Rust programming
Course — 3

Gavrilut Dragos

Agenda for today

Closures

Iterators

Vectors

Sorting data sequences

HashMap

HashSet

BTreeMap

BTreeSet

Map comparation between C++ and Rust

w Bk bl i B v b

Closures

Closures

Closures (or lambda functions) are short functions that can be used in different
scenarios (e.g. when sorting, or filtering collection of elements).

Closures are widely used with iterators.

The general format of a closure is:

|Param :Type,, Param,:Type,,...Param :Type_ | -> ReturnType { code-block }

With some observations:

* ReturnType can be omitted. In this case Rust will try to infer it from the code-block return
value; 9

* Type,, Type, Type, can be omitted as well. Rust will try to infer them from the usage.

* The brackets from the code-code block can be omitted (in particular if the code-block is just a

simple expression). In this case, the code-block contains just the expression that evaluates
(ORI 8l | Param,, Param,,...Param_ | return-value

 If brackets are omitted, the ReturnType must be omitted as well.

Closures

Let’s see some examples (with a parameter types and return type specified):

Rust

fn main() {
let f1 = |x]|->i32 { x+1 };
let ecmmdc = |x:i32,y:i32|->i32 {
let mut a = x;
let mut b = vy;
while al=b {
if a>b { a-=b; } else { b-=a;}
}

return a;

}s
println! ("{}",f1(10));
println! ("{}",cmmdc(18,24));

Closures

Let’s see some examples (with any type specified):

Rust

fn main() {
let f1 = |x| { x+1 };
let f2 = |x,y]| x+y;
let cmmdc = |x,y]| {
let mut a = x;
let mut b

println! ("{}",f1(10));
println!("{}",f2(10,20));
println! ("{}",cmmdc(18,24));

Closures

Keep in mind that a closure is not a template (even if no type is specified). In the
next example, “x” and “y” from f1 are inferred to be of type [|x:i32,y:i32|->i32 { x+y }

after the first call of printf! Macro.
As such, the usage of a float value will not be allowed.

Rust

fn main() {
let f1 = |x,y| x+y;
println! ("{}",f1(10,20));
println! ("{}",f1(1.2,2.5));

error[EQ308]: mismatched types
--> src\main.rs:4:22

|
4 | println! ("{}",f1(1.2,2.5));
| AN expected integer, found floating-point number

error[EQ308]: mismatched types
--> src\main.rs:4:26

|
4 | println! ("{}",f1(1.2,2.5));
| AN expected integer, found floating-point number

Closures

A closure does not need to have parameters, it can just be a simple function that
prints something on the screen.

Rust

fn main() {
let r = || println!("Rust");
println! ("I like");
r();

println! ("I like");
r();

OBS: This is in particular useful with captures.

A closure can capture local parameters. Let’s analyze the following example:

Rust

fn main()
let x = 1;

let print x || println!("x={}",x);
print_x();

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

Closures

mov dword ptr [x],1 |

lea rax, [x]

mov gword ptr [print_x],rax
lea rcx, [print_x]

call main::closure$o

Closures

A closure can capture local parameters. Let’s analyze the following example:

Rust

fn main() {
let x = 1;
let print x || println!("x={}",x);

print _x();

dword ptr [x],1

Let’s see what's happening in this mov
case (where print_x closure capture
the value of “x”) T rax, [x]

' mov qgword ptr [print_x],rax

It’s obvious that a reference to “x” is being

stored in print_x.

Closures

A closure can capture local parameters. Let’s analyze the following example:

Rust

fn main() {
let x = 1;

let print x || println!("x={}",x);

print _x();

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

The way this call is made, looks like a method call

from a class, where RCX register stores this/self.

mov dword ptr [x],1

lea rax, [%]

mov gword [ptr [print_x],rax
lea rcx, [print_x]

call main::closure$o

Closures

A closure can capture local parameters. Let’s analyze the following example:

Rust C++ equivalent
fn main() A struct TempClosure {
let x = 1; int* x;
let print_x = || println!("x={}",x); void Run() {
print_x(); printf("x=%d",*x);
}
}s
Let’s see what's happening in this void main() {
case (where print_x closure capture int x = 1;

the value of "X"). Ter.an105ur‘e print_x;
print Xx.x = &X;

Keep in mind that this is an approximation based print_x.Run();

on how the assembly code looks like.

Closures

A closure can capture local parameters. Let’s analyze the following example:

Rust

fn main() {
let x = 1;
let print_x = || println!("x={}",Xx);
print _x();

Let’s see what's happening in this
case (where print_x closure capture
the value of “x”).

This is how in reality the code from a

closure/lambda function is created.

C++ equivalent (with classes)

class TempClosure {
int& x;
public:
TempClosure(int& value):
void operator() () {
printf("x=%d",x);

}
}s
void main() {
int x = 1;
TempClosure print x(x);
print_x();

x(value) {}

Closures

So ... a closure captures references to variables that are being used in its evaluation.

This also means that every rule that applies to borrowing variables apply here as well.
Rust
fn main() {

let x = 1;

let print_x = || println!("x={}",x); x=1

print x(); x from main=1

println!("x from main = {}",x); x=1
print_x();

In reality, both print_X and main use immutable references to “x” and as such this
code will work just fine.

Closures

Let’s consider this code:
Rust

e Output
let mut x = 1;

let print_x = || println!("x={}",x); x from main =1

println!("x from main = {}",Xx); x=1
print x();

“w, .1

x” is a mutable variable. This code works so the way print_x capture “X” is by an
immutable reference (if it were to be a mutable reference, the println! macro would

not compile as it would imply the existence of both an immutable and a mutable
reference to the same variable).

OBS: In reality, Rust choses how it borrows references based on how those references are being used in
the closure.

Closures

Let’s consider this code:
Rust

fn main()
let mut x = 1;
let print_ x = || { println!("x={}",x);| x+=1; };

println!("x from main = {}",x);
print _x();

borrowed as mutable
--> src\main.rs:4:33

let print_x = || { println!("x={}",x);x+=1; };
-- - first borrow occurs due
| to use of "x° in closure

|
|

In this case, we have modified the closure i |

to increment the value of “x”. For this to |

happen, “x” must be borrowed as mutable,

and as such the println!(...) macro can no |

longer be used as it implies the existence of both immutable and mutable references

to the same variable.

mutable borrow occurs here
println!("x from main = {}",x);
A immutable borrow occurs here

print_x();
——————— mutable borrow later used here

Closures

Let’s consider this code:
Rust

fn main()
let mut x = 1;
let mut print x = || { println!("x={}",x);x+=1; };

print x();
print x();

Notice that print_x is mutable. This is required as in reality we change the value of one
of its data members (the mutable reference to “x”).

Closures

Rust also has a special keyword (move) that can be used to move (assign) the value of
the captured elements into the lambda/closure.

Rust

fn main() {
let mut x = 1;
let mut print x =/ move||| { println!("x={}",x);x+=1; }; x=1
x from main =1

print x();
X=2

println! ("x from main = {x}");

print x();
println! ("x from main = {x}");

X from main=1

Let’s see what happens in this case.

Closures

Rust also has a special keyword (move) that can be used to move (assign) the value of
the captured elements into the lambda/closure.

Rust

fn main() {
let mut x = 1;
let mut print x =/ move||| { println!("x={}",x);x+=1; }; x=1

print x(); x from main =1
println!("x from main = {x}"); X=2
print x(); x from main =1

println! ("x from main = {x}");
eax,dword ptr [x]

mov dword ptr [print_x],eax

Let’s see what happens in this case.
Notice the usage of mov instruction, instead of lea.

This means that the content of “x” is being transferred
to print_x and not a reference towards “x”.

Closures

Let’s see a C++ equivalent for this:
let mut print x = || { printIn!("x={}",x);x+=1; }; let mut print x = move || { println!("x={}",x);x+=1; };

C++ equivalent (with classes) C++ equivalent (with classes)
class TempClosure { class TempClosure {
int& x; int x;
public: public:
TempClosure(int& value): x(value) {} TempClosure(int value): x(value) {}
void operator() () { void operator() () {
printf("x=%d",x); printf("x=%d",x);
X+=1; X+=1;
} }
}s }s
void main() { void main() {
int x = 1; int x = 1;
TempClosure print x(x); TempClosure print_ x(x);
print x(); print _x();

Let’s see a C++ equivalent for this:
let mut print x = || { println!("x={}",x);x+=1; };

C++ equivalent (with classes)

class TempClosure {
int& Xx;

public:
TempClosure(int& value):
void operator().4 {

x(value) {}

In this case a reference is captured.
X+=1,

}
}s
void main() {
int x = 1;
TempClosure print x(x);
print_x();

Closures

let mut print x = move || { println!("x={}",x);x+=1; };

C++ equivalent (with classes)
class TempClosure {
int Xx;
public:
TempClosure(int value): x(value) {}
void operator()4 {
In this case the value is captured.
X+=1;
}
¥
void main() {
int x = 1;
TempClosure print_ x(x);
print_x();

Closures

This means that the previous example that uses move keyword worked (but only
because Copy trait is present on i32 type).

Rust
fn main() {
let mut x = String::from("abc");
let mut print x ={move || { println!("x={}",x);x.push str("1"); };

print x();

println! ("x from main = {x}");
error[E@382]: borrow of moved value: “x°

IQIL%IIIL—zs()-; . --> src\main.rs:5:30
println! ("x from main = {x}");

|
| let mut x = String::from("abc");

I move occurs because “x has type “String , which does not
| implement the “Copy™ trait

| let mut print_x = move || { println!("x={}",x);x.push_str("1"); };

R - variable moved due to
| use in closure
I

I

I

|

|

However, if we use a type that does not
have a Copy trait (e.g. a String) the code
will not compile !

value moved into closure here
print_x();

println!("x from main = {x}");
A value borrowed here after move

Closures

This means that the previous example that uses move keyword worked (but only
because Copy trait is present on i32 type).

Rust
fn main() {
let mut x = String::from("abc");
let mut print x = move| || { println!("x={}",x);x.push str("1"); };

print x();
print x();
print x();

Now the code works, but the ownership of “x” has been moved into the print_x
closure.

Closures

One solution to move back a value that was captured by a closure is to return it.
Rust

fn main() {
let mut x = String::from("abc");
let mut print x =|move || { println!("x={}",x);x.push str("1");return x; };

X = print x();
printint (x 2 ()10 ot
x=abc
X = abcl
In this example, first “X” is moved into print_x, then it is moved back.

OBS: In reality, these type of closures can only be called once (for example in this case, the moment the
value of “x” is moved back, the capture print_x can no longer be used).

Closures

One solution to move back a value that was captured by a closure is to return it.

Rust
fn main() {
let mut x = String::from("abc");
let mut print x =|/move ||| { println!("x={}",x);x.push str("1");return x; };
X = print x();
pr‘intln! ("X - {}"’Z); error[E@382]: use of moved value: “print x°

r‘int X(); --> src\main.rs:6:5
|

x = print_x();
“print_x" moved due to this call

print_x();

|
|
| println!("x = {}",x);
|
| ANANAAN yalue used here after move

note: closure cannot be invoked more than once because it moves the variable “x° out of its
environment
--> src\main.rs:3:75

let mut print_x = move || { println!("x={}",x);x.push_str("1");return x; };
What iS Fnonce trait P note: this value implements ~FnOnce , which causes it to be moved when called
--> src\main.rs:4:9
4 | X = print_x();

Closures

Each closure implicitly implements at least one of the following 3 traits. The decision
on what to implement belongs to the compiler, based on the operation and how
capture is being used in the closure.

1. FnOnce - closures that can be called only one time (usually a closure that moves
a value through the return type out of its context)

2. FnMut - closures that don’t move values out of their context but might change
the value of a mutable reference that they capture.

3. Fn = closures that don’t move values out of their context and don’t modify any
reference that they capture (they capture immutable references)

Closures

So ... what if we want to create a function that returns a closure. Well ... the first thing
that we need to understand is how to define a pointer/reference to a function (similar
to how this is defined in C/C++).

To do this, we will use the keyword fn in the following way:

fn (Type,,Type,, ... Type,)->ReturnType

Some examples:

* fn(i32)->i32 =>» a function that receives a i32 value and returns another i32 value

* fn(&str,usize)->String = a function that receives a &str and an usize value and returns an object
of type String

 type name = fn(char)->i32 = creates a type that represents a pointer to a function that receives
a parameter of type char and returns an i32

Closures

Let’s see one example that returns a pointer to a function:
Rust
type MyFunction = fn(i32,132)->132;

fn create_add function() -> MyFunction {
return |x:1i32,y:i32|->132 { return x+y; }

¥

fn main() {
let add = create_add function();
let sub: MyFunction = |x,y| x-y;
println!("{}, {}",add(1,2),sub(10,4));

In this example, MyFunction is a type that defines a pointer to a function that takes
two i32 parameters and returns an i32 value.

