sort_by_cached_key<K, F>(&mut self, f: F)

Stable sort (keeps the order of the equal
elements).

fn sort_unstable(&mut self)
fn sort_unstable_by<F>(&mut self, mut compare: F)
fn sort_unstable_by_key<K, F>(&mut self, mut f: F)

Unstable sort (may reorder equal elements).

fn is_sorted(&self) -> bool
fn is_sorted_by<F>(&self, mut compare: F) -> bool
fn is_sorted_by_key<F, K>(&self, f: F) -> bool

Checks if elements are already sorted.

Sort algorithms:

Sorting

Methods Infos:

sort
sort_by

• Algorithm: iterative merge sort inspired by timsort
• Worst case: O(n*log(n))
• Memory: for large vectors allocates extra memory (half the size of the vector)
• Stable: does not change the order of equal elements
• Best for: nearly sorted sequences

sort_by_key Similar with sort and sort_by, except for complexity
• Worst case: O(m*n + n*log(n)), O(m) = time needed to compute the key

sort_by_cached_key • Algorithm: pattern defeating quick sort
• Worst case: O(m*n + n*log(n)), O(m) = time needed to compute the key
• Memory: in worst case it allocates the size of the vector/slice
• Stable: does not change the order of equal elements
• Guarantees: A key is computed at most one time

Sort algorithms:

OBS: if elements order is not at issue, unstable sorts are generally faster
and require less memory than a regular sort. The only cases where stable
sort is recommended is if the sequence of data contains elements that are
already partially sorted.

Sorting

Methods Infos:

sort_unstable
sort_unstable_by

• Algorithm: pattern defeating quick sort
• Worst case: O(n*log(n))
• Memory: Swap in done in-place (no extra allocation)
• Unstable: it may change the order of equal elements

sort_unstable_by_key Similar with sort and sort_by, except for complexity
• Worst case: O(m*n + n*log(n)), O(m) = time needed to compute the key

What is the difference between regular sort, sort by and sort by a key (or
the caching form of sort by key) ?

Sorting

What is the difference between regular sort, sort by and sort by a key (or
the caching form of sort by key) ?

Regular sort:

Sorting

Element1

Elementi

Elementi+1

Elementn-1

Elementn

When
Comparing

Elementi+1 > Elementi

What is the difference between regular sort, sort by and sort by a key (or
the caching form of sort by key) ?

Sort by:

Sorting

Element1

Elementi

Elementi+1

Elementn-1

Elementn

When
Comparing

CompareFunction (Elementi+1 , Elementi)

What is the difference between regular sort, sort by and sort by a key (or
the caching form of sort by key) ?

Sort by KEY:

Sorting

Element1

Elementi

Elementi+1

Elementn-1

Elementn

When
Comparing

Key (Elementi+1) > Key (Elementi)

Where Key(T) returns a value that is
comparable (usually a number, a hash, etc)

What is the difference between regular sort, sort by and sort by a key (or
the caching form of sort by key) ?

Sort by KEY (cached):

Sorting

Element1

Elementi

Elementi+1

Elementn-1

Elementn

When
Comparing

Key (Elementi+1) > Key (Elementi)

Where Key(T) returns a value that is
comparable (usually a number, a hash, etc)

Key (Element1)

Key (Elementi)

Key (Elementi+1)

Key (Elementn-1)

Key (Elementn)

Let’s see some examples:

and

Sorting

fn main() {
 let mut v = vec![1,9,6,2,9,3,6,8,3,6,1,3,7,8];
 v.sort_unstable();
 println!("{:?}",v);
}

Rust

Output

[1, 1, 2, 3, 3, 3, 6, 6, 6, 7, 8, 8, 9, 9]

fn absolute_value(value:&i32) -> i32 {
 if *value < 0 { -(*value) } else { *value }
}
fn main() {
 let mut v = vec![1,-9,6,-2,9,-3,-6,-8,3,-6,-1,3,7,8];
 v.sort_by_key(absolute_value);
 println!("{:?}",v);
}

Rust

Output

[1, -1, -2, -3, 3, 3, 6, -6, -6, 7, -8, 8, -9, 9]

Let’s discuss an even more complex example. We will start by defining the structure
Student and a function that can be used to create such an object that will further
be used in our examples.

Sorting

#[derive(Debug)]
struct Student {
 math: u8,
 english: u8,
 name: String
}
impl Student
{
 fn new(studentName: &str, mathGrade: u8, englishGrad: u8) -> Student {
 Student {
 name: String::from(studentName),
 math: mathGrade,
 english: englishGrad
 }
 }
}

Rust

We will discuss more about constructors
for structs in another course !

Let’s try to sort a list of students:

Sorting

fn main() {
 let mut v = vec![
 Student::new("Andrei",10,8),
 Student::new("Dragos",8,10),
 Student::new("Bogdan",7,7),
 Student::new("Clara",9,10)
];
 v.sort();
}

Rust

error[E0277]: the trait bound `Student: Ord` is not satisfied
 --> src\main.rs:23:7
 |
23 | v.sort();
 | ^^^^ the trait `Ord` is not implemented for `Student`
 |
note: required by a bound in `slice::<impl [T]>::sort`
 |
275 | T: Ord,
 | ^^^ required by this bound in `slice::<impl [T]>::sort`

Error

A sort implies the ability to compare two elements. Right now, there is no such
method that describes how to compare two Students, and as such, sorting can
not be done. The solution is to implement several traits, called Ord , PartialOrd,

Eq and PartialEq to Student

Let’s see what implementing this traits means.