Closures

But what if we want to do something more complex (e.g. to return a closure that
captures some variables/parameters):
Rust

fn create_closure(value: 132)-> fn (i32)->1i32 {
return |x:132|->i32 { return x / value; };

error[EQ308]: mismatched types

'Fn main() { -I> src\main.rs:2:12
let ¥ = create _closure(10); |1
println!("res = {}",f(50));

fn create_closure(value: i32)-> fn (i32)->i32 {
expected “fn(i32) -> i32" because of
return type

2 | return |x:132|->i32 { return x / value; };

note: expected fn pointer “fn(i32) -> i32°
found closure " [closure@src\main.rs:2:12: 2:46]"
note: closures can only be coerced to “fn types if they do not capture any variables
. --> src\main.rs:2:38
The short answer is that we |
) 2 | return |x:132|->i32 { return x / value; };
can't. | AAAAN “yalue® captured here

Closures

That is because a fn(...) is just a pointer while a closure is a struct and its size its

unknown (pending on what variables it has captured). The solution is to explain the

output based on what it implements: Fn, FnOnce or FnMut
Rust
fn create_closure(value: 132)->|impl Fn(i32)->132 {
return |x:132|->i32 { return x / value; };
}

fn main() {

. error[E@373]: closure may outlive the current function, but it borrows
let £ = create_closure(10); “value', which is owned by the current function

println!("res = {}"Jf(S@)); --> src\main.rs:2:12

2 return |x:i32|->i32 { return x / value; };

|
I
| “value® is borrowed here
|
|

The approach is ok, but since value
is not copied, but only borrowed,

when function create closure ends, “value” lifetime ends and as a result, it can not
exist in the returned closure.

may outlive borrowed value “value’

Closures

The solution is to move the value that is being capture into the closure. In this case,
there is no concern related to lifetime as the result is copied.
Rust
fn create closure(value: i32)->|impl Fn(i32)->132 |{
return|move||x:i32|->132 { return x / value; };

}
fn main()

let ¥ = create_closure(10);
println!("res = {}",f(50));

The code could be written with FnOnce (as we are using move and FnOnce is also
implemented).

Closures

But ... what happens when we use the impl keyword ? To answer this, let’s analyze the

following code:

Rust
fn create _closure(value: i32) -> impl Fn(i32)->i32 {
return move |x: i32| -> i32 { return x / value; };
}
fn create_closure2(value: i32) -> impl Fn(i32)->i32 {
return move |x: i32| -> i32 { return x / value; };
}
fn main() A
let x1 = create _closure(10);
let x2 = create_closure2(10);
let value = 10;
let =|move |x: i32| -> i32 { return x / value; };
let x1(29);
let x2(20);
let = x3(20);
println! ("{},{},{}",y1,y2,y3);

All of these 3 closures are identical
in terms of their code.

Does this mean that they have the
same type ?

Closures

But ... what actually happens when we use the impl keyword ? To answer this, let’s
analyze the following code:
Rust

edx, 20
lea rcx, [x1]
call first::create_closure::closure$0® (07FF664C31250h)
mov dword ptr [yl],eax
mov edx, 20
lea rcx, [x2]
call first::create closure2::closure$0 (07FF664C312E0h)
mov dword ptr [y2],eax
mov edx, 20
lea rcx, [x3]

first::main::closure$0® (©7FF664C31370h)
dword ptr [y3],eax

Closures

But ... what actually happens when we use the impl keyword ? To answer this, let’s
analyze the following code:

Rust

07FF664C31250h

Notice that even if all closures are identical,
each one of them has a different address of 07FE664C312E0h
the code that needs to be run = even if that

code is identical on all 3 closures.

x1(20); ©7FF664C31370h
x2(20);
x3(20);

Closures

This actually means that each closure is a separate type. From this point of view, two
identical closures (in terms of code, parameters, capture and return value) are
different from Rust point of view. This is similar to how C++ implements lambda
functions, and it also explains why the next code does not compile !

Rust
fn create_closure(value: i32) -> impl Fn(i32) -> 132 {
if value>10 {
return move |x: i32| -> i32 { return x / value; };
} else {
return move |x: i32| -> i32 { return x / value; };

}

. error[EQ308]: mismatched types
fn maln() { --> src\main.rs:5:16

let ¢ = create closure(10); 1 | fn create_closure(value: i32) -> impl Fn(i32) -> i32 {

|

} |
5 | return move |[x: i32| -> i32 { return x / value; };

|

|

expected closure, found a different closure
= note: no two closures, even if identical, have the same type
= help: consider boxing your closure and/or using it as a trait object

Closures

Since we can not have a function that returns two different type, the next code can
not be compiled.

Rust

fn create_closure(value: i32) -> impl Fn(i32) -> i32 {
if value>10 {
return move |x: i32| -> i32 { return x / value; }; Closure of type A
1} else {
return move |x: i32| -> i32 { return x / value; }; Closure of type B

}
}
fn main() A
let ¢ = create_closure(10);

¥

But... what is the relation between “impl Fn(i32)->i32” and those two closures ?

Closures

Let’s assume the following function: create_closure

fn create closure(value: i32) -> impl Fn(i32) -> i32 {
return move |x: i32| -> i32 { return x / value; }; Let’s assume that this closure hase type ABCD;

}

When the compiler sees that the return type uses impl keyword, it search any return
type from the function code and assumes that the return type is what the function
returns. This means that the previous code will be translated by Rust as follows:

fn create_closure(value: i32) ->|ABCD {
return move |x: i32| -> i32 { return x / value; };

}

After this, Rust checks to see if ABCD implements the trait Fn (with one parameter of
type i32) and if it returns an i32 as well. If this is so, then the function is correct, and
its return type was inferred from the type of the closure. Furthermore:

Variable “c” will be of type ABCD as well.

let ¢ = create closure(10);

Closures

The main advantage of this technique is that it allows static linkage of the closure
calling method. This means that since we know the type in the compiling phase, we

know the memory offset where the calling method of that type lies, and we can call it
directly.

However, let’s analyze one of the previous errors and see what Rust suggest:

and/or using it as a trait object

Closures

So, what does Boxing means in this context ? Well ... its like the usage of virtual

methods from C++ |

Rust
fn create closure(value: i32) -> Box<dyn Fn(i32) -> i32> {
return Box::new(move |x: i32| -> i32 { return x / value; });

}

fn main() {
let ¢ = create closure(10);
println! ("{}",c(50));

Notice the usage of the keyword dyn in the definition and the fact that we don’t
return from the stack but rather allocate a space on heap (a box) from where we will
return an object.

We will talk more about dyn (short from dynamic ©) on another course.

Closures

With this change, we can now return two different closure (one that uses multiply,
and another one that uses division).
Rust
fn create_closure(value: i32) -> Box<dyn Fn(i32) -> i32> {
if value % 2 == 0 {
return Box::new(move |x: 132| -> i32 { return x / value; });

} else {
return Box::new(move |x: 132| -> i32 { return x * value; });

}

}
fn main() A

let cl1 = create_closure(11l);
let c2 = create_closure(190);
println!("{},{}",c1(50),c2(50));

Ilterators

Ilterators

Iterators are object that can be used to iterate over an existing collection. They are
efficient for cases where index access requires a boundary check, or for collections
where index access is not possible (e.g. a linked list — std::collections::LinkedList)

Collection that use iterators:
* Arrays
* Vectors
* Maps (BTreeMap, HashMap)
* Sets (BTreeSet, HashSet)

All collections that implement iterators use the trait Iterator defined in
std::iter::Iterator

Basic operation for iterators

Ilterators

wetod e

fn next(&mut self) -> Option<Self::Item>

fn count(self) -> usize

fn last(self) -> Option<Self::Item>

nth(&mut self, n: usize) -> Option<Self::Item>

max(self) -> Option<Self::Item>
min(self) -> Option<Self::Item>

Moves to the next element from the collections.
This is a virtual method that must be implemented
by collection that implements this trait.

Iterates until the final element and returns the
number of iterations.

Iterates until the last element from the collections
and returns it.

Returns the nt" items from the current position.

Returns the maximum/minimum number from the
current position

Ilterators

Let’s see how an iterator works:
Rust

fn main() {
let a = [1,2,3,4:5:6:7J839];
let mut i = a.iter();
println! ("{:?}",i.next());
println! ("{:?}",i.next());
println!("{:?}",1.nth(3));

println! ("{:?}",i.count()); nnnﬂnnn

A

Let’s see how iterators work in this case: When “I” is created, it points

to the first element in the
array.

Ilterators

Let’s see how an iterator works:
Rust

fn main() {
let a = [1)2)3J4)5)6J7J8J9];
let mut i = a.iter();
println! ("{:?}",i.next());
println! ("{:?}",i.next());
println!("{:?}",1.nth(3));

println! ("{:?}",i.count()); nnnﬂnnn

A

Reads the value from current
position, and then advances
to the next one

Ilterators

Let’s see how an iterator works:
Rust

fn main() {
let a = [1)2)3J4)5)6J7J8J9];
let mut i = a.iter();
printIn!("{:?}",i.next());
println! ("{:?}",i.next());
println!("{:?}",1.nth(3));

println! ("{:?}",i.count()); nnnﬂnnn
A

Reads the value from the 2nd
position, and then advances
to the next one

Ilterators

Let’s see how an iterator works:
Rust

fn main() {
let a = [1)2)3J4)5)6J7J8J9];
let mut i = a.iter();
println! ("{:?}",i.next());
println! ("{:?}",i.next());
println!("{:?}",1.nth(3));

println! ("{:?}",1.count()); 1|2(3|a|5|6|7|8]|9
A A

Advances 3 positions and
reads the value, then move
to the next position.

Ilterators

Let’s see how an iterator works:
Rust

fn main() {
let a = [1)2)3J4)5)6J7J8J9];
let mut 1 = a.iter();
println! ("{:?}",i.next());
println! ("{:?}",i.next());
printIn!("{:?}",i.nth(3));

println! ("{:?}",1i.count())s nnnﬂnnn
A

Counts how many elements
are until the final !

Ilterators

Keep in mind that some methods (like count, last, min or max) consume
the iterator after using it (notice that count need self and not a reference
to self : Al VA EIIE D MEPIIERPAS). This means that the iterator can
not be used anymore after calling these methods.

Rust

fn main() {
let a = [1,2,3;4:5:6:71819];
let mut 1 = a.iter();
pr‘intln! (u{ - ?}",l.count()); error[E@382]: borrow of moved value: "i°

- t() --> src\main.rs:5:5
1.nex ;
= : let mut i = a.iter();

move occurs because “i° has type “std::slice::Iter<'_, i32>7,

println! ("{:?}",i.count());

|

|

|

| which does not implement the “Copy trait

|

| i’ moved due to this method call
|

| value borrowed here after move

note: this function takes ownership of the receiver “self’, which moves "i°

Ilterators

This behavior is different than next() method that does not consume the
iterator (even after it reaches the end of the sequence of elements).

Rust

fn main() {
let a = vec![1,2,3];
let mut i = a.iter();
for _in 0..10 {
printIn! ("{:?}",i.next());

}

Ilterators

Iterators are often used in a for loop. There are 3 forms of iterators that are
usually used in such a context:

wetnod usge

iter(&) -> Iter<T> Creates an iterator that return a reference to each element from a collection

iter mut(&) -> IterMut<T> Similar to the previous one, but the reference is mutable, and the value can be
modified.

into_iter(- ::Intolter Notice that this iterator has a parameter of type self (and not &self). This means

that this iterator consumes the content of the collection.

OBS: Keep in mind that without any explicit specification, the for loop will use the
into_iter form (e.g). This means that the for loop will consume the
element, and “a” will not be available anymore after the for-loop ends.

Ilterators

Let's see some cases where liter() , .iter_mut() and .into_iter() are used.
Rust

fn main() {
let a = [String::from("abc"),String::from("xyz")]; m

for x in a.iter() { abc
println! ("{x}"); // x is a &String Xyz

} [llabcll’ llele]
println!("{a:?}");

In this case x is an immutable reference to every String element from array

o7

d.

Ilterators

Let's see some cases where liter() , .iter_mut() and .into_iter() are used.
Rust

fn main() {
let mut a = [String::from("abc"),String: :from("xyz")]; m

for x in a.iter mut() { abc
println! ("{x}"); // x is a &mut String Xyz

X.push str("+++"); ["abc+++", "Xyz+++"]

}
println!("{a:?}");

Notice that since we have used iter_mut for this example, we can modify
each element from the array “a”.

Ilterators

Let's see some cases where liter() , .iter_mut() and .into_iter() are used.
Rust

fn main() {
let a = [String::from("abc"),String::from("xyz")];
for x in a.into_iter() {
println! ("{x}"); // x is a String (takes ownership)

}
println! ("{a:?}");

error[E@382]: borrow of moved value: “a°
--> src\main.rs:6:16

let a = [String::from("abc"),String::from("xyz")];
- move occurs because “a’ has type " [String; 2], which does not

I
I
. I
In this case, each element from | imlenent the Copy” trais
array ”a” is moved. AS a FESUIt, | . "a’ moved due to this method call
the last println!(...) can not |

work, as “a” was moved.

println!("{a:?}");
N value borrowed here after move

Ilterators

Let's see some cases where liter() , .iter_mut() and .into_iter() are used.

Rust
fn main() {
let a = [1,2,3];
for x in a.into_iter() {

println! ("{x}"); // x is a i32 (a copy !)

}
println! ("{a:?}");

Keep in mind that into_iter tries uses assignment for each element in the
collection. If the element has the Copy trait, it will be copied, otherwise it
will be moved. This means that for these cases, the code will compile as

the element is not moved !!!

Ilterators

If none of these forms are being used, a for-loop uses .into_iter() !
Rust

fn main() {
let a = [String::from("abc"),String::from("xyz")];
for x in a {
println! ("{x}"); // x is a String (takes ownership)

}
println! ("{a:?}");

error[E@382]: borrow of moved value: “a°
--> src\main.rs:6:16

I
| let a = [String::from("abc"),String::from("xyz")];

| - move occurs because “a’ has type " [String; 2], which does not
I

I

I

o_n

Because of this, elements from “a
will be moved and will no longer be
available when printin!(...) macrois |4 printlnt ("{a:?}");
being called.

implement the “Copy™ trait
for x in a {
- "a moved due to this implicit call to ".into_iter()"

A value borrowed here after move

Ilterators

If none of these forms are being used, a for-loop uses .into_iter() !

Rust

fn main() {
let a = [String::from("abc"),String::from("xyz")];
for x in|&a { abc
println! ("{x}"); // x is a &String Xyz

} [llabcll’ llele]
println! ("{a:?}");

One solution for this cases is to use the & operator to indicate the for loop
to use references instead of moving the entire value.

Ilterators

Rust also support various adaptors over an existing iterator, that can allow
one to perform quick actions over a data set. Such a construct usually
translates into another iterator that can in turn be further used with a

different set of adaptors.

r.\. ———> ——> r.\.
[P, L P

Ilterator Iterator

In this point, data from the original adaptor

can be modified, skipped, filtered, etc.

Adaptors:

Ilterators

wetod e

fn step_by(self, step: usize) -> StepBy<Self>

fn filter(self, predicate: P) -> Filter<Self, P>

fn map (self, function: F) -> Map<Self, F>

fn skip_while(self, predicate: P) -> SkipWhile<Self, P>
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>

fn skip(self, n: usize) -> Skip<Self>
fn take(self, n: usize) -> Take<Self>

fn inspect(self, f: F) -> Inspect<Self, F>

Creates a new iterator where every elements will be read
from the original use using a step

Filters all elements from the original iterator and returns
a new one where only the elements that pass the filter
are present

Maps all items from an existing iterator into another one,
applying a conversion over each element.

Skips/Takes a number of elements based on a predicated

Skips/takes a number of “n” elements from the original
iterator

Runs function “f” for each element, and then pass it on.
Useful for debugging purposes.

Ilterators

Iterate over a list with step 2:
Rust Rust

fn main()
{ fn main()
let a = vec![1,2,3,4,5,6,7,8,9]; e Ve?i[12§’3’4’5’6’7’8’9]3
.. : et i = a.iter
gor i in a.iter().step _by(2) -steniw(T)
. . .inspect(|x| println!{"{:?}",*x});
println! ("{}",*1); in i {}
}

Notice that we have chained
several iterators to obtain
the same result.

Ilterators

Rust also has a for_each adaptor that iterates over all elements. While it
has the same purpose as a regular for keyword, it can also be used in large
chains of adaptors as the final one to trigger the iteration.

Method luUsage
fn for_each(self, f: F) Iterates over a collection and calls function “f” for each element.

Rt Output

Before step: 1

fn main() { After step: 1

let a = vec![1, 2, 3, 4, 5]; serwes$m:§
i efore step:
.1ter
a.1ter() After step: 3

Before step: 4
Before step: 5

.inspect(|x| println! {"Before step: {:?}",*x})
.step by(2)
.for _each(|x| println! {"After step: {:?}",*x}); After step: 5

Ilterators

Rust also has a for_each adaptor that iterates over all elements. While it
has the same purpose as a regular for keyword, it can also be used in large

chains of adaptors as the final one to trigger the iteration.

fn for_each(self, f: F) Iterates over a collection and calls function “f” for each element.

Rust

fn main() {
let a = vec![1,2,3,4,5,6,7,8,9];
a.iter()

.step by(2)

.inspect (x| printlngettsd
forpeacr(](| 14}); Notice the usage of | _| {} = this is called an empty closure
ST = > (a function that does nothing)

T k., 0\

Ilterators

Let’s see a more complex example that takes a vector, filters out all even
elements, multiply the rest of the elements by 2 and then sums them all

up.
Rust

fn main() {
let a = vec![1,2,3,4,5,6,7,8,9];
let s:i32 = a.iter()
) . Mapped to 4
filter(|x| *x % 2 == 0) Filtered 4
.inspect(|x]| println!{"Filtered {:?}",*x}) Mapped to 8

Filtered 2

.map(|x]| x*2) Filtered 6
.inspect(|x]| println!{"Mapped to {:?}",*x}) Mapped to 12
.sum(); Filtered 8

println!("sum is {}",s); Mapped to 16
sum is 40

Ilterators

You can also use .skip and .take to perform operations over a continuous
sub-set from a collection. The next example sums up the next four
elements from the 3" element in a collection:

Rust

fn main() {
let a = vec![1,2,3,4,5,6,7,8,9]; Value 4
let s:132 = a.iter() Value 5
.skip(3) Value 6
.take(4) Value 7

.inspect(|x]| println!{"value {:?}",*x}) sum is 22
.sum();
println!("sum is {}",s);

Another wildly use adaptor is - This adaptor allows transforming a
collection into another one.

collect() -> Ilterates over a collection and converts it into another collection.

How to use .collect():
1. letvar:type = ...iterators chain.. .collect();
2. letvar = ...iterators chain.. .collect::<type>();

Usually, the first version is preferred as it avoids the turbo-fish format.

Ilterators

Let’s take the previous example and build a new vector instead of

computing a sum:
Rust

fn main()
let a = vec![1,2,3,4,5,6,7,8,9];
let s = a.iter()
.skip(2)
.take(3)
.collect::<Vec< >>();

println! ("result is {:?}",s);

Rust

fn main() {
let a = vec![1,2,3,4,5,6,7,8,9];
let s: Vec< > = a.iter()
.skip(2)
.take(3)
.collect();
println! ("result is {:?}",s);

resultis[3,4,5

Ilterators

This method is often used to convert an array into a vector:

Rust
fn main() {
let a = [1,2,3,4,5];
let b: Vec< > = a.iter().collect();

println!("a = {:?}",a);
println!("b = {:?}",b);

Notice the Vec< > notation. The underline () tells Rust that the type of
the vector must be inferred from the result. We should also mention that
since .iter() uses references, vector b will be of type Vec<&i32> !

Ilterators

Another adaptor is partition. It has a similar purpose as collect, but in this
case, it tries to split an existing collection into two partitions. The closure
function serves this purpose (elements where it returns true will be added

to the first partition, and the rest of them to the second partition).
Rust

fn main() {
let a = [1,2,3,4,5,6,7];
let (p1,p2): (Vec< >,Vec< >) = a.into_iter().partition(|x| *x>4);
println! ("Partition 1 = {:?}",pl);

println!("Partition 2 = {:?}",p2);

Partition 1 =[5, 6, 7]
Partition 2 =[1, 2, 3, 4]

Ilterators

You may have noticed that for the previous example we have used
into_iter instead of the regular iter. So ... what is the difference.

1. into_iter() is an iterator that moves the element (meaning that after

you iterate over it, all elements from the sequence are no longer
available

2. iter() uses references (meaning that after you iterate over a sequence
of data, that sequence is still available).

Let’s consider the following example:
Rust

n main() {
let a = [String::from("ABC"),String::from("123")];
for i in a.into _iter() {
println!("{:?}",1);
}

pr‘intln! ("a = {: ?}", a), error[E@382]: borrow of moved value: “a’
--> src\main.rs:7:25

let a = [String::from("ABC"),String::from("123")];

- move occurs because “a’ has type " [String; 2], which does not implement the

for i in a.into _iter() {

|
|
| “Copy™ trait
|
| “a’ moved due to this method call

println!("a = {:?}",a);
A value borrowed here after move

: this function takes ownership of the receiver “self’, which moves

fn into_iter(self) -> Self::IntoIter;

Ilterators

“a°

Ilterators

However, if we change the previous example from using iter() instead of
into_iter() it works as we will no longer move the object when iterating but

use a reference instead.
Rust
fn main() {

let a = [String::from("ABC"),String::from("123")];

for i in a.iter() { ABC"

println! ("{:?}",1); 113"

) a=["ABC", "123"]
println!("a = {:?}",a);

Ilterators

Another useful adaptor is .find() that can be used to search for a specific
item that matches a criteria.

wetod o e

fn find<P>(&mut self, predicate: P) -> Option<Self::Item>

Finds an element that is matched by the
predicate P

Rust

fn main() {
let a [1)2)3)4)5)6J7];

let b = a.iter().find(|&&x| x==4);
println!("{:?}",b);

OBS: .find(f) is equivalent to filter(f).next()
OBS: find predicate is defined as P: EnMut(&Self::ltem) -> bool . This means that if an iterator uses

references the closer will have to use a double reference (a reference over the reference provided by the

original iterator).

All of the iterators and adaptors previously described solve some problems.

However, there are some cases that require a different type of functionality.
1.

e W

Peekable

enumerate
DoubleEndedlterator
ExactSizelterator
Infinite iterator loops

Other functionalities

'terators (Peekable)

One problem with iterators is that once .next() is called you can not go
back. This in fact is a problem as you need the value that if you need the
value you get from .next() to decide if you want to iterate further or not.

To solve this, Rust added a new adaptor called Peekable (that allows one to
read the next value, but not move to the next position).

Let’s analyze the following problem:
- We have a list of numbers: 1,2,3,....
- We want to find number 3, but we don’t want to move next to it (to number 4).

'terators (Peekable)

Let’s analyze the following problem:
- We have a list of numbers: 1,2,3,....

- We want to find number 3, but we don’t want to move next to it (to number 4).

Rust

fn main() {
let a = [1,2,3,4,5,6,7];
let mut i = a.iter().peekable();
loop {
if i.peek().is none() { break; }

let v = **i.peek().unwrap();
if v == 3 { break; }
i.next();

}
printlnt ("{}",1.next().unwrap());

lterators (enumerate)

There are situation where while during iteration an index is required. While
these sort of scenarios can easily be solved by creating an external index,
and incrementing it after each iteration, Rust also provides an adaptor
(called enumerate) that does the same thing.

Rust

fn main() {

let a = ["John", "Mary", "Mike", "George"];
for i in a.iter().enumerate() {

println! ("{:?}",1);
}

Iterators (Infinite loops)

Iterators can be used to create infinite loops via .cycle() method. This
method creates an iterator that when it reaches the last element will reset

itself to point to the first one, thus creating an infinite cycle.

Rust
fn main() {
let a = [1)2)3)4)5];
for x in a.iter().cycle() {
print! ("{x},");

} 1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,
4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,
2,3,45,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,
51,2,3,4,51,2,3,45,1,2,3,4,5,1,

iterators (DoubleEndedlterator)

There are cases where you might need to read elements from both ends of
a collection. For this cases, there is a special trait (called
DoubleEndedIterator) that if implemented allows one to also read
elements from the end of the collection via:

L S [

next back(&) -> Option« ::Item> Moves to the previous element from the
collections starting from its end.

nth back(& , h: usize) -> Optionc SURCIPI Returns the previous nth items from the current
position.

OBS: It is important to notice that back and forward iterator can not meet
(one can not go beyond the other one).

iterators (DoubleEndedlterator)

Let’s see some example:
Rust
fn main() {

let a = [1,2,3,4,5,6]; I:!:!HIIIIIIIIII

while let Some(x) = it.next back() {
print!("{x},");

}

Keep in mind that this is not an iterator, but a trait (meaning that not all types that
implement Iterator trait also implement DoubleEndedIterator trait). That depends on
how the data is store in that collection. For example, a single linked list can not
implement such a trait, while a vector, array or a double linked list can.

iterators (DoubleEndedlterator)
ouput

Let’s see some example: Next from Front => Some(1)
Rust Previous from Back => Some(6)

fn main() { Next from Front => Some(2)
let a = [1,2,3,4,5,6]; Previous from Back => Some(5)

let mut it = a.iter(); |
for i in 0..5 { Next from Front => Some(3)

println! ("Next from Front => {:?}",it.next()); Previous from Back => Some(4)

println!("Previous from Back => {:?}",it.next back());
println! (M---------mm

Next from Front => None
Previous from Back => None

Next from Front => None
Previous from Back => None

Notice that once back and front iteration reach the middle of the array, the result of
both .next and .next_back methods is None ! This is because back and next iteration can
not go beyond the other one.

lterators (ExactSizelterator)

Another interesting trait is ExactSizelterator. This trait provides a function
(len) that returns the number of steps until the end of the iteration (the
moment from when .next() method will start returning instead of
Some.

Rust

P Output

let a = ["A","B","C","D"]; Element: A, 3 steps until end

ce . . Element: B, 2 steps until end
le’F mut it = a. :!.ter‘()) Element: C, 1 steps until end
while let Some(i) = it.next() {
println! ("Element: {i}, {} steps until end", it.len());

}

Element: D, O steps until end

Vectors

Vectors

Vectors are sequences of elements of the same type that can increase or decrease
in size dynamically. Just like std::vector from C++ standard, a vector in Rust is a
template/generic object.