Sorting

use core::cmp::Ordering;

#[derive(Debug)]
struct Student { math: u8, english: u8, name: String }

impl Ord for Student {
 fn cmp(&self, other:&Self) -> Ordering {
 return self.name.cmp(&other.name);
 }

}
impl PartialOrd for Student {
 fn partial_cmp(&self, other:&Self) -> Option<Ordering> {
 Some(self.cmp(other))
 }

}
impl PartialEq for Student {
 fn eq(&self, other: &Self) -> bool {
 self.cmp(other) == Ordering::Equal
 }

}
impl Eq for Student {}

Rust

Compare function (based on the name)

We will discuss more about this
traits and how to use them with

structs in another course.

After we implement these traits, the code compile.

Sorting

fn main() {
 let mut v = vec![
 Student::new("Andrei",10,8),
 Student::new("Dragos",8,10),
 Student::new("Bogdan",7,7),
 Student::new("Clara",9,10)
];
 v.sort();
 for i in v {
 println!("{:?}",i)
 }
}

Rust

Output

Student { math: 10, english: 8, name: "Andrei" }
Student { math: 7, english: 7, name: "Bogdan" }
Student { math: 9, english: 10, name: "Clara" }
Student { math: 8, english: 10, name: "Dragos" }

But what if we don’t want to implement all of these traits for a simple sort ?

Sorting

#[derive(Debug)]
struct Student { math: u8, english: u8, name: String }
impl Student {
 fn new(studentName: &str, mathGrade: u8, englishGrad: u8) -> Student { … }
}

fn main() {
 let mut v = vec![
 Student::new("Andrei",10,8),
 Student::new("Dragos",8,10),
 Student::new("Bogdan",7,7),
 Student::new("Clara",9,10)
];
 v.sort_by_key(|i| i.math);
 for i in v {
 println!("{:?}",i)
 }
}

Rust

Output

Student { math: 7, english: 7, name: "Bogdan" }
Student { math: 8, english: 10, name: "Dragos" }
Student { math: 9, english: 10, name: "Clara" }
Student { math: 10, english: 8, name: "Andrei" }

In this cases, using sort_by_key combined with a
lambda function is ideal, especially if we want to sort

based on a field from the structure

Other methods related to sort methods:

All of these methods imply that the element in the vector is comparable (has the
PartialEq trait).

Dedup methods are in particular useful when used after a sort command.

Sorting

Method (Vector) Usage

fn dedup(&mut self) Removes all consecutive elements that are equals.

fn dedup_by<F>(&mut self, mut same_bucket: F) Removes all consecutive elements that belong to the
same bucket (based on a function that determines if
an element is part of a bucket or not).

pub fn dedup_by_key<F, K>(&mut self, mut key: F) Removes all consecutive elements that have the same
key.

Dedup methods (Vectors):

In this case, the following buckets were reduced:
• [1, 1, 2, 2, 2, 5, 5, 7, 7] ➔ [1, 2, 5, 7]

• [1, 1, 2, 2, 2, 5, 5, 7, 7] ➔ [1, 2, 5, 7]

• [1, 1, 2, 2, 2, 5, 5, 7, 7] ➔ [1, 2, 5, 7]

• [1, 1, 2, 2, 2, 5, 5, 7, 7] ➔ [1, 2, 5, 7]

Sorting

fn main() {
 let mut v = vec![1,2,7,2,5,1,2,5,7];
 v.sort();
 println!("Sorted vector: {:?}",v);
 v.dedup();
 println!("Deduped vector: {:?}",v);
}

Rust

Output

Sorted vector: [1, 1, 2, 2, 2, 5, 5, 7, 7]
Deduped vector: [1, 2, 5, 7]

Dedup methods (Vectors):

Sorting

fn sort_modulo_3(value:&i32)->i32 {
 (*value) % 3
}
fn dedup_modulo_3(value:&mut i32)->i32 {
 (*value) % 3
}
fn main() {
 let mut v = vec![1,2,7,2,5,1,2,5,7];
 v.sort_by_key(sort_modulo_3);
 println!("Sorted vector: {:?}",v);
 v.dedup_by_key(dedup_modulo_3);
 println!("Deduped vector: {:?}",v);
}

Rust

Output

Sorted vector: [1, 7, 1, 7, 2, 2, 5, 2, 5]
Deduped vector: [1, 2]

Vector 1 7 1 7 2 2 5 2 6

Modulo 3 1 1 1 1 2 2 2 2 2

Dedup methods (Vectors):

The same result can also be obtained via usage of lambda functions/closures (like
in the previous example).

We will talk more about closures in another course.

Sorting

fn main() {
 let mut v = vec![1,2,7,2,5,1,2,5,7];
 v.sort_by_key(|i| (*i) % 3);
 println!("Sorted vector: {:?}",v);
 v.dedup_by_key(|i| (*i) % 3);
 println!("Deduped vector: {:?}",v);
}

Rust

Output

Sorted vector: [1, 7, 1, 7, 2, 2, 5, 2, 5]
Deduped vector: [1, 2]

Vector 1 7 1 7 2 2 5 2 6

Modulo 3 1 1 1 1 2 2 2 2 2

Another interesting method (related to a sorted sequence of elements) is the
ability to use a binary search to quickly find an item (in O(log(n)) complexity). This
methods can be used for Vectors, Arrays or slices.

All of these methods should be used together with the similar sort functions (e.g.
use a binary_search_by with the sort_by or sort_unstable_by) and with the same
function as parameter.

Sorting

Methods

fn binary_search(&self, x: &T) -> Result<usize, usize>

fn binary_search_by<F>(&self, mut f: F) -> Result<usize, usize>

fn binary_search_by_key<B, F>(&self, b: &B, mut f: F) -> Result<usize, usize>

Let’s see some examples on how to use binary search.