To create a vector, use one of the following forms:
=)l et mut a: Vec<type> = Vec::new()
JEMlet mut a = Vec::<type>::new()
et mut a: Vec<type> = Vec::with_capacity(capacity)
et mut a = Vec::<type>::with_capacity(capacity)
Rl et mut a = Vec::from(array)
f) or use the macro vec! for quick initialization of a vector.

Let’s see some examples on how to build a vector.

Rust
fn main() {

let mut vl = Vec::<i32>::new();

let v2 = Vec::<u32>::with_capacity(100);

let v3 = vec![1u8, 2,3,4];
let v4 = vec!["123","abc","xyz"];

// type is Vec<u8>
// type 1s Vec<&str>

let v5 = Vec::from([1,2,3]); // type is Vec<i32>

println! ("{:
println! ("{:
println! ("{:
println! ("{:
println! ("{:

23"
23"
23"
23"
23"

,v1);
»V2);
»V3);
,V4);
»V5);

Vectors

[]

(]

[1, 2, 3, 4]
["123", "abc
[1, 2, 3]

nm n
Vi

XyZ”]

Vectors

Basic operations (insert/add/remove) for vectors

fn push(&mut self, value: T) Adds a new elements at the end of the vector

fn insert(&mut self, index:usize, element: T) Inserts an element at a specific position in the
vector. This function panics If index is outside vector
boundaries.

fn append(&mut self, other: &mut Self) Appends the element of another vector of the same
type to the current one.

fn pop(&mut self) -> Option<T> Returns the last element in the vector (if any) or
None for empty vectors

fn remove(&mut self, index: usize) -> T Removes the element from a specific index in the
fn swap remove(&mut self, index: usize) -> T vector. This function panics If index is outside vector
boundaries.

fn clear(&mut self) Clears the content of the vector leaving the capacity
of the vector un-affected.

Vectors

Let’s see some examples on how to build a vector.
Rust

fn main() {
let mut v = Vec::<i32>::new();
for i in 1..10 { remove from index #2 => 3
v.push(i); Pop element: 9
} Pop element:

println!("remove from index #2 => {}",v.remove(2)); Pop element:
while let Some(i) = v.pop() { Pop element:
println! ("Pop element: {i}") Pop element:

} Pop element:
Pop element:

Pop element:

Vectors

Vector has 2 remove methods to remove an element from a specific position:
1) remove(...)

2) swap_remove()

remove(...)

s
A B F

Capacity

* We want to remove element with index 3 (the 4" element)

Vectors

Vector has 2 remove methods to remove an element from a specific position:
1) remove(...)

2) swap_remove()

remove(...)

Capacity

* After we delete the element, we will move all of the existing elements after
index 3 one position to the left

Vectors

Vector has 2 remove methods to remove an element from a specific position:
1) remove(...)

2) swap_remove()

remove(...)

IEC N T N N I A
A B C E F

Length

Capacity

* Length is decreased by one, the capacity remains the same
* Operation cost: -

Vectors

Vector has 2 remove methods to remove an element from a specific position:

1) remove(...)
2) swap_remove()

swap_remove(...)

A B

s
F

Capacity

* We want to remove element with index 3 (the 4" element)

Vectors

Vector has 2 remove methods to remove an element from a specific position:
1) remove(...)

2) swap_remove()

swap_remove(...)

s
F

| Capacity

* After we delete the element, we swap the last element with the one that we
have just removed

Vectors

Vector has 2 remove methods to remove an element from a specific position:
1) remove(...)

2) swap_remove()

swap_remove(...)

IEC N T N N I A
A B C F E

Length

Capacity

* Length is decreased by one, the capacity remains the same
* Operation cost: - ; notice that the order has changed !

Vectors

Vector has 2 remove methods to remove an element from a specific position:
1) remove(...)

2) swap_remove()

Overview:

1) Use swap_remove if you are not interested in the order of the elements from
the vector, otherwise use remove

2) swap_remove has a complexity of O(1)

3) remove has a complexity of O(n)

Generic allocation/resize and infos for vectors

fn len(&self) -> usize Returns the length of the vector
fn capacity(&self) -> usize Returns the capacity of the vector

fn is_empty(&self) -> bool True if vector length is O, false otherwise

Vectors

fn reserve(&mut self, additional: usize) Reserve additional elements (on top of the existing one)

fn truncate(&mut self, len: usize) Truncates a vector to a specific len, dropping the extra

elements.

AR o 0 VAN YT YT € VA ETN G - [e DR R KU ENRIRVESPADIM Trics to reserve some space (if allocation fails it does not
RAL TR OPRRISLCECQCS SRRl panic like reserve method does); instead, it returns Err.

fn shrink to fit(&mut self) Reduces the capacity of the vector to match the exact

number of elements from the vector.

Example using previous methods.

Rust

fn add_range(v:&mut Vec<i32>,start:i32, end:132) {
for i in start..end+1 { v.push(i); }

Vectors

Output

size=0, capacity=0, v=[]

size=2, capacity=4, v=[1, 2]

size=8, capacity=34, v=[1, 2, 3, 4,5, 6, 7, 8]
size=8, capacity=8, v=[1, 2, 3,4, 5, 6, 7, 8]
size=4, capacity=8, v=[1, 2, 3, 4]

println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);

}
fn main() {

let mut v = Vec::<i32>::new();

println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);

add_range(&mut v, 1, 2);
v.reserve(32);
add_range(&mut v, 3, 8);
v.shrink to fit();

println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);

v.truncate(4);

println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);

Example using previous methods.
Rust

for i in start..end+1 { v.push(i); }

A close range can be enforced by using ..=

Vectors

Output

size=0, capacity=0, v=[]

size=2, capacity=4, v=[1, 2]

size=8, capacity=34, v=[1, 2, 3, 4,5, 6, 7, 8]
size=8, capacity=8, v=[1, 2, 3,4, 5, 6, 7, 8]
size=4, capacity=8, v=[1, 2, 3, 4]

for 1 in start..=end { v.push(i); }

Vectors

Keep in mind that transferring a variable into a vector might imply
change of ownership (in this case after v.push(t) is executed, variable
“t” lifetime has ended as a result of “t” being moved into the vector).

Error

error[E@382]: borrow of moved value: "t°
--> src\main.rs:12:25

#[derlve(Debug)] . let t = Test{v1l:5,v2:1.3,v3:"'A"'};
struct Test { vl: 132, v2: ‘F32, v3: char } - move occurs because "t has type "Test’, which does

|
9 |
} 1 h
. not implement the “Copy trait
fn main() { | v.push(t)
| - value moved here
| println! ("t = {:?}",t);
|

N value borrowed here after move

let mut v: VeckTest> = Vec::new();
let t = Test{vl:5,v2:1.3,v3:'A"'};

v.push(t);
println!("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
println! ("t = {:?}",t);

Vectors

However, if we implement the Copy trait, the code will compile.

Rust

#[derive(Debug,Copy,Clone)]
struct Test { v1: 132, v2: 32, v3: char }
fn main() {
let mut v: Vec<Test> = Vec::new();
let t = Test{vl:5,v2:1.3,v3:'A"};
v.push(t);

println! ("size={}, capacity={}, v={:?}",v.len(),v.capacity(),v);
println! ("t = {:?}",t);

size=1, capacity=4, v=[Test { v1: 5, v2: 1.3, v3: 'A' }]
t=Test{v1l:5,v2:1.3,v3:'A"}

Vectors

Let’s compare how efficient vector push method is for both C++ and Rust.
Rust C++

extern "system" { #include <Windows.h>
fn GetTickCount64 () -> u64; #include <vector>
} struct Test {
fn get_time () -> u64 { int vi;
unsafe { GetTickCount64() } float v2;
} char32_t v3;
#[derive(Debug,Copy,Clone)] uint8 t v4[256];
struct Test { v1: i32, v2: 32, v3: char, v4: [u8;256] } };
fn main() A void main() {
let mut v: Vec<Test> = Vec::new(); std::vector<Test> v;
let t = Test{vl:5,v2:1.3,v3:'A"',v4:[48u8;256]}; Test t;
let start = get _time(); auto start = GetTickCount64();
for i in 0..10 000 000 { for (auto i = @; 1 < 10000000; i++)
v.push(t); v.push_back(t);
} }
let end = get_time(); auto end = GetTickCount64();
println! ("{}",end-start); printf("%d", (int)(end - start));

Vectors

Both codes were teste in the same environment, for 10 times and the
average was recorded. All tests were run on x64 architecture (Debug and
Release). Times are measures in milliseconds.

Keep in mind that GetTickCount function has an error margin of 16ms.

C++
(Debug) 2562 2562 2640 2578 2578 2515 2562 2578 2562 2547 2568
Rust
(Debug) 1922 1844 1860 1843 1812 1813 1797 1781 1828 1813 1831
C++
(Release) 1828 1781 1797 1781 1781 1781 1797 1797 1821 1797 1796
Rust
(Release) 1750 1750 1688 1719 1687 1703 1719 1687 1703 1687 1709

Vectors

As a general conclusion, when it comes to vectors (and copying object not
moving them), Rust is faster than C/C++ (in both debug and release
modes).

We should point out that the build that was tested for C++ was compiled
with Microsoft compiler (cl.exe) and it does not reflect results for gcc or
clang (that might optimize the C++ code in a different way).

However, the question still remains on what's different in Rust vs C++ in
terms of how vector works ?

Vectors

Let’s see how Rust allocates memory for the previous case.

Rust

struct Test {

¥

vl: 132,
v2: 32,
v3: char,
vd: [u8;256]

fn main() A

let
let
let
for

mut v: Vec<Test> = Vec::new();
= Test{vl:5,v2:1.3,v3:'A",v4:[48u8;256]};

mut capacity = v.capacity();

i in ©..10 000 000 {

v.push(t);

let ¢ = v.capacity();

if c>capacity {
println!("Size={:08X},Capacity={:08X}",v.len(), c);
capacity = c;

Output

Size=00000001,Capacity=00000004
Size=00000005,Capacity=00000008
Size=00000009,Capacity=00000010
Size=00000011,Capacity=00000020
Size=00000021,Capacity=00000040

Size=00040001,Capacity=00080000
Size=00080001,Capacity=00100000
Size=00100001,Capacity=00200000
Size=00200001,Capacity=00400000
Size=00400001,Capacity=00800000
Size=00800001,Capacity=01000000

Vectors

Let’s see how Rust allocates memory for the previous case.

Rust

struct Test {

¥

vl: 132,
v2: 32,
v3: char,
vd: [u8;256]

Rust uses an allocator that
doubles the capacity, with the
start capacity of 4 elements.

fn main() A

let
let
let
for

mut v: Vec<Test> = Vec::new();
= Test{vl:5,v2:1.3,v3:'A",v4:[48u8;256]};

mut capacity = v.capacity();

i in ©..10 000 000 {

v.push(t);

let ¢ = v.capacity();

if c>capacity {
println!("Size={:08X},Capacity={:08X}",v.len(), c);
capacity = c;

Output

Size=00000001,Capacity=00000004
Size=00000005,Capacity=00000008
Size=00000009,Capacity=00000010
Size=00000011,Capacity=00000020
Size=00000021,Capacity=00000040

Size=00040001,Capacity=00080000
Size=00080001,Capacity=00100000
Size=00100001,Capacity=00200000
Size=00200001,Capacity=00400000
Size=00400001,Capacity=00800000
Size=00800001,Capacity=01000000

Vectors

Let’s see how C++ allocates memory for the previous case.
Output

#include <vector> Size=00000001,

struct Test { Size-00000002,
int vi; Size=00000003,
float v2; Size=00000004,
char32_t v3; Size=00000005,

. Size=00000007
uint8_t v4[256]; Size:@@@@@@@A:

}s Size=0000000E,
void main() { Si7e=00000014,
std::vector<Test> v; Size=0000001D,
Test t; Size=00000028,

auto capacity = v.capacity(); S170=00240B5D
for (auto i = @; i < 10000000; i++) { 5i26-00361108,

v.push_back(t); Size=00511990,
auto ¢ = v.capacity(); Size=0079A657,

Capacity=00000001
Capacity=00000002
Capacity=00000003
Capacity=00000004
Capacity=00000006
Capacity=00000009
Capacity=0000000D
Capacity=00000013
Capacity=0000001C
Capacity=0000002A
Capacity=0000003F

Capacity=0036110A
Capacity=0051198F
Capacity=0079A656
Capacity=00B67981

if (c > capacity) {
printf("Size=%08X, Capacity=%08X\n", (uint32 t)v.size(), (uint32 t)c);
capacity = c;

Vectors

Let’s see how C++ allocates memory for the previous case.