The binary search function returns:
• Ok (with the value the index where the exact match was found)

• Err (with the value of the closest index to the value that was searched).

Obs: Notice that &4, &400 or &0. In Rust, a constant value is not implicitly converted into a constant
reference like in C++ (you have to explicitly say you want to do this).

Sorting

fn main() {
 let v = vec![1,2,3,4,5,6,7,8];
 println!("{:?}",v.binary_search(&4));
 println!("{:?}",v.binary_search(&400));
 println!("{:?}",v.binary_search(&0));
}

Rust

Output

Ok(3)
Err(8)
Err(0)

Let’s see some examples on how to use binary search.

Keep in mind that binary_search_by_key receives for the first parameter a key and
not a value. In this case, possible keys are 0,1 and 2 (everything that module 3 can
obtained). That is why, the first 3 searches will end up with Ok, while search no 4
(for the value 3) will return Err as any value module 3 will never result in 3!!!

Sorting

fn main() {
 let mut a = [1,2,3,4,5,6,7,8];
 a.sort_by_key(|i| (*i) % 3);
 println!("{:?}",a);
 println!("{:?}",a.binary_search_by_key(&0,|i| (*i) % 3));
 println!("{:?}",a.binary_search_by_key(&1,|i| (*i) % 3));
 println!("{:?}",a.binary_search_by_key(&2,|i| (*i) % 3));
 println!("{:?}",a.binary_search_by_key(&3,|i| (*i) % 3));
}

Rust

Output

[3, 6, 1, 4, 7, 2, 5, 8]
Ok(1)
Ok(4)
Ok(6)
Err(8)

Hash maps

Hash maps collection of elements, where every element can quickly (ideally O(1)) be
access via a key. There are several implementation possible for a Hash maps; Rust
has a specific object called HashMap (like std::unordered_map) from C++ standard.

Rust implementation (a variation of https://abseil.io/blog/20180927-swisstables)

To create a map, use one of the following forms:
a) let mut a: HashMap<key,value> = HashMap::new()

b) let mut a = HashMap::<key,value>::new()

c) let mut a: HashMap<key,value> = HashMap::with_capacity(capacity)

d) let mut a: HashMap<key,value> = HashMap::from([(key,vector);count])

Hash maps

https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables

Let’s see some examples on how to build a hash map.

Obs: Notice the use of std::collections::HashMap (this is required to use a hash
map).

Hash maps

use std::collections::HashMap;

fn main() {
 let m1 = HashMap::<i32,i32>::new();
 let m2 = HashMap::<&str,i32>::with_capacity(100);
 let m3 = HashMap::from([
 ("John",10), ("Mike",20), ("George",30)
]);
 println!("{:?}, Capacity={}, items={}",m1,m1.capacity(),m1.len());
 println!("{:?}, Capacity={}, items={}",m2,m3.capacity(),m2.len());
 println!("{:?}, Capacity={}, items={}",m3,m3.capacity(),m3.len());
}

Rust
Output

{}, Capacity=0, items=0
{}, Capacity=3, items=0
{"John": 10, "Mike": 20, "George": 30}, Capacity=3, items=3

It is important to notice that the hashing algorithm use rely on a
randomized seed. This mean that consecutive execution of the same
code will result in a different order of elements in memory.

Hash maps

fn main() {
 for _ in 0..7 {
 let m3 = HashMap::from([("John", 10), ("Mike", 20), ("George", 30)]);
 println!("{:?}, Capacity={}, items={}", m3, m3.capacity(), m3.len());
 }
}

Rust

Output (possible).

{"Mike": 20, "George": 30, "John": 10}, Capacity=3, items=3
{"George": 30, "John": 10, "Mike": 20}, Capacity=3, items=3
{"John": 10, "George": 30, "Mike": 20}, Capacity=3, items=3
{"George": 30, "Mike": 20, "John": 10}, Capacity=3, items=3
{"George": 30, "Mike": 20, "John": 10}, Capacity=3, items=3
{"John": 10, "Mike": 20, "George": 30}, Capacity=3, items=3
{"George": 30, "John": 10, "Mike": 20}, Capacity=3, items=3

Basic operations for hash maps

Hash maps

Method Usage

fn insert(&mut self, k: K, v: V) -> Option<V> Inserts a key/value pair into the hash map. If the key
exists in the map, None is return. If the key exists, it is
updated, and the old value is returned.

fn get (&self, k: &K) -> Option<&V>
fn get_mut (&mut self, k: &K) -> Option<&mut V>

Get a reference to the value associated with a key

fn contains_key (&self, k: &K) -> bool True if a key exists in the hash map

fn remove (&mut self, k: &Q) -> Option<V> Removes an element from the map an returns its
value.

fn clear(&mut self) Clears all key/value pairs (but keeps the allocated
memory for future usage).

Let’s see an example:

Hash maps

fn main() {
 let mut m = HashMap::from([
 ("John",10), ("Mike",20), ("George",30)
]);
 println!("John is in m: {}",m.contains_key("John"));
 m.insert("Vincent", 20);
 println!("{:?}",m);
 println!("Value for 'Mike' is : {:?}",m.get("Mike"));
 *m.get_mut("George").unwrap() = 50;
 println!("{:?}",m);
}

Rust

Output

John is in m: true
{"John": 10, "Vincent": 20, "George": 30, "Mike": 20}
Value for 'Mike' is : Some(20)
{"John": 10, "Vincent": 20, "George": 50, "Mike": 20}

One of the most used method for hash maps is .entry():

Entry struct has the following methods:

Hash maps

Method Usage

fn entry(&mut self, key: K) -> Entry<K, V> Returns a structure (Entry) that can be used to modify the
value of a key.

Method Usage

fn and_modify(self, f: Function) -> Self Change the value associated with a specific key with a value
returned from a function F.

fn or_insert(self, default: V) -> &mut V Returns a mutable reference to a value of a specific key. If
that key is not present, it will be inserted and set up with a
default value, and then the reference to that default value
will be returned.

fn or_insert_with(self, default: F) -> & mut V
fn or_insert_with_key-> V>(self, default: F) -> &mut V

Similar to or_insert, but uses a function default to return a
value

Let’s see some examples on how to use .entry() method:

Notice that if key is not present than .and_modify(..) has no effect !

Hash maps

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 m.entry("John").and_modify(|x| { *x = *x + 10; });
 println!("{m:?}");
 m.entry("John2").and_modify(|x| { *x = *x + 10; });
 println!("{m:?}");
}

Rust
Output

{"George": 30, "Mike": 20, "John": 20}
{"George": 30, "Mike": 20, "John": 20}

Let’s see some examples on how to use .entry() method:

Hash maps

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 let john_value = m.entry("John").or_insert(200);
 println!("john = {john_value}");
 let alice_value = m.entry("Alice").or_insert(200);
 println!("alice = {alice_value}");
 println!("{:?}",m);
}

Rust

Output

john = 10
alice = 200
{"John": 10, "George": 30, "Alice": 200, "Mike": 20}

Keep in mind that the value returned by .or_insert(…) method is a
mutable reference. This means that for example you can not use the
hashmap as an immutable reference while that reference still exists.

Hash maps

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 let john_value = m.entry("John").or_insert(200);
 println!("{:?}",m);
 println!("john = {john_value}");
}

Rust

error[E0502]: cannot borrow `m` as immutable because it is also borrowed as
mutable
 --> src\main.rs:6:21
 |
5 | let john_value = m.entry("John").or_insert(200);
 | --------------- mutable borrow occurs here
6 | println!("{:?}",m);
 | ^ immutable borrow occurs here
7 | println!("john = {john_value}");
 | ---------- mutable borrow later used here

Error

Keep in mind that the value returned by .or_insert(…) method is a
mutable reference. This means that for example you can not use the
hashmap as an immutable reference while that reference still exists.

In this case we have reversed the order of calls (first we print
john_value and then m). This will work as the lifetime of john_value
ends after println! Macro.

Hash maps

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 let john_value = m.entry("John").or_insert(200);
 println!("john = {john_value}");
 println!("{:?}",m);
}

Rust

Output

john = 10
{"George": 30, "Mike": 20, "John": 10}

Let’s see some examples on how to use .entry() method:

OBS: .or_insert_with_key(…) uses a function that receives the key name and returns
a value (in our case “Liam” has a size of 4 chars).

Hash maps

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 m.entry("John").or_insert_with(|| 100);
 println!("{m:?}");
 m.entry("Alice").or_insert_with(|| 100);
 println!("{m:?}");
 m.entry("Liam").or_insert_with_key(|key| key.len());
 println!("{m:?}");
}

Rust

Output

{"John": 10, "Mike": 20, "George": 30}
{"John": 10, "George": 30, "Alice": 100, "Mike": 20}
{"John": 10, "George": 30, "Alice": 100, "Mike": 20, "Liam": 4}

One of the most common usage for .entry() is to count elements from a
vector / array. The solution is to use .entry(…).or_insert(…) to first
insert and initialize a string in the map, and then increment the value.

Hash maps

fn main() {
 let mut m = HashMap::new();
 let v = ["John","Alice","John","Mike","Alice","John","John"];
 for k in v {
 *m.entry(k).or_insert(0)+=1;
 }
 println!("{m:?}");
}

Rust
Output

{"John": 4, "Alice": 2, "Mike": 1}

Hash maps are iterable:

You can also use .keys() to enumerate directly through keys:

Hash maps

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 for i in m {
 println!("{:?}",i);
 }
}

Rust

Output

("George", 30)
("John", 10)
("Mike", 20)

fn main() {
 let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
 for i in m.keys() {
 println!("{:?}",i);
 }
}

Rust

Output

"John"
"Mike"
"George"

Keep in mind that iterating through an object moves the key/value pair
instead of returning a reference:

Hash maps

fn main() {
 let m = HashMap::from([
 (String::from("key-1"),String::from("John")),
 (String::from("key-2"),String::from("Mike")),
 (String::from("key-3"),String::from("Marry")),
]);
 for i in m {
 println!("{:?}",i);
 }
 println!("{:?}",m);
}

Rust

error[E0382]: borrow of moved value: `m`
 --> src\main.rs:12:21
 |
4 | let m = HashMap::from([
 | - move occurs because `m` has type `HashMap<String, String>`,
 | which does not implement the `Copy` trait
...
9 | for i in m {
 | - `m` moved due to this implicit call to `.into_iter()`
...
12 | println!("{:?}",m);
 | ^ value borrowed here after move

Error

The solution is to iterate over a reference of that object instead of the
object.

Hash maps

fn main() {
 let m = HashMap::from([
 (String::from("key-1"),String::from("John")),
 (String::from("key-2"),String::from("Mike")),
 (String::from("key-3"),String::from("Marry")),
]);
 for i in &m {
 println!("{:?}",i); // "i" is of type (&String,&string)
 }
 println!("{:?}",m);
}

Rust

Output

("key-1", "John")
("key-2", "Mike")
("key-3", "Marry")
{"key-1": "John", "key-2": "Mike", "key-3": "Marry"}

To get the map capacity and length use .len() and .capacity() methods

Hash maps

fn main() {
 let m = HashMap::from([
 (String::from("key-1"),String::from("John")),
 (String::from("key-2"),String::from("Mike")),
 (String::from("key-3"),String::from("Marry")),
 (String::from("key-4"),String::from("Andy")),
 (String::from("key-5"),String::from("Andrei")),
 (String::from("key-6"),String::from("Dragos")),
 (String::from("key-7"),String::from("Carlos")),
 (String::from("key-8"),String::from("Terry")),
 (String::from("key-9"),String::from("Ana")),
]);
 println!("Capacity={}, len={}",m.capacity(), m.len());
}

Rust

Output

Capacity=14, len=9

Use .remove(key) to remove a key from the hash map.