Output

#include <vector> Size-00000001, Capacity=-00000001
struct Test { Size=00000002, Capacity=00000002
int vi; - Size=00000003, Capacity=00000003
float v2; C++ has a d|ff§rent strategy where the o170-00000004, Capacity—00000004
char32 t v3; growth factor is 1.5 (for the cl.exe/MS Size=00000005, Capacity=00000006

. - _ - - Size=00000007, Capacity=00000009
uint8 t v4[256]; |mplementat|on) Size=00000OOA, Capacity=0000000D

}s Size=0POOOOOE, Capacity=00000013
void main() { Size=00000014, Capacity=0000001C
std::vector<Test> v; Size=0000001D, Capacity=0000002A
Test t; Size=00000O2B, Capacity=0000003F

auto capacity = v.capacity(); $i7e=00240B5D, Capacity=0036110A
C . ize= , Capacity=
for (auto 1 = 6; 1 < 10000000; i++) { Size=0036110B, Capacity=0851198F

v.push_back(t); Size=00511990, Capacity=0079A656

auto ¢ = v.capacity(); Size=0079A657, Capacity=00B67981

if (c > capacity) {
printf("Size=%08X, Capacity=%08X\n", (uint32 t)v.size(), (uint32 t)c);
capacity = c;

Vg
S
®
)
@
O,
=

So ... the difference lies in how growth algorithm works for those two

cases (Rust and C++).

18000000
16000000
14000000
12000000
10000000

8000000

6000000
4000000

Aede)

|
L

\

2000000

0000066
0000096
00000£6
0000006
00000Z8
00000%8
0000018
000008Z
00000SZ
00000ZZ
0000069
0000099
00000£9
0000009
00000£S
00000%S
00000TS
000008¥
00000S¥
00000Z¥
000006€
000009¢€
00000€€
000000€
00000£Z
00000t
00000TZ
000008T
00000ST
000007T
000006

. 000009

, 00000€

Vo

o

= Rust
C++

Insertion

Vectors

So ... lets see the behavior if we reserve the memory from the start.

Rust

extern "system" {
fn GetTickCount64 () -> u6b4;
}
fn get_time () -> u64 {
unsafe { GetTickCount64() }
}
#[derive(Debug,Copy,Clone)]
struct Test { v1: i32, v2: 32, v3: char, v4: [u8;256] }
fn main() A

let mut v: Vec<Test> = Vec::with_capacity (10 000 000);
let t = Test{vl:5,v2:1.3,v3: A",v4:|48u8;256]};

let start = get _time();

for i in ©..10 000 000 {

v.push(t);

}
let end = get time();
println! ("{}",end-start);

C++

tinclude <Windows.
#include <vector>
struct Test {

s

int vi;

float v2;
char32 t v3;
uint8 t v4[256];

void main() {

std::vector<Test> v;

Test t;

v.reserve(10000000) ;

auto start = GetTickCount64();

for (auto i = @; 1 < 10000000; i++)
v.push back(t);

}

auto end = GetTickCount64();

printf("%d", (int)(end - start));

Vectors

Test were performed in a similar manner like the previous ones (Debug
and Release, 10 iterations and we compute the average).

C++

(Debug) 782 766 781 766 781 766 797 797 828 781 7184
Rust

(Debug) 984 1094 1063 1031 875 1032 1016 860 906 gsog 972
C++

(Release) 547 532 531 515 500 515 516 500 531 531 9521
Rust

(Release) 532 500 531 516 562 531 547 547 547 515 932

Keep in mind that there is an error margin of 16 ms for GetTickCount API.
This means that the difference between C++ and Rust is insignificant (w
can consider both at the same level).

Vectors

To access an element from an index in the vector use the [...] index
operator. if the index is out of range, the code will panic.

Rust

#[derive(Debug)]

struct Test {
vl: 132,
v2: 32, error[E@507]: cannot move out of index of “Vec<Test>"
v3: char, --> src\main.rs:6:13

vd: [u8;256]

6 let b = v[0];

¥

VAYAYAYAY

let mut v = Vec::<Test>::new();
v.push(Test{vl:1,v2:1.2,v3:"'A",v4:[15;256]});
let b = v[9];

println!("{:?}",b);

move occurs because value has type "Test , which
does not implement the “Copy trait
help: consider borrowing here: "&v[O]"

|
|
fn main() A I |
|
|
|

In this particular case, the code will not compile because the assignment is
equivalent to moving an element from the vector.

Vectors

There are two solution to the previous problem:

1. borrow the value of the element from index O et (Vi 1 v 1o v A
v4: [15, 15, 15, 15, 15, 15, 15,
Rust 15, 15, 15, 15, 15, 15, 15, 15,

. 15, 15, 15, 15, 15, 15, 15, 15,
#[derive(Debug)] 15, 15, 15, 15, 15, 15, 15, 15,
struct Test { 15, 15, 15, 15, 15, 15, 15, 15,
vl: 132, 15, 15, 15, 15, 15, 15, 15, 15,
v2: 32, 15, 15, 15, 15, 15, 15, 15, 15,
v3: char, 15, 15, 15, 15, 15, 15, 15, 15,

vd: [u8;256] -
} 15, 15, 15, 15, 15, 15, 15, 15,

P : 15, 15, 15, 15, 15, 15, 15, 15,
n main() { 15, 15, 15, 15, 15, 15, 15, 15,
let mut v = Vec::<Test>::new(); 15] }

v.push(Test{v1l:1,v2:1.2,v3:"'A",v4:[15;256]});
let b =[&y[9];
println!("{:?}",b);

Vectors

There are two solution to the previous problem: T

2. implement the Copy trait for structure Test et (Vi 1 v 1o v A
v4: [15, 15, 15, 15, 15, 15, 15,
Rust 15, 15, 15, 15, 15, 15, 15, 15,

15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
struct Test {_ 15, 15, 15, 15, 15, 15, 15, 15,
vl: 132, 15, 15, 15, 15, 15, 15, 15, 15,
v2: 32, 15, 15, 15, 15, 15, 15, 15, 15,
v3: char, 15, 15, 15, 15, 15, 15, 15, 15,

vd: [u8;256] -
} 15, 15, 15, 15, 15, 15, 15, 15,

#[derive(Debug|Copy,Clone)]

P : 15, 15, 15, 15, 15, 15, 15, 15,
n main() { 15, 15, 15, 15, 15, 15, 15, 15,
let mut v = Vec::<Test>::new(); 15] }

v.push(Test{vl:1,v2:1.2,v3:"'A",v4:[15;256]});
let b = v[9];
println!("{:?}",b);

Vectors

A vector is iterable (for read and write):

Rust Rust

fn main() { fn main() {
let v = vec![1,2,3,4,5]; let mut
let mut s = 0;
for 1 in v {
S+=1;
}
printlnl("{}",s);

Vectors

A vector has a special function (call retain) that can be used to keep only some
elements that have a specific characteristics:

fn retain<F>(&mut self, mut f: Function) Retains all elements that for which a function
replies with true

fn retain mut<F>(&mut self, mut f: Function)

Rust

fn odd(value: &i32)->bool {
return value % 2 == 1;

}
fn main() {

let mut v = vec![1,2,3,4,5];
v.retain(odd);
println!("{:?}",v);

Vectors

Vectors can be easily converted into slices (much like an array can). We can do this
via the range operator .. or via as_slice() / as_mut_slice() methods.

Rust
fn sum(list: &[i32])->i32 {
let mut s = 0;

for 1 in list { Sum = 41
S+=*i; Slice = [8, 3, 9], sum = 20
Vector = [1, 8, 3, 9, 10, 6, 4]

S

¥

fn main() {
let mut v = vec![1,8,3,9,10,6,4];
println!("Sum = {}",sum(v.as_slice()));
let slice = &v[1..4];
println!("Slice = {:?}, sum = {}",slice,sum(slice));
println!("Vector = {:?}",v);

Vectors

A vector can also be split off into two parts resulting two vectors. For this use the
method Lsplit_off(index).

Rust

fn main() A
let mut v = vec![1,2,3,4,5];
let mut b = v.split off(2);

println!("v={:?}, capacity={}",v,v.capacity());
println!("b={:?}, capacity={}",b,b.capacity());

In this case, we split from the index 2 (meaning that the first two elements will
remain in the original vector, and the rest of them will be transferred to another

vector).
The first vector capacity remains untouched (in this case 5).

Keep in mind that this method creates another vector (and allocates memory for it).

Vectors

A vector also has a set of methods called drain that can be used to remove some
elements from the vector based on a specific logic or range.

etod o

drain<R>(& , range: R) -> Removes all elements from a vector within a specific
Drain<' , T, A> range

drain filter<F>(& R BRI DI Removes all element from a vector that are filtered
DrainFilter<'_, T, F, A> by a given function.

Note that drain methods return an iterator over the elements that need to be
removed = and if used in conjunction with the Lcollect() method from the iterator,
these methods can be used to split a vector in a different way.

* drain_filter is considered an unstable feature (we will not discuss about this method)

Let’s see some examples:

Rust

fn main() {
let mut v = vec![1,2,3,4,5];
v.drain(3..);
println!("{:?}",v)

Vectors

Rust

fn main() A
let mut v = vec![1,2,3,4,5];
let mut b: Vec<i32>» = v.drain(3..).collect();
println! ("{:?}",v);
println!("{:?}",b);

Vectors

Its also important to notice that drain(Range) method keeps a mutable reference to
the vector. This is more efficient as it does not allocate extra space for the elements
that are being drained. It also means that if you obtain this iterator, you can not
modify the existing vector until you consume the drain or you drop it.

Rust

fn main() {
let mut v = vec![1,2,3,4,5];
let d = v.drain(3..);
println!("{:?}",v);
let mut s = 0; error[E@502]: cannot borrow “v' as immutable because it is also

borrowed as mutable

for 1 in d { s+= 1, } --> src\main.rs:5:21

| let d = v.drain(3..);

| mutable borrow occurs here
| println! ("{:?}",v);

| A immutable borrow occurs here
| let mut s = 0;

| for i in d { s+= i; }

| - mutable borrow later used here

Sorting

Sorting

One of the most common problem when dealing with data sequences
(e.g. a vector, an array, a slice) is to be able to sort them.

Rust has several sort algorithms in place that take into consideration:
* |f the sort is stable or not
* Worst case
* Memory consumption
e Sort using a key

Sorting

Any mutable vector, array or slice have several sort related methods:

Method (Vector/Slice/Array)

sort(&mut self) Stable sort (keeps the order of the equal
sort by<F>(&mut self, mut compare: F) elements).

sort by key<K, F>(&mut self, mut f: F)
sort by cached key<K, F>(&mut self, f: F)

sort unstable(&mut self) Unstable sort (may reorder equal elements).

sort unstable by<F>(&mut self, mut compare: F)
sort unstable by key<K, F>(&mut self, mut f: F)

is_sorted(&self) -> bool Checks if elements are already sorted.
is_sorted by<F>(&self, mut compare: F) -> bool

is_sorted by key<F, K>(&self, f: F) -> bool

Sorting

Sort algorithmes:

sort * Algorithm: iterative merge sort inspired by timsort

sort_by * Worst case: O(n*log(n))
 Memory: for large vectors allocates extra memory (half the size of the vector)
e Stable: does not change the order of equal elements
» Best for: nearly sorted sequences

sort_by key Similar with sort and sort_by, except for complexity
* Worst case: O(m*n + n*log(n)), O(m) = time needed to compute the key

sort_by cached key Algorithm: pattern defeating quick sort

* Worst case: O(m*n + n*log(n)), O(m) = time needed to compute the key
* Memory: in worst case it allocates the size of the vector/slice

e Stable: does not change the order of equal elements

* Guarantees: A key is computed at most one time

Sorting

Sort algorithmes:

sort_unstable * Algorithm: pattern defeating quick sort
sort_unstable_by * Worst case: O(n*log(n))
* Memory: Swap in done in-place (no extra allocation)
e Unstable: it may change the order of equal elements

sort_unstable_by key Similar with sort and sort_by, except for complexity
* Worst case: O(m*n + n*log(n)), O(m) = time needed to compute the key

OBS: if elements order is not at issue, unstable sorts are generally faster

and require less memory than a regular sort. The only cases where stable
sort is recommended is if the sequence of data contains elements that a
already partially sorted.

o Sorting

What is the difference between regular sort, sort by and _ (or
the caching form of sort by key) ?

Sorting

What is the difference between regular sort, sort by and _ (or
the caching form of sort by key) ?

Regular sort:

Element; When
W Element.,, > Element;

Element,_

Element,

Sorting

What is the difference between regular sort, sort by and _ (or
the caching form of sort by key) ?

Sort by:
Element, When
W (Element.,, , Element;)

Element,_

Element,

What is the difference between regular sort, sort by and _ (or
the caching form of sort by key) ?

Sort by KEY:

Element,

Element, When
W (Element.,,) > (Element;)
Element,,,

Where Key(T) returns a value that is

comparable (usually a number, a hash, etc)

Element,_

Element,

Sorting

What is the difference between regular sort, sort by and _ (or
the caching form of sort by key) ?