Hash maps

fn main() {
 let mut m= HashMap::from([
 (String::from("John"),10),
 (String::from("Mike"),8),
 (String::from("Marry"),4),
 (String::from("Andy"),9),
 (String::from("Andrei"),5),
]);
 println!("Remove Mike -> with value: {:?}",m.remove("Mike"));
 println!("Remove Dragos -> with value: {:?}",m.remove("Dragos"));
 println!("Hashmap = {:?}",m);
}

Rust

Output

Remove Mike -> with value: Some(8)
Remove Dragos -> with value: None
Hashmap = {"Marry": 4, "Andy": 9, "John": 10, "Andrei": 5}

You can also use .retain(predicate) to keep in the map only the
elements that match a specific criteria.

Hash maps

fn bigger_than_8(key: &String,value: &mut i32)->bool {
 (*value)>8
}
fn main() {
 let mut m= HashMap::from([
 (String::from("John"),10),
 (String::from("Mike"),8),
 (String::from("Marry"),4),
 (String::from("Andy"),9),
 (String::from("Andrei"),5),
]);
 m.retain(bigger_than_8);
 println!("{:?}",m);
}

Rust
Output

{"John": 10, "Andy": 9}

You can also use .retain(predicate) to keep in the map only the
elements that match a specific criteria.

The same result can also be obtained via a closure/lambda
function.

Hash maps

fn main() {
 let mut m= HashMap::from([
 (String::from("John"),10),
 (String::from("Mike"),8),
 (String::from("Marry"),4),
 (String::from("Andy"),9),
 (String::from("Andrei"),5),
]);
 m.retain(|k,v| *v>8);
 println!("{:?}",m);
}

Rust

Output

{"John": 10, "Andy": 9}

HashSet

HashSet type in Rust is implemented over a HashMap with a value of type () → a
ZST type thus making sure that there is no extra memory allocated for values.

To create a set, use one of the following forms:
a) let mut a: HashSet<type> = HashSet::new()

b) let mut a = HashSet::<type>::new()

c) let mut a: HashSet<type> = HashSet::with_capacity(capacity)

d) let mut a: HashSet<type> = HashSet::from([<type>;count])

Hash sets

Let’s see some examples on how to build a hash set.

Obs: Notice the use of std::collections::HashSet (this is required to use a hash set).

Keep in mind that the order of the elements is not guarantee to be the insertion order.
Also … using several elements with the same value, will strip down equal elements

Hash sets

use std::collections::HashSet;

fn main() {
 let s1 = HashSet::from([1,2,3,4,5]);
 let s2 = HashSet::<i32>::new();
 let s3 = HashSet::from([1,1,2,2,3,3,3,4,5]);
 println!("s1 = {:?}",s1);
 println!("s2 = {:?}",s2);
 println!("s3 = {:?}",s3);
}

Rust
Output

s1 = {2, 1, 4, 3, 5}
s2 = {}
s3 = {1, 5, 2, 4, 3}

Basic operations for hash sets

Hash sets

Method Usage

fn insert(&mut self, value: T) -> bool Inserts a value in a set. Returns false if the value
already exists in the set, true otherwise.

fn get (&self, v: &T) -> Option<&T> Get a reference to a value if exists in the set

fn contains (&self, value: &T) -> bool True if a value exists in the set

fn remove (&mut self, value: &T) -> bool If value exists in the set, removes it and return true.
Otherwise returns false.

fn clear(&mut self) Removes all elements from the set (but keeps the
allocated memory for future usage).

Let’s see some examples on how to use a set:

Hash sets

use std::collections::HashSet;

fn main() {
 let mut s = HashSet::from([1,2,3,4,5]);
 println!("{:?}",s);
 println!("Add 3 -> {} => s = {:?}",s.insert(3),s);
 println!("Add 7 -> {} => s = {:?}",s.insert(7),s);
 println!("Remove 1 -> {} => s = {:?}",s.remove(&1),s);
 println!("Remove 9 -> {} => s = {:?}",s.remove(&9),s);
 println!("Is 4 in the set -> {}",s.contains(&7));
 println!("Get 5 from set -> {:?}",s.get(&5));
 println!("Get 8 from set -> {:?}",s.get(&8));
}

Rust

Output

{1, 2, 4, 5, 3}
Add 3 -> false => s = {1, 2, 4, 5, 3}
Add 7 -> true => s = {1, 2, 4, 7, 5, 3}
Remove 1 -> true => s = {2, 4, 7, 5, 3}
Remove 9 -> false => s = {2, 4, 7, 5, 3}
Is 4 in the set -> true
Get 5 from set -> Some(5)
Get 8 from set -> None

There are however, some methods specific to sets:

Methods for union, intersection, difference and symmetric difference
return an iterator.