Sort by KEY (cached):

} Co‘r’;’g+%} (Element.,,) (Element)

Where Key(T) returns a value that is

comparable (usually a number, a hash, etc)

Element,_

Sorting

Let’s see some examples:

Rust

fn main() A
let nut v - vec![1,9,6,2,9,3,6,8,3,6,1,3,7,8); |Outpwt

println!("{:?}",v);

fn absolute value(value:&i32) -> i32 {

if *value < © { -(*value) } else { *value }
} [1, -1, -2, -3, 3, 3, 6, -6, -6, 7, -8, 8, -9, 9]
fn main() A

let mut v = vec![1,-9,6,-2,9,-3,-6,-8,3,-6,-1,3,7,8];

v.sort by key(absolute value);

println!("{:?}",v);

Sorting

Let’s discuss an even more complex example. We will start by defining the structure

Student and a function that can be used to create such an object that will further
be used in our examples.

Rust

#[derive(Debug)]
struct Student {
math: u8,
english: u8,
name: String

} o
impl Student We will discuss more about constructors

{ for structs in another course !

fn new(studentName: &str, mathGrade: u8, englishGrad: u8) -> Student {
Student {

name: String::from(studentName),
math: mathGrade,

english: englishGrad

Sorting

Let’s try to sort a list of students:

Rust
fn main() {

= |
let mut v vec: [" . error[E0277]: the trait bound "Student: Ord" is not satisfied
Student: :new(Andrei ,1@,8), --> src\main.rs:23:7

Student::new("Dragos",8,10), 23| v.sort();

1] n |
Student: :new(Bogdan ,7,7), | AN the trait "Ord” is not implemented for “Student®
. o n " |
Student:: new(Clara ’9’1@) note: required by a bound in “slice::<impl [T]>::sort"

15 |
275 | T: Ord,
| AN pequired by this bound in “slice::<impl [T]>::sort’

v.sort();

A sort implies the ability to compare two elements. Right now, there is no such

method that describes how to compare two Students, and as such, sorting can

not be done. The solution is to implement several traits, called Ord , PartialOrd,
Egland PartialEq'to Student

Sorting

Let’s see what implementing this traits means.
Rust

use core::cmp::0rdering;

#[derive(Debug)]
struct Student { math: u8, english: u8, name: String }

impl Ord for Student {
fn cmp(&self, other:&Self) -> Ordering { .
return self.name.cmp(&other.name); Compare function (based on the name)
}

}
impl PartialOrd for Student {

fn partial_cmp(&self, other:&Self) -> Option<Ordering> {
Some(self.cmp(other))

}
}
impl PartialEq for Student {

fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal

}
}

impl Eq for Student {}

After we implement these traits, the code compile.

Rust

fn main() {

let mut v =
Student:
Student:
Student:
Student:

1

v.sort();

for 1 in v {

vec![
:new("Andrei",10,8),
:new("Dragos",8,10),
:new("Bogdan",7,7),
:new("Clara",9,10)

println!("{:?}",1)

}

Student {
Student {
Student {
Student {

Sorting

10, english: 8, name: "Andrei" }
7, english: 7, name: "Bogdan" }
9, english: 10, name: "Clara" }
8, english: 10, name: "Dragos" }

Sorting

But what if we don’t want to implement all of these traits for a simple sort ?
Rust

#[derive(Debug)]
struct Student { math: u8, english: u8, name: String }
impl Student {
fn new(studentName: &str, mathGrade: u8, englishGrad: u8) -> Student { .. }

}

fn main() { Output
let mut v = vec!][Student { : 7, english: 7, name: "Bogdan" }
Student::new("Andrei",10,8), Student { : 8, english: 10, name: "Dragos" }
Student: :new("Dragos",8,10), Student { : 9, english: 10, name: "Clara" }
Student: :new("Bogdan",7,7), Student { : 10, english: 8, name: "Andrei" }

Student::new("Clara",9,10)

i’ sort by key(|i| i.math); In this cases, using sort_by_key combined with a

for i in v { lambda function is ideal, especially if we want to sort
println!("{:?}",1) based on a field from the structure

}

Sorting

Other methods related to sort methods:

Method (Vector)

fn dedup(&mut self)

fn dedup by<F>(&mut self, mut same bucket: F)

Removes all consecutive elements that are equals.

Removes all consecutive elements that belong to the
same bucket (based on a function that determines if
an element is part of a bucket or not).

o1V1o 2 S AW [To [V]o B o)A 'CS\ A4 2PN (O €-TU[PR Y0 & S VRl ()AL DIl Removes all consecutive elements that have the same
key.

All of these methods imply that the element in the vector is comparable (has the
PartialEq trait).

Dedup methods are in particular useful when used after a sort command.

Sorting

Dedup methods (Vectors):

Rust

fn main() {
let mut v = vec![1,2,7,2,5,1,2,5,7];

v.sort(); Sorted vector: [1, 1, 2, 2, 2, 5, 5, 7, 7]
println!("Sorted vector: {:?}",v); Deduped vector: [1, 2, 5, 7]

v.dedup();
println!("Deduped vector: {:?}",v);

In this case, the following buckets were reduced:
* [1,1,2,2,2,55,7,71 >[4, 2,5, 7]
* [1,1,2,2,2,5,5,7,71 2 [1,2,5, 7]
* [1,1,2,2,2,5,5 7,712 [1, 2,5, 7]
« [1,1,2,2,2,5,5/7,71 > [1, 2,5, 7]

Sorting

Dedup methods (Vectors):

Rust

fn sort _modulo 3(value:&i32)->i32 {

(*value) % 3
} Sorted vector: [1, 7, 1, 7, 2, 2, 5, 2, 5]
fn dedup_modulo 3(value:&mut 132)->i32 { Deduped vector: [1, 2]

(*value) % 3

] 3
fn main() A

let mut v = vec![1,2,7,2,5,1,2,5,7]; Vector [1[7]1|7[2]2]5|2]6]
v.sort by key(sort_modulo_3); Modulo3 111122222
println!("Sorted vector: {:?}",v);

v.dedup by key(dedup modulo_3);
println!("Deduped vector: {:?}",v);

Sorting

Dedup methods (Vectors):
Rust

fn main() {
let mut v = vec![1,2,7,2,5,1,2,5,7];
vV.sort ff ke(lil (*1) A 3). Sorted vector: [1, 7, 1, 7, 2, 2, 5, 2, 5]
- . " ? " Deduped vector: [1, 2]
println!("Sorted vector: {:?}",v);

v.dedup by key([i| (*1i) % 3);
println!("Deduped vector: {:?}",v);

Vector _1117]1]7]2]2]5|2]6.

Modulo3 11 1122222

The same result can also be obtained via usage of lambda functions/closures (like
in the previous example).

We will talk more about closures in another course.

Sorting

Another interesting method (related to a sorted sequence of elements) is the
ability to use a binary search to quickly find an item (in O(log,)) complexity). This
methods can be used for Vectors, Arrays or slices.

fn binary search(&self, x: &T) -> Result<usize, usize>

fn binary_search by<F>(&self, mut f: F) -> Result<usize, usize>

fn binary_search by key<B, F>(&self, b: &, mut f: F) -> Result<usize, usize>

All of these methods should be used together with the similar sort functions (e.g.
use a binary_search_by with the sort_by or sort_unstable _by) and with the same
function as parameter.

Sorting

Let’s see some examples on how to use binary search.

Rust

fn main() {
let v = vec![1,2,3,4,5,6,7,8];
println!("{:?}",v.binary_search(&4));

println!("{:?}",v.binary search(&400));
println!("{:?}",v.binary_search(&9));

The binary search function returns:

e Ok (with the value the index where the exact match was found)
. . (with the value of the closest index to the value that was searched).

Obs: Notice that &4, &400 or &0. In Rust, a constant value is not implicitly converted into a constant
reference like in C++ (you have to explicitly say you want to do this).

Sorting

Let’s see some examples on how to use binary search.

Rust

fn main() {
let mut a = [1,2,3,4,5,6,7,8];
a.sort by key(|i]| (*i) % 3);
println!("{:?}",a);

println! ("{:?}",a.binary_search_by key(&9, |i| (*i)
println! ("{:?}",a.binary_search_by key(&1, |i| (*i)
println! ("{:?}",a.binary_search_by key(&2,|i| (*i)
println! ("{:?}",a.binary_search_by key(&3,|i| (*i)

Keep in mind that binary_search_by key receives for the first parameter a key and
not a value. In this case, possible keys are 0,1 and 2 (everything that module 3 can
obtained). That is why, the first 3 searches will end up with Ok, while search no 4
(for the value 3) will return Err as any value module 3 will never result in 3!!!

Hash maps

Hash maps

Hash maps collection of elements, where every element can quickly (ideally O ;) be
access via a key. There are several implementation possible for a Hash maps; Rust
has a specific object called HashMap (like std::unordered_map) from C++ standard.

Rust implementation (a variation of https://abseil.io/blog/20180927-swisstables)

To create a map, use one of the following forms:
)l et mut a: HashMap<key,value> = HashMap::new()
et mut a = HashMap::<key,value>::new()
9l ct mut a: HashMap<key,value> = HashMap::with_capacity(capacity)
CJEllet mut a: HashMap<key,value> = HashMap::from([(key,vector);count])

https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables

Hash maps

Let’s see some examples on how to build a hash map.
Rust

use std::collections: :HashMap; _

{}, Capacity=0, items=0
fn main() { {}, Capacity=3, items=0
let ml = HashMap::<i32,i32>:: new() . {"John": 10, "Mike": 20, "George": 30}, Capacity=3, items=3
- e o , e o ,
let m2 = HashMap::<&str,i32>::with _capacity(100);
let m3 = HashMap::from([

("John",10), ("Mike",20), ("George",30)

1);

println! ("{:?}, Capacity={}, items={}",ml,ml.capacity(),ml.len());
println! ("{:?}, Capacity={}, items={}",m2,m3.capacity(),m2.1len());
println! ("{:?}, Capacity={}, items={}",m3,m3.capacity(),m3.1len());

Obs: Notice the use of std::collections::HashMap (this is required to use a hash
map).

Hash maps

It is important to notice that the hashing algorithm use rely on a
randomized seed. This mean that consecutive execution of the same
code will result in a different order of elements in memory.

Rust

fn main() {
for _in 0..7 {
let m3 = HashMap::from([("John", 10), ("Mike", 20), ("George", 30)]);
println!("{:?}, Capacity={}, items={}", m3, m3.capacity(), m3.len());

Output (possible).

{"Mike": 20, "George": 30, "John": 10}, Capacity=3, items=3
{"George": 30, "John": 10, "Mike": 20}, Capacity=3, items=3
{"John": 10, "George": 30, "Mike": 20}, Capacity=3, items=3
{"George": 30, "Mike": 20, "John": 10}, Capacity=3, items=3
{"George": 30, "Mike": 20, "John": 10}, Capacity=3, items=3
{"John": 10, "Mike": 20, "George": 30}, Capacity=3, items=3
{"George": 30, "John": 10, "Mike": 20}, Capacity=3, items=3

Hash maps

Basic operations for hash maps

wetod Ty

fn insert(&mut self, k: K, v: V) -> Option<Vv> Inserts a key/value pair into the hash map. If the key
exists in the map, None is return. If the key exists, it is
updated, and the old value is returned.

get (&self, k: &K) -> Option<&V> Get a reference to the value associated with a key
get mut (&mut self, k: &K) -> Option<&mut V>

contains_key (&self, k: &K) -> bool True if a key exists in the hash map

remove (&mut self, k: &Q) -> Option<V> Removes an element from the map an returns its
value.

fn clear(&mut self) Clears all key/value pairs (but keeps the allocated
memory for future usage).

Let’s see an example:
Rust

fn main() {
let mut m = HashMap: :from([
("John",10), ("Mike",20), ("George",30)
1)
println!("John is in m: {}",m.contains_key("John"));
m.insert("Vincent", 20);
println!("{:?}",m);

println!("Value for 'Mike' is : {:?}",m.get("Mike"));
*m.get mut("George").unwrap() = 50;
println!("{:?}",m);

Johnis in m: true

{"John": 10, "Vincent": 20, "George": 30, "Mike": 20}
Value for 'Mike' is : Some(20)

{"John": 10, "Vincent": 20, "George": 50, "Mike": 20}

Hash maps

Hash maps

One of the most used method for hash maps is .entry():

Wetod o U

entry(& A GAROREM a2 Returns a structure (Entry) that can be used to modify the
value of a key.

Entry struct has the following methods:

Moo e

and_modify(, f: Function) -> Change the value associated with a specific key with a value
returned from a function F.

or_insert(, default: V) -> & Returns a mutable reference to a value of a specific key. If
that key is not present, it will be inserted and set up with a
default value, and then the reference to that default value
will be returned.

or_insert_with(, default: F) -> & vV Similar to or_insert, but uses a function default to return a
or_insert_with_key-> V>(, default: F) -> & value

Hash maps

Let’s see some examples on how to use .entry() method:

= Output

fn main() { : —
let mut m = HashMap::from([("John",108), ("Mike",2| { George" 30, "Mike": 20, “John": 20}
{"George": 30, "Mike": 20, "John": 20}

m.entry("John").and_modify(|x| { *x = *x + 10; })

println! ("{m:?}");
m.entry("John2").and_modify(|x| { *x = *x + 16; });
println! ("{m:?}");

Notice that if key is not present than .and_modify(..) has no effect !