Hash sets

Method

fn intersection(&self, other: &HashSet<T>) -> Intersection<T>

fn union(&self, other: &HashSet<T>) -> Union<T>

fn symmetric_difference(&self, other: &HashSet<T>) -> SymmetricDifference<T>

fn difference(&self, other: &HashSet<T>) -> Difference<T>

fn is_disjoint(&self, other: &HashSet<T>) -> bool

fn is_subset(&self, other: &HashSet<T>) -> bool

fn is_superset(&self, other: &HashSet<T>) -> bool

Let’s see some examples on how set specific methods:

Hash sets

fn main() {
 let s1 = HashSet::from([1,2,3,4,5]);
 let s2 = HashSet::from([3,4,5,6,7]);
 let u:HashSet<_> = s1.union(&s2).collect();
 let i:HashSet<_> = s1.intersection(&s2).collect();
 let sd:HashSet<_> = s1.symmetric_difference(&s2).collect();
 let d1:HashSet<_> = s1.difference(&s2).collect();
 let d2:HashSet<_> = s2.difference(&s1).collect();
 println!("Union = {:?}",u);
 println!("Intersection = {:?}",i);
 println!("Sym.diff = {:?}",sd);
 println!("s1-s2={:?} s2-s1={:?}",d1,d2);
}

Rust Output

Union = {4, 3, 6, 7, 5, 1, 2}
Intersection = {5, 4, 3}
Sym.diff = {7, 6, 1, 2}
s1-s2={2, 1} s2-s1={6, 7}

Btree Map

A Btree map is an ordered map based on a binary tree algorithm (more on binary
trees : https://en.wikipedia.org/wiki/B-tree). The closest equivalence from C++
space is std::map (even though they use different algorithms under the hood).

Keep in mind that current Rust implementation is slightly different than the
classical one as it tries to optimize search for small sets of data and use as much of
the processor cache as possible.

To create a b-tree map, use one of the following forms:
a) let mut a: BTreeMap<key,value> = BTreeMap ::new()

b) let mut a = BTreeMap::<key,value>::new()

c) let mut a: BTreeMap<key,value> = BTreeMap ::with_capacity(capacity)

d) let mut a: BTreeMap <key,value> = BTreeMap ::from([(key,vector);count])

Btree Map

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree

Let’s see some examples:

Btree Map

fn main() {
 for _i in 0..3 {
 let m = BTreeMap::from([("John",10),("Ana",20),("Mike",5),("Bugsy",10)]);
 println!("{:?}",m);
 }
 println!("-----------------------------------");
 for _i in 0..3 {
 let m = HashMap::from([("John",10),("Ana",20),("Mike",5),("Bugsy",10)]);
 println!("{:?}",m);
 }
}

Rust

Output

{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}

{"Mike": 5, "John": 10, "Bugsy": 10, "Ana": 20}
{"Bugsy": 10, "Ana": 20, "Mike": 5, "John": 10}
{"Mike": 5, "John": 10, "Ana": 20, "Bugsy": 10}

Let’s see some examples on how set specific methods:

Btree Map

fn main() {
 for _i in 0..3 {
 let m = BTreeMap::from([("John",10),("Ana",20),("Mike",5),("Bugsy",10)]);
 println!("{:?}",m);
 }
 println!("-----------------------------------");
 for _i in 0..3 {
 let m = HashMap::from([("John",10),("Ana",20),("Mike",5),("Bugsy",10)]);
 println!("{:?}",m);
 }
}

Rust

Output

{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}

{"Mike": 5, "John": 10, "Bugsy": 10, "Ana": 20}
{"Bugsy": 10, "Ana": 20, "Mike": 5, "John": 10}
{"Mike": 5, "John": 10, "Ana": 20, "Bugsy": 10}

Notice that BTreeMap sorts all elements
based on their key. This is different than

what HashMap is doing (HashMap uses a
random seed and as such the order is

different almost every time).

Btree map has the same methods as Hash maps (e.g. insert, get, entry,
contains, etc). However, since the keys in a btree map are sorted, there
are other methods available only on BTreeMap objects:

Btree Map

Method Usage

fn append(&mut self, other: &mut Self) Appends all elements from a specific Btree
map into another one.

fn pop_first(&mut self) -> Option<(K, V)> These 4 methods are experimental and are
considered unstable. While in the future it is
possible for these methods to be available,
right now they are not part of the stable
SDK.

fn pop_last(&mut self) -> Option<(K, V)>

fn first_entry(&mut self) -> Option<OccupiedEntry<K,V>>

fn last_entry(&mut self) -> Option<OccupiedEntry<K,V>>

Let’s see an example that uses .append(…) method:

Notice that if a key already exists, its value is updated with after the
append method is called (key “Ana” had initially value 20, after update it
has a value of 10).

Btree Map

fn main() {
 let mut m1 = BTreeMap::from([("John",10),("Ana",20),("Mike",5),("Bugsy",10)]);
 let mut m2 = BTreeMap::from([("Andra",10),("Ana",10),("Loyd",15),("Erik",12)]);
 m1.append(&mut m2);
 println!("{:?}",m1);
}

Rust

Output

{"Ana": 10, "Andra": 10, "Bugsy": 10, "Erik": 12, "John": 10, "Loyd": 15, "Mike": 5}

Btree map is a well-suited choice for problems where a priority queue is
required. The most common usage in this case is by using iterators and
their method .next() to advance to the next element. The result is that you
can extract / iterate over each elements in their order.

OBS: We will discuss more about iterators in another course.

Btree Map

fn main() {
 let m = BTreeMap::from([("John",10),("Ana",20),("Mike",5),("Bugsy",10)]);
 let mut i = m.iter();
 while let Some(x) = i.next() {
 println!("Extract {} width value: {}",x.0,x.1);
 }
}

Rust

Output

Extract Ana width value: 20
Extract Bugsy width value: 10
Extract John width value: 10
Extract Mike width value: 5

BTreeSet

BTreeSet type in Rust is implemented over a BTreeMap with a value of type () → a
ZST type thus making sure that there is no extra memory allocated for values.

To create a set, use one of the following forms:
a) let mut a: BTreeSet<type> = BTreeSet::new()

b) let mut a = BTreeSet::<type>::new()

c) let mut a: BTreeSet<type> = BTreeSet::with_capacity(capacity)

d) let mut a: BTreeSet<type> = BTreeSet::from([<type>;count])

The logic and methods are similar to the ones from HashSet.

The similar class from C++ is std::set

BTreeSet

Let’s see an example on how to use a BTreeSet:

Similar to BTreeMap, there is an .append(…) method:

Btree Set

fn main() {
 let s = BTreeSet::from([10,2,7,4,9,11,3,6,7]);
 println!("{s:?}");
}

Rust

Output

{2, 3, 4, 6, 7, 9, 10, 11}

fn main() {
 let mut s1 = BTreeSet::from([10,2,7,4,9,11,3,6,7]);
 let mut s2 = BTreeSet::from([1,8,3,6,5]);
 s1.append(&mut s2);
 println!("{s1:?}");
}

Rust

Output

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Map comparation between C++
and Rust

Let’s compare how various types of maps work on Rust and C++.

For this we will use:
• std::map (C++)

• std::unordered_map (C++)

• HashMap (Rust)

• BTreeMap (Rust)

The same algorithm will be written in both Rust and C++ and tested in Debug and Release
mode. We will use GetTickCount API to measure time. Each variation of the build will be
executed for 10 times and the average will be compute.

C++ vs Rust (on maps)

So … lets see the testing algorithm:

C++ vs Rust (on maps)

extern "system" { fn GetTickCount64() -> u64; }
fn get_time() -> u64 { unsafe { GetTickCount64() } }

use std::collections::{BTreeMap, HashMap};

#[derive(Debug, Copy, Clone)]
struct Test { v1: u64, v2: f32, v3: bool }

fn main() {
 let mut m: HashMap<u32, Test> = HashMap::new();
 let start = get_time();
 for i in 0..1_000_000 {
 let t = Test { v1: i as u64, v2: 1.5,v3: i%2==0};
 m.insert(i, t);
 }
 let end = get_time();
 println!("{}", end - start);
}

Rust

#include <Windows.h>
#include <map>
#include <unordered_map>
struct Test {
 unsigned long long v1;
 float v2;
 bool v3;
};
void main() {
 std::unordered_map<unsigned int, Test> m;
 auto start = GetTickCount64();
 for (auto i = 0; i < 1000000; i++) {
 m[i] = Test{ (unsigned long long)i,
 1.5,i % 2 == 0 };
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

So … lets see the testing algorithm:

C++ vs Rust (on maps)

extern "system" { fn GetTickCount64() -> u64; }
fn get_time() -> u64 { unsafe { GetTickCount64() } }

use std::collections::{BTreeMap, HashMap};

#[derive(Debug, Copy, Clone)]
struct Test { v1: u64, v2: f32, v3: bool }

fn main() {
 let mut m: HashMap<u32, Test> = HashMap::new();
 let start = get_time();
 for i in 0..1_000_000 {
 let t = Test { v1: i as u64, v2: 1.5,v3: i%2==0};
 m.insert(i, t);
 }
 let end = get_time();
 println!("{}", end - start);
}

Rust

#include <Windows.h>
#include <map>
#include <unordered_map>
struct Test {
 unsigned long long v1;
 float v2;
 bool v3;
};
void main() {
 std::unordered_map<unsigned int, Test> m;
 auto start = GetTickCount64();
 for (auto i = 0; i < 1000000; i++) {
 m[i] = Test{ (unsigned long long)i,
 1.5,i % 2 == 0 };
 }
 auto end = GetTickCount64();
 printf("%d", (int)(end - start));
}

C++

We will run the same algorithm using:
• HashMap
• BTreeMap

We will run the same algorithm using:
• std::unordered_map
• std::map

So … lets see the testing algorithm:

C++ vs Rust (on maps)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
C++ (Debug)
std:unordered_map 938 1266 1390 1328 1250 1297 1250 1344 1485 1437 1298
C++ (Release)
std:unordered_map 297 234 235 281 266 266 234 235 234 234 251
C++ (Debug)
std::map 1312 1765 1953 1875 1875 1859 1813 1812 1797 1828 1788
C++ (Release)
std::map 156 141 172 157 141 171 172 156 172 156 159
Rust (Debug)
HashMap 1141 1297 1265 1250 1281 1312 1359 1297 1343 1297 1284
Rust (Release)
HashMap 78 78 63 78 78 94 93 94 94 94 84
Rust (Debug)
BTreeMap 2703 3156 3078 2906 2765 2875 2937 2844 2860 2781 2890
Rust (Release)
BTreeMap 93 93 109 110 125 110 125 141 125 125 115

The general conclusion after these tests is:

• Rust is slower the C++ when it comes to debug mode (due to many checks)

• In terms of Release mode, Rust is faster (however, it should be noted that we are
not comparing the same algorithms and as such these tests might NOT be
correct). However, since we’ve compared the standard algorithms from each
(Rust and C++) libraries, the results are however relevant.

• The tests were performed on Windows 11 (using Microsoft compiler). To produce
accurate results, other C++ compilers (such as clang and gcc) should be tested as
well.