Hash maps

Let’s see some examples on how to use .entry() method:

Rust
fn main() {
let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
let john value = m.entry("John").or_insert(200);
println!("john = {john_value}");
let alice value = m.entry("Alice").or _insert(200);
{alice_value}");

println!("alice =
println!("{:?}",m);

john =10
alice =200
{"John": 10, "George": 30, "Alice": 200, "Mike": 20}

Hash maps

Keep in mind that the value returned by .or_insert(...) method is a
mutable reference. This means that for example you can not use the
hashmap as an immutable reference while that reference still exists.

Rust

fn main() {
let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
let john value = m.entry("John").or _insert(200);
println! ("{:?}",m);
println!("john = {john_value}");
error[E@502]: cannot borrow "m° as immutable because it is also borrowed as

mutable
--> src\main.rs:6:21

5 let john_value = m.entry("John").or_insert(200);

mutable borrow occurs here

A immutable borrow occurs here
println!("john = {john_value}");

|
|
|
| println! ("{:?}",m);
|
|
| mutable borrow later used here

7

Hash maps

Keep in mind that the value returned by .or_insert(...) method is a
mutable reference. This means that for example you can not use the

hashmap as an immutable reference while that reference still exists.
Rust
fn main() {

let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
let john value = m.entry("John").or _insert(200);

println!("john = {john_value}"); .
println! ("{:?}",m); john =10
{"George": 30, "Mike": 20, "John": 10}

In this case we have reversed the order of calls (first we print

john_value and then m). This will work as the lifetime of john_value
ends after println! Macro.

Hash maps

Let’s see some examples on how to use .entry() method:

fn main() {

let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
m.entry("John").or insert_with(|| 100);

println!("{m:?}");

m.entry("Alice").or _insert_with(|| 100);

println! ("{m:?}");

m.entry("Liam").or _insert with_key(|key| key.len());
println!("{m:?}");

{"John": 10, "Mike": 20, "George": 30}
{"John": 10, "George": 30, "Alice": 100, "Mike": 20}
{"John": 10, "George": 30, "Alice": 100, "Mike": 20, "Liam": 4}

OBS: .or_insert_with key(...) uses a function that receives the key name and returns
a value (in our case “Liam” has a size of 4 chars).

Hash maps

One of the most common usage for .entry() is to count elements from a
vector / array. The solution is to use .entry(...).or_insert(...) to first
insert and initialize a string in the map, and then increment the value.

fn main() { {"John": 4, "Alice": 2, "Mike": 1}
let mut m = HashMap::new();
let v = ["John","Alice","John","Mike","Alice","John","John"];
for k in v {

*m.entry(k).or_insert(0)+=1;

}
println! ("{m:?}");

Hash maps

Hash maps are iterable:
Rust

fn main() {
let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
for 1 in m {
println! ("{:?}",1);
} ("George", 30)
("John", 10)
("Mike", 20)

You can also use .keys() to enumerate directly through keys:
Rust
fn main() {

let mut m = HashMap::from([("John",10), ("Mike",20), ("George",30)]);
for i in m.keys() {

println! ("{:?}",1);

}

Hash maps

Keep in mind that iterating through an object moves the key/value pair
instead of returning a reference:
Rust

fn main() {
let m = HashMap: :from([
(String::from("key-1"),String: :from("John")),
(String::from("key-2"),String: :from("Mike")),
(String::from("key-3"),String: :from("Marry")),
1)

for 1 in m { error[E@382]: borrow of moved value: "m’
--> src\main.rs:12:21

println! ("{:?}",1);
} 4

|
I
pr\j_nt]_n I ("{ . ?}" B m), | which does not implement the ~Copy™ trait
. |
|
|
|

let m = HashMap: :from([
- move occurs because "m’ has type "HashMap<String, String>",

for 1 in m {
- "m> moved due to this implicit call to ".into_iter()"

println!("{:?}",m);
A value borrowed here after move

Hash maps

The solution is to iterate over a reference of that object instead of the

object.
Rust

fn main() {
let m = HashMap: :from([

(String::from("key-1"),String: :from("John")),
(String::from("key-2"),String: :from("Mike")),
(String::from("key-3"),String: :from("Marry")),

1);

for 1 in &m | {

println!("{:?}",1); // "i" is of type (&String,&string)

}
println! ("{:?}",m);

", "John")

", "Mike")

", "Marry")

": "John", "key-2": "Mike", "key-3": "Marry"}

Hash maps

To get the map capacity and length use .len() and .capacity() methods
Rust

fn main() {
let m = HashMap: :from([

(String: :from("key-1"),String: :from("John")), m
(String::from("key-2"),String::from("Mike")),
(String::from("key-3"),String: :from("Marry")), Capacity=14, len=9

(String::from("key-4"),String::from("Andy")),
(String::from("key-5"),String: :from("Andrei")),

(String::from("key-6"),String::from("Dragos")),
(String::from("key-7"),String::from("Carlos")),
(String: :from("key-8"),String: :from("Terry")),
(String::from("key-9"),String: :from("Ana")),

1);

println! ("Capacity={}, len={}",m.capacity(), m.len());

Hash maps

Use .remove(key) to remove a key from the hash map.

Rust

fn main() {

let mut m= HashMap::from([
(String::from("John"),10),
(String::from("Mike"),8),
(String::from("Marry"),4),
(String::from("Andy"),9),
(String::from("Andrei"),5),

IDE

println!("Remove Mike -> with value: {:?}",m.remove("Mike"));
println!("Remove Dragos -> with value: {:?}",m.remove("Dragos"));
println!("Hashmap = {:?}",m);

Remove Mike -> with value: Some(8)
Remove Dragos -> with value: None
Hashmap = {"Marry": 4, "Andy": 9, "John": 10, "Andrei": 5}

Hash maps

You can also use .retain(predicate) to keep in the map only the
elements that match a specific criteria.

Rust

fn bigger than_8(key: &String,value: &mut i32)->bool { m

(*value)>8 {"John": 10, "Andy": 9}

}
fn main() {

let mut m= HashMap::from([
(String::from("John"),10),
(String::from("Mike"),8),

(String::from("Marry"),4),
(String::from("Andy"),9),
(String::from("Andrei"),5),

1
m.retain(bigger than_8);
println!("{:?}",m);

Hash maps

You can also use .retain(predicate) to keep in the map only the

elements that match a specific criteria.

Rust
fn main() {
let mut m= HashMap::from([
(String::from("John"),10), {"John": 10, "Andy": 9}
(String::from("Mike"),8),
(String::from("Marry"),4),

(String::from("Andy"),9),
(String::from("Andrei"),5),
1);
m.retain(|k,v| *v>8);
println! ("{ 21", m);

The same result can also be obtained via a closure/lambda
function.

HashSet

Hash sets

HashSet type in Rust is implemented over a HashMap with a value of type () =2 a
/ST type thus making sure that there is no extra memory allocated for values.

To create a set, use one of the following forms:
<)l et mut a: HashSet<type> = HashSet::new()
JIlet mut a = HashSet::<type>::new()
9l et mut a: HashSet<type> = HashSet::with _capacity(capacity)

CJElet mut a: HashSet<type> = HashSet::from([<type>;count])

Hash sets

Let’s see some examples on how to build a hash set.
Rust

use std::collections: :Hashset; ouput

s1={2,1, 4,3, 5}
fn main() A s2 ={}
let s1 = HashSet::from([1,2,3,4,5]); s3=1{1,52,4, 3}
let s2 = HashSet::<i32>::new();

let s3 = HashSet::from([1,1,2,2,3,3,3,4,5]);
println!("s1 = {:?}",s1);
println!("s2 = {:?}",s2);
println!("s3 = {:?}",s3);

Obs: Notice the use of std::collections::HashSet (this is required to use a hash set).

Keep in mind that the order of the elements is not guarantee to be the insertion order.
Also ... using several elements with the same value, will strip down equal elements

Basic operations for hash sets

wetod Ty

fn insert(&mut self, value: T) -> bool

fn get (&self, v: &T) -> Option<&T>

fn contains (&self, value: &T) -> bool

fn remove (&mut self, value: &T) -> bool

fn clear(&mut self)

Hash sets

Inserts a value in a set. Returns false if the value
already exists in the set, true otherwise.

Get a reference to a value if exists in the set
True if a value exists in the set

If value exists in the set, removes it and return true.
Otherwise returns false.

Removes all elements from the set (but keeps the
allocated memory for future usage).

Let’s see some examples on how to use a set:
Rust

use std::collections: :HashSet;

fn main() {
let mut s = HashSet::from([1,2,3,4,5]);
println!("{:?}",s);
println! ("Add 3 -> {} => s = {:?}",s.insert(3),s);
println! ("Add 7 -> {} => s = {:?}",s.insert(7),s);

println! ("Remove 1 -> {} => s = {:?}",s.remove(&1),s);
println!("Remove 9 -> {} => s = {:?}",s.remove(&9),s);
println!("Is 4 in the set -> {}",s.contains(&7));
println!("Get 5 from set -> {:?}",s.get(&5));
println!("Get 8 from set -> {:?}",s.get(&8));

Hash sets

{1, 2, 4,5, 3}

Add 3 ->false =>s={1, 2, 4, 5, 3}
Add 7 ->true=>s={1, 2,4, 7,5, 3}
Remove 1 ->true=>s={2,4,7,5, 3}
Remove 9 -> false =>s =12, 4, 7, 5, 3}
Is 4 in the set -> true

Get 5 from set -> Some(5)

Get 8 from set -> None

Hash sets

There are however, some methods specific to sets:

intersection(&self, other: &HashSet<T>) -> Intersection<T>
union(&self, other: &HashSet<T>») -> Union<T>

symmetric_difference(&self, other: &HashSet<T») -> SymmetricDifference<T>

difference(&self, other: &HashSet<T>) -> Difference<T>

is disjoint(&self, other: &HashSet<T>) -> bool
is _subset(&self, other: &HashSet<T>) -> bool

is superset(&self, other: &HashSet<T>») -> bool

Methods for union, intersection, difference and symmetric difference
return an iterator.

let
let
let
let
let

let
let
println!("Union =
println! ("Intersection
println! ("Sym.diff = {:?}",sd);

println!("sl-s2={:?}

Let’s see some examples on how set specific methods:

Union={4, 3,6, 7,5, 1, 2}
Intersection = {5, 4, 3}
Sym.diff ={7, 6, 1, 2}
s1-s2={2, 1} s2-s1={6, 7}

fn main() {

sl = HashSet::from([1,2,3,4,5]);

s2 = HashSet::from([3,4,5,6,7]);

sl.union(&s2).collect();

sl.intersection(&s2).collect();
sl.symmetric_difference(&s2).collect();
sl.difference(&s2).collect();
s2.difference(&sl).collect();

pP1N,u);

{:2}",1);

u:HashSet< >
i:HashSet< >
sd:HashSet< >
dl:HashSet< >
d2:HashSet< >

Hash sets

s2-sl1={:?}",d1,d2);

Btree Map

Btree Map

A Btree map is an ordered map based on a binary tree algorithm (more on binary
trees : https://en.wikipedia.org/wiki/B-tree). The closest equivalence from C++
space is std::map (even though they use different algorithms under the hood).

Keep in mind that current Rust implementation is slightly different than the
classical one as it tries to optimize search for small sets of data and use as much of
the processor cache as possible.

To create a b-tree map, use one of the following forms:
a)
JElet mut a = BTreeMap::<key,value>::new()

let mut a: BTreeMap<key,value> = BTreeMap ::new()

9l ct mut a: BTreeMap<key,value> = BTreeMap ::with_capacity(capacity)
CJEllet mut a: BTreeMap <key,value> = BTreeMap ::from([(key,vector);count])

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree

Btree Map

Let’s see some examples:

Rust

fn main() {

for i in 0..3 {
let m = BTreeMap: :from([("John",10), ("Ana",20),("Mike",5), ("Bugsy",10)]);
println! ("{:?}",m);

}

println! ("

for i in 0..3 {
let m = HashMap: :from([("John",10),("Ana",20), ("Mike",5), ("Bugsy",10)]);

println!("{:?}",m);

{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
{"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}

{"Mike": 5, "John": 10, "Bugsy": 10, "Ana": 20}
{"Bugsy": 10, "Ana": 20, "Mike": 5, "John": 10}
{"Mike": 5, "John": 10, "Ana": 20, "Bugsy": 10}

Btree Map

Let’s see some examples on how set specific methods:

Rust

fn main() {

for i in 0..3 {
let m = BTreeMap: :from([("John",10), ("Ana",20),("Mike",5), ("Bugsy",10)]);
println!("{:?}",m);

}

println! ("

for 1 in 0..3 {
let m = HashMap: :from([("John",10),("Ana",20), ("Mike",5), ("Bugsy",10)]);
println! ("{:?}",m);

Notice that BTreeMap/isorts all elements {"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}
based on their key. This is different than {"Ana": 20, "Bugsy": 10, "John": 10, "Mike": 5}

what HashMap is doing (HashMap uses a {"Ana’: 20, "Bugsy": 10, "John™: 10, "Mike™: 5}

random seed and as such the order is {"Mike": 5, "John": 10, "Bugsy": 10, "Ana": 20}

different almost every time). {"Bugsy": 10, "Ana": 20, "Mike": 5, "John": 10}
{"Mike": 5, "John": 10, "Ana": 20, "Bugsy": 10}

Btree Map

Btree map has the same methods as Hash maps (e.g. insert, get, entry,
contains, etc). However, since the keys in a btree map are sorted, there
are other methods available only on BTreeMap objects:

Moo e e

fn append(&mut self, other: &mut Self) Appends all elements from a specific Btree
map into another one.

fn pop first(&mut self) -> Option<(K, V)> These 4 methods are experimental and are

fn pop last(&mut self) -> Option<(K, V)> considered M While in the future it is
possible for these methods to be available,

right now they are not part of the stable
fn last entry(&mut self) -> Option<OccupiedEntry<K,V>> SDK.

fn first entry(&mut self) -> Option<OccupiedEntry<K,V>>

Btree Map

Let’s see an example that uses .append(...) method:
Rust

fn main() A
let mut ml = BTreeMap::from([("John",10),("Ana",20), (" "Mike",5), ("Bugsy",10)]);
let mut m2 = BTreeMap::from([("Andra",10),("Ana",10),("Loyd",15),("Erik",12)]);

ml.append(&mut m2);
println!("{:?}",ml);

{"Ana": 10, "Andra": 10, "Bugsy": 10, "Erik": 12, "John": 10, "Loyd": 15, "Mike": 5}

Notice that if a key already exists, its value is updated with after the
append method is called (key “Ana” had initially value 20, after update it
has a value of 10).

Btree Map

Btree map is a well-suited choice for problems where a priority queue is
required. The most common usage in this case is by using iterators and
their method .next() to advance to the next element. The result is that you
can extract / iterate over each elements in their order.

Rust

fn main() {
let m = BTreeMap::from([("John",10), ("Ana",20),("Mike",5), ("Bugsy",10)]);

let mut i = m.iter();

while let Some(x) = EM() { Extract Ana width value: 20

println!("Extract {} width value: {}",x.0,x.1); Extract Bugsy width value: 10
} Extract John width value: 10
Extract Mike width value: 5

OBS: We will discuss more about iterators in another course.

BTreeSet

BlreeSet

BTreeSet type in Rust is implemented over a BTreeMap with a value of type () 2 a
/ST type thus making sure that there is no extra memory allocated for values.

To create a set, use one of the following forms:
=)l et mut a: BTreeSet<type> = BTreeSet::new()
JElet mut a = BTreeSet::<type>::new()
et mut a: BTreeSet<type> = BTreeSet::with_capacity(capacity)
CJIllct mut a: BTreeSet<type> = BTreeSet::from([<type>;count])

The logic and methods are similar to the ones from HashSet.

The similar class from C++ is std::set

Btree Set

Let’s see an example on how to use a BTreeSet:
Rust
fn main() {
let s = BTreeSet::from([10,2,7,4,9,11,3,6,7]);
println! ("{s:?}");

Similar to BTreeMap, there is an .append(...) method:
Rust

fn main() {
let mut s1 = BTreeSet::from([10,2,7,4,9,11,3,6,7]);
let mut s2 = BTreeSet::from([1,8,3,6,5]);

sl.append(&mut s2);
println! ("{s1:?}");

Map comparation between C++
and Rust

C++ vs Rust (on maps)

Let’s compare how various types of maps work on Rust and C++.

For this we will use:
e std::map (C++)
e std::unordered_map (C++)
* HashMap (Rust)
* BTreeMap (Rust)

The same algorithm will be written in both Rust and C++ and tested in Debug and Release
mode. We will use GetTickCount APl to measure time. Each variation of the build will be
executed for 10 times and the average will be compute.

So ... lets see the testing algorithm:

Rust

extern "system" { fn GetTickCount64() -> u64; }
fn get_time() -> u64 { unsafe { GetTickCount64() } }

use std::collections::{BTreeMap, HashMap};

#[derive(Debug, Copy, Clone)]
struct Test { vl1: u64, v2: 32, v3: bool }

fn main() A

let mut m: HashMap<u32, Test> = HashMap::new();

let start = get_time();

for i in ©..1 000 000 {
let t = Test { vl: i as u64, v2: 1.5,v3: i%2==0};
m.insert(i, t);

}
let end = get time();
println!("{}", end - start);

C++ vs Rust (on maps)

C++

#include <Windows.h>
#include <map>
#include <unordered map>
struct Test {
unsigned long long vi1;
float v2;
bool v3;
}s
void main() {
std: :unordered map<unsigned int, Test> m;
auto start = GetTickCount64();
for (auto i = @; i < 1000000; i++) {
m[i] = Test{ (unsigned long long)i,
1.5,i % 2 == 0 };
¥
auto end = GetTickCount64();
printf("%d", (int)(end - start));

So ... lets see the testing algorithm:

Rust

extern "system" { fn GetTickCount64() -> u64; }
fn get _time() -> u64 { unsafe { GetTickCount64() } }

" We will run the same algorithm using:
#[dert® HashMap

“Lruc e BTreeMap

fn main() A

let mut m: |[HashMap<u32, Test>|= HashMap::new();

let start = get time();

for i in ©..1 000 000 {
let t = Test { vl: i as u64, v2: 1.5,v3: i%2==0};
m.insert(i, t);

}
let end = get time();
println!("{}", end - start);

C++ vs Rust (on maps)

C++

#include <Windows.h>
#include <map>
#include <unordered map>
strud : . .
- We will run the same algorithm using:
+ * std::unordered_map
~+ std:map
void main() {
std: junordered map<unsigned int, Test>|m;
auto start = GetTickCount64();
for (auto i = @; i < 1000000; i++) {
m[i] = Test{ (unsigned long long)i,
1.5,i % 2 == 0 };
}
auto end = GetTickCount64();
printf("%d", (int)(end - start));

C++ vs Rust (on maps)

... lets see the testing algorithm:

C++ (Debug)

std:unordered. map 938 1266 1390 1328 1250 1297 1250 1344 1485 1437 1298
C++ (Release)

std:unordered_map 297 234 235 281 266 266 234 235 234 234 251
C++ (Debug)

std::map 1312 1765 1953 1875 1875 1859 1813 1812 1797 1828 1788
C++ (Release)

e 156 141 172 157 141 171 172 156 172 156 159
Rust (Debug)

HashMap 1141 1297 1265 1250 1281 1312 1359 1297 1343 1297 1284
Rust (Release)

HashMap 78 78 63 78 78 94 93 94 94 94 84
Rust (Debug)

BTreeMap 2703 3156 3078 2906 2765 2875 2937 2844 2860 2781 2890
Rust (Release)

BTreeMap 93 93 109 110 125 110 125 141 125 125 115

C++ vs Rust (on maps)

The general conclusion after these tests is:
e Rust is slower the C++ when it comes to debug mode (due to many checks)

* In terms of Release mode, Rust is faster (however, it should be noted that we are
not comparing the same algorithms and as such these tests might NOT be
correct). However, since we’ve compared the standard algorithms from each
(Rust and C++) libraries, the results are however relevant.

* The tests were performed on Windows 11 (using Microsoft compiler). To produce
accurate results, other C++ compilers (such as clang and gcc) should be tested as
well.

	Default Section
	Slide 1: Course – 8 Gavrilut Dragos
	Slide 2: Agenda for today

	Closures
	Slide 3: Closures
	Slide 4: Closures
	Slide 5: Closures
	Slide 6: Closures
	Slide 7: Closures
	Slide 8: Closures
	Slide 9: Closures
	Slide 10: Closures
	Slide 11: Closures
	Slide 12: Closures
	Slide 13: Closures
	Slide 14: Closures
	Slide 15: Closures
	Slide 16: Closures
	Slide 17: Closures
	Slide 18: Closures
	Slide 19: Closures
	Slide 20: Closures
	Slide 21: Closures
	Slide 22: Closures
	Slide 23: Closures
	Slide 24: Closures
	Slide 25: Closures
	Slide 26: Closures
	Slide 27: Closures
	Slide 28: Closures
	Slide 29: Closures
	Slide 30: Closures
	Slide 31: Closures
	Slide 32: Closures
	Slide 33: Closures
	Slide 34: Closures
	Slide 35: Closures
	Slide 36: Closures
	Slide 37: Closures
	Slide 38: Closures
	Slide 39: Closures
	Slide 40: Closures

	Iterators
	Slide 41: Iterators
	Slide 42: Iterators
	Slide 43: Iterators
	Slide 44: Iterators
	Slide 45: Iterators
	Slide 46: Iterators
	Slide 47: Iterators
	Slide 48: Iterators
	Slide 49: Iterators
	Slide 50: Iterators
	Slide 51: Iterators
	Slide 52: Iterators
	Slide 53: Iterators
	Slide 54: Iterators
	Slide 55: Iterators
	Slide 56: Iterators
	Slide 57: Iterators
	Slide 58: Iterators
	Slide 59: Iterators
	Slide 60: Iterators
	Slide 61: Iterators
	Slide 62: Iterators
	Slide 63: Iterators
	Slide 64: Iterators
	Slide 65: Iterators
	Slide 66: Iterators
	Slide 67: Iterators
	Slide 68: Iterators
	Slide 69: Iterators
	Slide 70: Iterators
	Slide 71: Iterators
	Slide 72: Iterators

	Other iterators
	Slide 73: Other functionalities
	Slide 74: Iterators (Peekable)
	Slide 75: Iterators (Peekable)
	Slide 76: Iterators (enumerate)
	Slide 77: Iterators (Infinite loops)
	Slide 78: Iterators (DoubleEndedIterator)
	Slide 79: Iterators (DoubleEndedIterator)
	Slide 80: Iterators (DoubleEndedIterator)
	Slide 81: Iterators (ExactSizeIterator)

	Vectors
	Slide 82: Vectors
	Slide 83: Vectors
	Slide 84: Vectors
	Slide 85: Vectors
	Slide 86: Vectors
	Slide 87: Vectors
	Slide 88: Vectors
	Slide 89: Vectors
	Slide 90: Vectors
	Slide 91: Vectors
	Slide 92: Vectors
	Slide 93: Vectors
	Slide 94: Vectors
	Slide 95: Vectors
	Slide 96: Vectors
	Slide 97: Vectors
	Slide 98: Vectors
	Slide 99: Vectors
	Slide 100: Vectors
	Slide 101: Vectors
	Slide 102: Vectors
	Slide 103: Vectors
	Slide 104: Vectors
	Slide 105: Vectors
	Slide 106: Vectors
	Slide 107: Vectors
	Slide 108: Vectors
	Slide 109: Vectors
	Slide 110: Vectors
	Slide 111: Vectors
	Slide 112: Vectors
	Slide 113: Vectors
	Slide 114: Vectors
	Slide 115: Vectors
	Slide 116: Vectors
	Slide 117: Vectors
	Slide 118: Vectors

	Sorting
	Slide 119: Sorting
	Slide 120: Sorting
	Slide 121: Sorting
	Slide 122: Sorting
	Slide 123: Sorting
	Slide 124: Sorting
	Slide 125: Sorting
	Slide 126: Sorting
	Slide 127: Sorting
	Slide 128: Sorting
	Slide 129: Sorting
	Slide 130: Sorting
	Slide 131: Sorting
	Slide 132: Sorting
	Slide 133: Sorting
	Slide 134: Sorting
	Slide 135: Sorting
	Slide 136: Sorting
	Slide 137: Sorting
	Slide 138: Sorting
	Slide 139: Sorting
	Slide 140: Sorting
	Slide 141: Sorting

	Hash maps
	Slide 142: Hash maps
	Slide 143: Hash maps
	Slide 144: Hash maps
	Slide 145: Hash maps
	Slide 146: Hash maps
	Slide 147: Hash maps
	Slide 148: Hash maps
	Slide 149: Hash maps
	Slide 150: Hash maps
	Slide 151: Hash maps
	Slide 152: Hash maps
	Slide 153: Hash maps
	Slide 154: Hash maps
	Slide 155: Hash maps
	Slide 156: Hash maps
	Slide 157: Hash maps
	Slide 158: Hash maps
	Slide 159: Hash maps
	Slide 160: Hash maps
	Slide 161: Hash maps

	HashSet
	Slide 162: HashSet
	Slide 163: Hash sets
	Slide 164: Hash sets
	Slide 165: Hash sets
	Slide 166: Hash sets
	Slide 167: Hash sets
	Slide 168: Hash sets

	BTreeMap
	Slide 169: Btree Map
	Slide 170: Btree Map
	Slide 171: Btree Map
	Slide 172: Btree Map
	Slide 173: Btree Map
	Slide 174: Btree Map
	Slide 175: Btree Map

	BTreeSet
	Slide 176: BTreeSet
	Slide 177: BTreeSet
	Slide 178: Btree Set

	Map_cmp_Rust_C++
	Slide 179: Map comparation between C++ and Rust
	Slide 180: C++ vs Rust (on maps)
	Slide 181: C++ vs Rust (on maps)
	Slide 182: C++ vs Rust (on maps)
	Slide 183: C++ vs Rust (on maps)
	Slide 184: C++ vs Rust (on maps)

	Q&A
	Slide 185