C++ vs Rust (on maps)

Q
A&

	Default Section
	Slide 1: Course – 8 Gavrilut Dragos
	Slide 2: Agenda for today

	Closures
	Slide 3: Closures
	Slide 4: Closures
	Slide 5: Closures
	Slide 6: Closures
	Slide 7: Closures
	Slide 8: Closures
	Slide 9: Closures
	Slide 10: Closures
	Slide 11: Closures
	Slide 12: Closures
	Slide 13: Closures
	Slide 14: Closures
	Slide 15: Closures
	Slide 16: Closures
	Slide 17: Closures
	Slide 18: Closures
	Slide 19: Closures
	Slide 20: Closures
	Slide 21: Closures
	Slide 22: Closures
	Slide 23: Closures
	Slide 24: Closures
	Slide 25: Closures
	Slide 26: Closures
	Slide 27: Closures
	Slide 28: Closures
	Slide 29: Closures
	Slide 30: Closures
	Slide 31: Closures
	Slide 32: Closures
	Slide 33: Closures
	Slide 34: Closures
	Slide 35: Closures
	Slide 36: Closures
	Slide 37: Closures
	Slide 38: Closures
	Slide 39: Closures
	Slide 40: Closures

	Iterators
	Slide 41: Iterators
	Slide 42: Iterators
	Slide 43: Iterators
	Slide 44: Iterators
	Slide 45: Iterators
	Slide 46: Iterators
	Slide 47: Iterators
	Slide 48: Iterators
	Slide 49: Iterators
	Slide 50: Iterators
	Slide 51: Iterators
	Slide 52: Iterators
	Slide 53: Iterators
	Slide 54: Iterators
	Slide 55: Iterators
	Slide 56: Iterators
	Slide 57: Iterators
	Slide 58: Iterators
	Slide 59: Iterators
	Slide 60: Iterators
	Slide 61: Iterators
	Slide 62: Iterators
	Slide 63: Iterators
	Slide 64: Iterators
	Slide 65: Iterators
	Slide 66: Iterators
	Slide 67: Iterators
	Slide 68: Iterators
	Slide 69: Iterators
	Slide 70: Iterators
	Slide 71: Iterators
	Slide 72: Iterators

	Other iterators
	Slide 73: Other functionalities
	Slide 74: Iterators (Peekable)
	Slide 75: Iterators (Peekable)
	Slide 76: Iterators (enumerate)
	Slide 77: Iterators (Infinite loops)
	Slide 78: Iterators (DoubleEndedIterator)
	Slide 79: Iterators (DoubleEndedIterator)
	Slide 80: Iterators (DoubleEndedIterator)
	Slide 81: Iterators (ExactSizeIterator)

	Vectors
	Slide 82: Vectors
	Slide 83: Vectors
	Slide 84: Vectors
	Slide 85: Vectors
	Slide 86: Vectors
	Slide 87: Vectors
	Slide 88: Vectors
	Slide 89: Vectors
	Slide 90: Vectors
	Slide 91: Vectors
	Slide 92: Vectors
	Slide 93: Vectors
	Slide 94: Vectors
	Slide 95: Vectors
	Slide 96: Vectors
	Slide 97: Vectors
	Slide 98: Vectors
	Slide 99: Vectors
	Slide 100: Vectors
	Slide 101: Vectors
	Slide 102: Vectors
	Slide 103: Vectors
	Slide 104: Vectors
	Slide 105: Vectors
	Slide 106: Vectors
	Slide 107: Vectors
	Slide 108: Vectors
	Slide 109: Vectors
	Slide 110: Vectors
	Slide 111: Vectors
	Slide 112: Vectors
	Slide 113: Vectors
	Slide 114: Vectors
	Slide 115: Vectors
	Slide 116: Vectors
	Slide 117: Vectors
	Slide 118: Vectors

	Sorting
	Slide 119: Sorting
	Slide 120: Sorting
	Slide 121: Sorting
	Slide 122: Sorting
	Slide 123: Sorting
	Slide 124: Sorting
	Slide 125: Sorting
	Slide 126: Sorting
	Slide 127: Sorting
	Slide 128: Sorting
	Slide 129: Sorting
	Slide 130: Sorting
	Slide 131: Sorting
	Slide 132: Sorting
	Slide 133: Sorting
	Slide 134: Sorting
	Slide 135: Sorting
	Slide 136: Sorting
	Slide 137: Sorting
	Slide 138: Sorting
	Slide 139: Sorting
	Slide 140: Sorting
	Slide 141: Sorting

	Hash maps
	Slide 142: Hash maps
	Slide 143: Hash maps
	Slide 144: Hash maps
	Slide 145: Hash maps
	Slide 146: Hash maps
	Slide 147: Hash maps
	Slide 148: Hash maps
	Slide 149: Hash maps
	Slide 150: Hash maps
	Slide 151: Hash maps
	Slide 152: Hash maps
	Slide 153: Hash maps
	Slide 154: Hash maps
	Slide 155: Hash maps
	Slide 156: Hash maps
	Slide 157: Hash maps
	Slide 158: Hash maps
	Slide 159: Hash maps
	Slide 160: Hash maps
	Slide 161: Hash maps

	HashSet
	Slide 162: HashSet
	Slide 163: Hash sets
	Slide 164: Hash sets
	Slide 165: Hash sets
	Slide 166: Hash sets
	Slide 167: Hash sets
	Slide 168: Hash sets

	BTreeMap
	Slide 169: Btree Map
	Slide 170: Btree Map
	Slide 171: Btree Map
	Slide 172: Btree Map
	Slide 173: Btree Map
	Slide 174: Btree Map
	Slide 175: Btree Map

	BTreeSet
	Slide 176: BTreeSet
	Slide 177: BTreeSet
	Slide 178: Btree Set

	Map_cmp_Rust_C++
	Slide 179: Map comparation between C++ and Rust
	Slide 180: C++ vs Rust (on maps)
	Slide 181: C++ vs Rust (on maps)
	Slide 182: C++ vs Rust (on maps)
	Slide 183: C++ vs Rust (on maps)
	Slide 184: C++ vs Rust (on maps)

	Q&A
	Slide 185

